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Abstract: Traditional grid-based numerical methods, such as finite volume method (FVM), are not 
suitable to simulate multiphase biofluids (such as blood) at the microscale level. Alternatively, mesh-
free Lagrangian methods can deal with two or more finely dispersed phases moving relatively to each 
other. The Moving Particle Semi-Implicit Method (MPS), used in this study, is a deterministic particle 
method based on a Lagrangian technique to simulate incompressible flows. The advantages of particle 
methods over traditional grid-based numerical methods have motivated several researchers to imple-
ment them into a wide range of studies in computational biomicrofluidics. The main aim of this paper is to evaluate the 
accuracy of the MPS method by comparing it with numerical simulations performed by an FVM. Hence, simulations of a 
Newtonian fluid flowing through a constriction were performed for both methods. For the MPS, a section of the channel 
of 30�11.5�11.5 �m was simulated using periodic boundary conditions. The obtained results have provided indications 
that, if the initial particle distance is sufficiently small, the MPS method can calculate accurately velocity profiles in the 
proposed channel. 
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1. INTRODUCTION 

Blood is a physiological fluid that consists of plasma and 
different kinds of cells, such as red blood cells (RBCs), 
white blood cells (WBCs) and platelets [1]. Under healthy 
conditions human RBCs have a biconcave shape of approx-
imately 8 �m in diameter and are highly deformable, which 
allows them to pass through narrow capillaries with a diame-
ter several times smaller than the RBC size [2]. 

From a macroscopic point of view the human blood can 
be regarded as a homogenous fluid. However, at the micro-
scopic level the blood should be treated as a fluid mainly 
composed of different types of cells [1]. Consequently an 
excellent approach to investigate the microscopic mechanical 
behavior of blood flow is considering the human blood as a 
set of suspended discrete particles. Hence, particle methods 
[3] are a natural choice to perform blood flow simulations at 
a microscopic level. 

Classical numerical techniques, such as finite element 
method (FEM), finite difference method (FDM) or finite 
volume method (FVM) are used to simulate blood flow at 
the macroscale level, since blood can be assumed as a homo-
geneous fluid. 

Recently computer approaches using discrete particles have 
been proposed to investigate the dynamic behavior of blood 
cells in the blood flow, such as formation and destruction 
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of thrombi [4]. During the last decade several researchers  
[1, 3, 5-7] have been developing a computer simulation 
method, known as Moving-Particle Semi-Implicit Method 
(MPS), to simulate blood flow at microscale level. By using 
this method they were able to analyze the RBC motion and 
deformation, platelets flow and their interactions in mi-
crovessels [1, 3, 5-7]. 

The use of particle methods for solving fluid dynamics 
problems is relatively recent. Although for grid based meth-
ods a large amount of knowledge has been accumulated over 
the years, in the case of particle methods the experience of 
the scientific community is more limited. The validation 
procedure of in house codes must be, therefore, more care-
fully investigated. 

This paper presents a numerical study of a Newtonian 
fluid in order to identify constraints and ways to improve the 
MPS method and to investigate the accuracy of this method 
when compared with the existing traditional techniques. The 
results obtained by the MPS method were compared and 
validated with the results obtained by the FVM. This latter 
method was implemented in the commercial software Ansys
Fluent. The flow of a Newtonian homogeneous fluid in a 
rectangular microchannel was selected as a benchmark since 
it can be accurately predicted by analytical and grid based 
methods.

2. THEORY 

2.1. Moving Particle Semi-Implicit Method (MPS) 

The Moving Particle Semi-implicit method (MPS) solves 
the incompressible Navier-Stokes equations by using a La-
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grangian particle approach. The original method was devel-
oped by Koshizuka and Oka in 1996 [8], and assuming in-
compressible viscous flow, the motion of all particles is de-
termined using the MPS method. In the MPS method, parti-
cle motion is modeled by using the equation of continuity 
and Navier-Stokes equations with a semi-implicit time-
marching algorithm [9]. The MPS method considers the Na-
vier-Stokes equations as the conservation of mass and mo-
mentum in Lagrangian frame of reference: 
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where � is the particle velocity vector; ��is time, � is 
gravitational acceleration vector, � is a kinematic viscosity,��
is the particle pressure and � is the fluid density. The equa-
tion (1) is written in the form of compressible flow. In the 
MPS method, incompressibility is enforced by way of setting 
�� �� � � at each particle and calculation step. In the MPS 
method the advection term is automatically calculated 
through the tracking of particle motion; hence, the numerical 
diffusion arising from the successive interpolation of the 
advection function in Eulerian grid-based methods is con-
trolled without the need of a sophisticated algorithm [10]. 

