
Control and Cybernetics

vol. 38 (2009) No. 3

Optimal resource allocation in stochastic activity

networks via the electromagnetism approach:

a platform implementation in Java∗

by

Anabela P. Tereso1, Rui A. Novais1, M. Madalena T. Araújo1

and Salah E. Elmaghraby2

1 Universidade do Minho, 4800-058 Guimarães, Portugal
2 North Carolina State University, Raleigh

NC 27695-7906, USA
e-mail: anabelat@dps.uminho.pt, rui.fafe@gmail.com,
mmaraujo@dps.uminho.pt, elmaghra@eos.ncsu.edu

Abstract: An optimal resource allocation approach to stochas-
tic multimodal projects had been previously developed by applying
a Dynamic Programming model which proved to be very demanding
computationally. A new approach, the Electromagnetism-like Mech-
anism, has also been adopted and implemented in Matlab, to solve
this problem. This paper presents the implementation of the Elec-
tromagnetism approach using an Object Oriented language, Java,
and a distributed version to be run in a computer network, in order
to take advantage of available computational resources.

Keywords: resource allocation, project scheduling, project
management, stochastic models, electromagnetism-like mechanism.

1. Problem definition and review of prior work

1.1. Introduction

The problem addressed in this paper, described in more detail in Section 1.2, has
been treated via a dynamic programming model (DPM) in a Matlab implemen-
tation by Tereso, Araújo and Elmaghraby (2004), and in a Java implementation
by Tereso, Mota and Lameiro (2005). This paper treats the same problem via
the Electromagnetism-like Mechanism (EM) in a Java platform in two modes:
a single processor mode and a multi-processor distributed mode. It compares
the results with those of the DPM, and demonstrates the superiority of the EM
in either mode for large projects.

∗Submitted: September 2006; Accepted: January 2009.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/154274989?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

746 A.P. TERESO, R.A. NOVAIS, M.M.T. ARAÚJO, S.E. ELMAGHRABY

The motivation for this research is as follows. The correct allocation of re-
sources is crucial to the success of projects that otherwise would end up with
time and cost overruns. Classical models of resource allocation assumed that
each activity has a deterministic duration and known resource requirements,
and attempted to “optimally” schedule the activities (in whichever sense opti-
mality was defined, such as the minimization of total project duration or the
minimization of the costs involved in project execution). This gave rise to the
well known RCPSP (Resource-Constrained Project Scheduling Problem) which
attracted a great deal of interest by a number of researchers, see the books by
Neumann, Schwindt and Zimmermann (2001) and Demeulemeester and Herroe-
len (2002) for a comprehensive summary of the state of the art in these studies
as of 2002. This perspective suffers from the serious flaw of ignoring the uncer-

tainty present in real life projects. Unfortunately, the inclusion of uncertainty in
these models seemed to constitute an insurmountable obstacle, and researchers
had to increase the estimate of the time of realization of certain key events by
an allowance (or “gap”) that would act as buffer in case the preceding activi-
ties took longer than estimated. Such “fudge factor” is claimed to provide for
robustness of the resulting schedules; see for instance the recent papers by Van
De Vonder, Demeulemeester and Herroelen (2007) and by Van De Vonder et al.
(2006).

There has been a rather large amount of research devoted to the problem
of project scheduling under constrained availability of resources, in both the
deterministic and stochastic contexts. Although tangential to the subject matter
of this paper, because the vantage point of discussion is different from ours, we
cite some of the research that dealt with the issues of job scheduling and the
optimal allocation of (discretely or continuously) divisible resources to tasks (or
jobs) in order to achieve some given objective, in both the general scheduling
context as well as in the context of projects characterized by activities and
resources. We limit the citation to papers and books that appeared within the
last ten years. The reader is directed to the references cited in each of the
contributions to gain a more comprehensive view of the various lines of research
in prior years.

An excellent survey of the contributions to the famous (or rather infamous)
“resource constrained project scheduling problem” (RCPSP) as of 1997 may
be found in the paper by Herroelen, De Reyck and Demeulemeester (1998).
The survey is updated in the book by Demeulemeester and Herroelen (2002).
A more recent book, edited by Józefowska and Węglarz (2006), gives more
contributions and perspectives on the RCPSP and related problems; see chap-
ters: 4. “Due dates and RCPSP”, 5. “RCPSP with variable intensity activities
and feeding precedence constraints”, 7. “Lower bounds for resource constrained
project scheduling problem”, 9. “A metaheuristic approach to the resource con-
strained project scheduling with variable activity durations and convex cost
functions”, 11. “Population learning algorithm for the resource-constrained pro-
ject scheduling”, 12. “Resource constrained project scheduling: A hybrid neu-

Optimal resource allocation in stochastic activity networks 747

ral approach”, and 15. “Resource-constrained project scheduling with time win-
dows”. The handbook edited by Błażewicz et al. (2007) has also some chapters
related to the problem treated here; see in particular chapter 12. “Scheduling
under resource constraints”.

Janiak (1998) treats the two-machine flowshop problem when job processing
times may be reduced linearly by the application of a limited, continuously di-
visible resource, such as financial outlay, energy, fuel, catalyzer; etc. He proves
that the decision form of this problem is NP-complete even for the fixed job
processing times on one of the machines and identical job reduction rates on
another. He identifies some polynomially solvable cases of the problem (such as
the case of singleton possible allocation to each job, which reduces the problem
to the classical two-machine flowshop treated by Johnson, 1954, and the case
when the sequence of performing the jobs is given), and provides four simple
and modified approximate algorithms together with their worst case and exper-
imental analysis. Also, he offers a fast exact algorithm of the branch and bound
type based on some elimination properties of the problem, with some computa-
tional results and possible generalizations, such as a bicriterial approach. (See
also some previous work of the same author – Janiak and Szkodny, 1994, and
Janiak and Kovalyov, 1996.)

Then, Janiak and Portmann (1998) follow up on Janiak (1998) by extending
the problem to general flowshops with more than two machines. They make
the assumption that the processing times of jobs on some machines are lin-
ear, decreasing functions with respect to the amount of continuously divisible,
non-renewable, locally and totally constrained resources, and they limit the
discussion to permutation flow-shops. The objective of the study is to find a
processing order of jobs and a resource allocation that minimizes the length of
the makespan. Since the problem is strongly NP-hard, they propose a Genetic
Algorithm approach to solve it. They give some characterizations of job in-
terchanges that would lead to improvements in the objective function, and use
these properties in their genetic algorithm. The results of some computational
experiments are also given.

The problem treated by Ahn and Erenguc (1998) comes closest to the one
treated here, except that: (i) they assume a finite number of discrete resource
allocations and corresponding activity durations and costs, which they label as
RCPSPMCM (for “the RCPSP with multiple crashable modes”), and (ii) the
relationship between the resource allocated and the duration of the activity is
not derived from the concept of a fixed work content. Similar to our scenario de-
scribed below, the project is assumed to have a predetermined due date, T > 0.
If the completion time of the project exceeds T , a predetermined penalty cost is
incurred for each period the project is delayed beyond its due date. If the project
due date cannot be violated, then the penalty is set to infinity. A schedule for
RCPSPMCM consists of the triplets (finish time, mode, duration) for each of
the activities of the project. A schedule is said to be feasible if it satisfies four
conditions: (i) each activity is assigned a mode within its set of feasible modes,

748 A.P. TERESO, R.A. NOVAIS, M.M.T. ARAÚJO, S.E. ELMAGHRABY

(ii) for each activity the scheduled duration is between the normal and crash
durations of the selected mode, (iii) all the precedence relations are satisfied,
and (iv) resource requirements in each period do not exceed their respective
capacities. Project cost is the sum of all activity costs and the penalty cost for
completing the project beyond due date. The objective in this problem is to
find a feasible schedule minimizing total project cost. The authors are led to an
integer linear program model which they resolve heuristically using a two-stage
procedure: in the first stage they generate a feasible schedule, and in the sec-
ond they try to improve the feasible schedule by applying six improvement rules
that they have developed. The second stage is repeated until application of these
rules stops yielding further improvements. Then, the procedure goes back to
the first stage, generates a new feasible schedule and moves to the second stage.
Each time the procedure goes back to stage one, a new “pass” is started. The
heuristic procedure terminates either when a predetermined number of passes is
made, or when a predetermined computational time is reached. Computational
experiments were performed with 100 problem instances randomly generated.
The performance of their heuristic procedure was compared with the truncated
exact solution procedure of Sprecher (1994) and Sprecher, Hartmann and Drexl
(1994) (designed to solve the RCPSPMM, the RCPSP with multiple modes)
and the truncated exact solution method of Ahn and Erenguc (1995) (desig-
nated as the RCPSPMCM) and was shown to outperform them (in the value
of the objective function) for the problem instances considered. No measure of
the time to reach the various solutions is given. The heuristic procedure of Ahn
and Erenguc was later tested in the paper of Erenguc, Ahn and Conway (2001),
which used a branch-and-bound procedure to achieve the exact optimum.

Other references cited here give a broader view of the problems addressed and
the approaches used for their resolution, chronologically: Dauzere-Peres, Roux
and Lasserre (1998), Tsai and Gemmil (1998), Artigues, Roubellat and Bil-
laut (1999), Artigues and Roubellat (2000), Elmaghraby (2000), Penz, Rapine
and Trystram (2001), Stork (2001), Bouleimen and Lecocq (2003), Bellenguez
(2004), Buddhakulsomsiri and Kim (2006, 2007), Dieter et al. (2006), Lorenzoni,
Ahonen and De Alvarenga (2006).