 The interaction between neighboring particles is given 
by the kernel function ����, where � is the distance between 
two particles [8]. This function describes the effect of dis-
tance on the influence of particle quantities. The kernel func-
tion must decrease with the distance between two particles 
[9]. The function is given by: 

� � �

��

�
� ������� ��� � � � ��

������������ ������� � �

�� (3)�

where �� is the finite radius where there are interactions 
between particles in the MPS method, � is the distance be-
tween two particles, � � �� � ��  for some � and � particles 
[8]. Note that the kernel function is infinity at � � �. This is 
beneficial for numerical stability in the model of incompress-
ibility [8, 10]. The particle number density at position � is 
given by: 
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 When the number of particles in unit volume is denoted 
by ��. The relation between �� and �� is given by the equa-
tion:�
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where � is the whole region, excluding a central part oc-
cupied by particle �. Considering that all particles have the 
same mass, �, the fluid density is proportional to the particle 
number density, ��, and can calculated through the equation: 
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Thus, the continuity equation is satisfied if the particle num-
ber density is constant. This constant value is denoted by ���

 A gradient vector between two particles � and � pos-
sessing scalar quantities �� and �� at the coordinates �� and 
�� is simply defined by �� � �� �� � �� � �� � ��

�

. The 
gradient vector between particle � and � are weighted with 
the kernel function and averaged to obtain a gradient vector 
at particle �:
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where � is the number of space dimensions and � is the 
total number of particles in the domain. This model is not 
sensitive to absolute pressure. This is consistent with the 
property of incompressible fluids, which only depends on the 
relative pressure distribution [11]. Thus equation can be rear-
ranged as follows: 
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where any constant value is allowed to ��� � �������

for any � satisfying �� �� � �� � � �.
 A time-dependent diffusion problem with respect to � is 

represented by Laplacian as: 
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where � is the diffusion coefficient. The variance of dis-
tribution of � increases by ����� during time step ��, where 
� is the number of space dimensions. In the current model, 
part of quantity �� of particle � is distributed to the neighbor-
ing particles according to the kernel function such that the 
variance increase is equal to �����. Thus, the quantity trans-
ferred from particle � to � is: 
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� is a parameter by which the variance is equal to that of 
the analytical solution. The Laplacian operator is formulated 
as:
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The Laplacian operator is conservative since the quantity 
lost by particle � is just obtained by particles �.

2.2. Finite Volume Method 

 The finite volume method (FVM) is a discretization 
technique for partial differential equations and uses a volume 
integral formulation of the problem with a finite partitioning 
set of volumes to discretize the equations. This method has 
several applications in the area of fluid mechanics [12, 13]. 
The three-dimensional incompressible and isothermal flow is 
mathematically described by the conservation laws, i.e., the 
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conservation of mass and conservation of momentum [13]. 
These governing equations (1) and (2) can be cast into the 
following equations [13]:
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In the FVM, the differential equations are written in an 
integral form for each volume. Boundary conditions are also 
taken into account for the volumes in the vicinity of the 
boundaries. A set of discretized equations is obtained and 
solved to obtain velocity and pressure fields. 

The FVM implementation on Ansys Fluent was used in 
this work. The velocity–pressure equations were solved by 
the PISO algorithm [14]. The QUICK scheme [15] was used 
for the discretization of the momentum equations and the 
PRESTO! scheme was chosen for pressure discretization.

3. NUMERICAL PROCEDURE 

 A numerical study was conducted in order to compare 
the MPS method with the FVM. The laminar flow of a New-
tonian fluid in a microchannel with a narrow constriction 
was used as a case study for this comparison. The fluid used 
for both numerical methods was water with 1000 kg/m3 den-
sity and �������

�� Pa.s viscosity. Fig. (1) shows the geome-
try used. The inlet and outlet regions have 30 �m of width 
and 30 �m of length. The narrow channel has 11.5 �m of 
width and 100 �m of length. The channel has a depth of 11.5 
�m.

Fig. (1). Schematic representation of the microchannel. 

Fig. (2) shows the computational mesh generated in An-
sys Meshing 13.0. A mesh with 36000 predominantly hexa-
hedral elements was used in all Ansys Fluent simulations.

Fig. (2). Computational mesh (FVM). 

To simulate the flow by the MPS method, it is necessary 
to select a small domain representing the problem under 
study. Hence, a section of the microchannel with 30 �m
length was selected (see Fig. 3). A periodic domain is used 
assuring the behaviour of a channel with an infinite length.

Fig. (3). Section of the channel used to perform the MPS method. 