1.2. Problem definition

Our approach to the issue of optimal resource allocation under uncertainty dif-
fers radically from prior treatments in two respects: (i) it considers the work

content of the activity (which embodies both resources and duration) as the fun-
damental variable of concern, and (ii) it imparts randomness to the work con-
tent, not duration. The duration of the activity is then derived from knowledge
of the work content and the resource allocation; with the latter now becoming
the decision variable of central importance, as it should be. It is our contention
that the lack of practical implementations of the monumental research effort
devoted to the RCPSP lies in the deficiencies in its fundamental premises: the

Optimal resource allocation in stochastic activity networks 749

world is not deterministic, and managers are not confined to shifting activi-
ties in time to satisfy the limits of the resources availability. Rather, managers

manage, dynamically, the allocation of the available resources in a stochastically

changing environment. Adopting this point of view forces one to focus on the
activity work content (referred to by some recent writers as the activity total
“energy” requirements). According to the amount of the resource allocated, the
duration will vary: more resources will result in a shorter duration, and con-
versely. Naturally, the amount of resource allocated to an activity, which we
denote by x, is bounded from above (e.g., one cannot have more than so many
men working on the activity) and from below (e.g., one cannot rent a truck for
less than half a day). Putting all these notions together one ends up with the
following functional relationship among the three variables of concern,

Y =
W

x
, l ≤ x ≤ u (1)

where W stands for the work content, a random variable (r.v.); x is the resource
allocated to the activity (the decision variable) in units appropriate for the
activity (personnel, machinery, funds, fuel; etc.), l and u are the bounds on
the permissible allocation, and Y is the activity duration. Observe that Y is
also a random variable, since it is a multiple (= 1

x
) of the work content W . A

more general formulation of the relationship among the duration, the resource
allocation and the work content may be stated as

Y =
W

xα
, l ≤ x ≤ u (2)

where α represents the degree of “interference” among the units of the resource
if 0 < α ≤ 1, and the degree of “synergism” if α > 1. In the sequel we shall
assume α = 1, representing balanced response (no interference or synergism).

To illustrate, consider a simple case of W being a constant (formally, a “de-
generate” random variable, assuming one value only with probability 1); say
w = 36 man-hrs (about one week of effort by one worker)1. Then, if x = 2
(meaning 2 men are allocated to the activity) then it will take y = 18 hrs to
complete the activity (about half a week). But if x = 4 men, then y = 9 hrs

(slightly over a day); etc. Returning to our assumption of randomness, sup-
pose that the work content W is in fact stochastic and that it can be anywhere
between 24 and 48 man-hrs. Formally, one may say that W is uniformly dis-
tributed between 24 and 48, expressed as W ∼ U [24, 48]. Then if x = 2 we shall
have Y anywhere between 12 and 24 hrs, while if x = 4, Y shall be anywhere

1We reserve symbols in capitals to denote r.v.’s, while symbols in lower case represent their

deterministic realizations.

750 A.P. TERESO, R.A. NOVAIS, M.M.T. ARAÚJO, S.E. ELMAGHRABY

between 6 and 12 hrs. Summarizing this example we have,

W ∼ U [24, 48]

x = 2⇒ Y ∼ U [12, 24], and (3)

x = 4⇒ Y ∼ U [6, 12].

This example represents an ideal situation in which doubling the resource
allocation halves the time. But suppose this is not the case: suppose that
doubling the resource will indeed result in some improvement in duration, but
the improvement is smaller than 1/2, say, only 0.4 of its original value. Then
we seek the exponent α in the equation

new

old
= 0.6 =

W

(2x)α

W

xα

=
1

2α
⇒ α =

log(0.6)

log(0.5)
= 0.737. (4)

Now we would have Y = W/x0.737, which results in

x = 2⇒ Y ∼ U

[

24

20.737
= 14.1,

48

20.737
= 28.8

]

, and

x = 4⇒ Y ∼ U

[

24

40.737
= 8.64,

48

40.737
= 17.28

]

. (5)

Observe that not only the (lower and upper) limits are bigger than before, but
also the range of the duration increased (from 12 to 14.7 for x = 2 and from
6 to 8.64 for x = 4), albeit is still smaller than the original range of 24. The
impact of increased resource allocation to the activity has indeed diminished.