The MPS method discretizes the fluid contained in the 
domain in different particles. The accuracy of the solution 
that can be obtained by the MPS method depends on the ini-
tial particle distance (���. There is no consensus regarding 
this parameter as several research works have used different 
values for the initial particle distance [3, 6, 16, 17]. The val-
ue used must be a compromise between the accuracy of the 
domain discretization and the calculation time. A lower val-
ue of �� would increase discretization accuracy but would 
also increase the calculation time. To understand the effect 
of the initial particle distance on the accuracy of the numeri-
cal solution two particle distances were studied, �� � ����

�m and � � ����� �m. Fig. (4) shows a 3D representation of 
the initial particle distribution in the domain for �� � ����

�m.

Fig. (4). 3D model of MPS method. 

In Fig. (5), it is possible to observe different colors corre-
sponding to different particle locations, i.e. the particles have 
colors corresponding to their type. Thus, particles having a 
dark blue color correspond to the fluid, the particles colored 
by green correspond to the channel wall and red particles 
correspond to the “ghost particles” essential to implement 
the boundary conditions.
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Fig. (5). Particles corresponding to different particle locations: dark 
blue particles correspond to the fluid, green particles correspond to 
the channel wall and red particles correspond to the ghost particles 
to implement the boundary conditions. 

It is worth mentioning that in simulation carried out by 
Ansys, the no-slip boundary condition was used for the walls, 
the inlet velocity was set to 0.0023 m/s (Re=0.047) or 0.0115 
m/s (Re=0.237) and the outlet pressure was set to zero. For 
the particular case of the MPS method, the no-slip boundary 
condition was also specified for the walls and the pressure 
drop calculated by the Ansys simulations was imposed be-
tween the outlet and the inlet.

Fig. (6). Pressure along a section of the microchannel obtained by 
the two different numerical methods (�� � ���� �m was used in the 
MPS method). 

4. RESULTS AND DISCUSSION 

Two numerical simulations were performed in Ansys
Fluent, with inlet velocities of 0.0023 m/s and 0.0115 m/s, 
respectively. The results were used to calculate the pressure 
drop along the channel.

For the inlet velocity of 0.0023 m/s, a pressure drop of 
1.25821 Pa/�m was obtained along the channel, while for the 
velocity of 0.0115m/s the pressure drop was 6.29139 Pa/�m.

The pressure drop obtained by Ansys was used in the 
MPS simulations. Note that, there is a small difference be-

tween MPS and Ansys pressure drops. This difference was 
mainly due to a small error in the MPS domain boundary 
limit.

Fig. (7) shows the velocity contours obtained by the two 
methods under study. Qualitatively, both methods have the 
same behavior, i.e., they exhibit a maximum velocity in the 
center of channel while in the region near the walls the ve-
locity is zero.

(a)

(b)

Fig. (7). Visualization of the numerical flow with pressure drop = -
1.25821 Pa/�m obtained by a) Ansys and b) MPS. 

The velocity profiles obtained by both methods and the 
profile obtained for the theoretical model of Poiseuille flow 
in a rectangular channel [18] are represented in Fig. (8). The 
Poiseuille for a rectangular channel equation is given by:
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where � is the fluid viscosity, w is the channel width and 
h is the channel depth.

 All results were obtained in the midplane of the micro-
channel constriction. From Fig. (8), it can be seen that the 
velocity profile obtained by the FVM coincides with the ve-
locity profile obtained by the Poiseuille model. The velocity 
profiles obtained by the MPS method are not independent of 
the particle distance and deviate from the theoretical profile. 
The deviation between the profile obtained by the MPS 
method and the theoretical profile is smaller for the smaller 
initial particle distance (�� � ����� �m), suggesting that the 
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Fig. (8). Velocity profiles obtained by both numerical methods and theoretical model for the channel midplane.  

solution obtained by the MPS method converges to the cor-
rect solution as the particle distance decreases. A particle 
distance smaller than �������m is necessary to improve the 
accuracy of the solution obtained by the MPS method.

CONCLUSION AND FUTURE DIRECTIONS 

 The flow of a Newtonian fluid in a microchannel was 
solved by two methods, an FVM method and the MPS meth-
od. The results obtained by the MPS method depend on the 
particle distance, and even for the smallest particle distance 
studied, deviate from the exact theoretical solution and from 
the FVM. We believe that by reducing the particle spacing it 
is possible to improve the agreement between the two meth-
ods. Ongoing numerical simulations are currently being per-
formed and results will be published in due time. 

 The current study is a first step to study in detail the mo-
tion and deformation of red blood cells flowing through nar-
row microchannels. The obtained results have shown the 
potential of the MPS to investigate the flow of single phase 
fluid in microfluidic systems. Further work is required to 
validate the implementation and to evaluate the method 
when applied to two-phase flows, such as blood flow. 
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