The problem treated in this paper may be more formally stated as follows.
Given an AoA (Activity-on-Arc mode of representation) network defining a
project, we wish to find the resource allocation minimizing total cost. This
cost is the sum of two costs: (i) the “resource cost” (RC), proportional to the
square of the resource usage for the duration of the activity, with constant of
proportionality equal to cR, being cost per resource unit, and (ii) the “tardiness
cost” (TC), which is proportional to the magnitude of tardiness from a specified
due date T , with constant of proportionality equal to cL (the cost per time unit).
Each activity a has stochastic work content Wa, assumed to be exponentially
distributed (the reason for this choice shall be clarified next) with a parameter
λa, which may vary for different activities. The duration of an activity a, de-
noted Ya, depends on the work content and the amount of resource allocated to
the activity as given by (1); Ya = Wa/xa; 0 < la ≤ xa ≤ ua <∞. There is only
one resource of unlimited availability so that it does not impose any limitations
of the number of concurrent activities. The goal is to minimize the total cost
by selecting the optimal amount of resource allocated to each activity of the
project.

Optimal resource allocation in stochastic activity networks 751

Two elements in the above statement of the problem need some explanation.
First, why assume exponentially distributed work content? The answer lies in
our desire to relate the results secured under EM with the previously obtained
results, which assumed the exponential distribution. Second, why the resource
cost is assumed to be quadratic in the amount of resource assigned to the activ-
ity? The answer lies in that such assumption simplifies the analysis considerably
by rendering the cost linear in work content. Indeed, if the resource cost is given
by cRx2Y , then substituting for Y from (1) we have

RC = cR · x
2

(

W

x

)

= cR · x ·W. (6)

Clearly, RC for any activity is an r.v. The tardiness cost TC is given by

TC = cL ·max{0, tnn − T } (7)

where tnn is the random time of realization of node nn, the last node in the
project, which signifies its completion.

Section 1.3 of this paper presents a brief introduction to the Electromagnet-
ism-like Mechanism (EM) and its adaptation to our problem. In §1.4 we formally
present the objective function and population analysis. Then we explain how the
EM was adapted, in Matlab, to solve our problem (§1.5). In Section 2 we give the
rationale for choosing the Java programming language (§2.1), the advantages of
using Java instead of Matlab (§2.2), including some implementation details (the
classes created) and the data structures used, and a description of the generic
algorithm (§2.3). In §2.4 we present the EM in a distributed mode in order to
take advantage of parallel computing. The results of our study and discussion of
their significance are presented in Section 3. Section 4 draws some conclusions
from our research and points out some future directions of research.

1.3. The Electromagnetism-like Mechanism

The Electromagnetism-like Mechanism (EM), developed by Birbil and Fang
(2003), is based on the principles of electromagnetism. The algorithm begins by
launching a population of “particles” into the feasible space. The “charge” of a
particle determines the magnitude of the force of repulsion or attraction between
it and each other particle in the population. If the value of the charge associated
with a particle is low (in a minimization problem), this particle attracts all other
particles of higher values; and conversely, a particle of high value repulses all
particles of lower value. The direction of movement of a particle is determined
as the resultant of all forces acting on it. The process moves the particle in the
direction given by the resultant force, changing its coordinates by an increment.
As particles are displaced from their original locations by these forces, a new
configuration results and the process of determining forces and movement of

752 A.P. TERESO, R.A. NOVAIS, M.M.T. ARAÚJO, S.E. ELMAGHRABY

particles repeats. Asymptotic convergence to the optimum is guaranteed by
Birbil, Fang and Sheu (2004).

In our case, we have a set of activities with associated stochastic work con-
tent, and a single resource to allocate to them. The correspondence between
the above described EM concept and our problem may be conceived as follows.
A “particle” is a specific vector of resource allocations. The “charge” of a par-
ticle is the value of the objective function, the sum of the resource and the
tardiness costs. Implementation of EM requires definition of three structural
parameters: (i) Size of the population of particles M . In our experimentation
we fixed M = 15 for all networks. (ii) Number of samples K of the vector of
work contents. We used different values of K, ranging from 10 to 1200. (iii) The
maximum number of iterations I of the EM algorithm. In our experiments we
limited the number of iterations to 25n, as suggested by Birbil, Fang and Sheu
(2004), since this number of iterations was found sufficient for convergence (n
being the number of activities in the project network).

Recall that each particle x(m) is a vector of n elements representing the
resource allocations to the project activities,

x(m) =
(

x
(m)
1 , . . . , x(m)

n

)

m = 1, . . . , M (8)

Here, M is the size of the population of particles. In a project of, say, n = 35
activities, and M = 15, we take 15 points in the hypercube defined by the n
inequalities la ≤ xa ≤ ua; a = 1, . . . , 35. We select the M particles to span the
feasible space of the resource allocation, as much as possible.

Fig. 1 illustrates a minuscule project of only n = 2 activities, M = 5 parti-
cles, and the forces acting on particle #3.

x(5)

x(1)

x(2)

x(3)

x(4)

F(3,5)

F(3,2) F(3,1)

F(3,5)

Resultant Force

F(3)

Each X(k) = (x1
(k), x2

(k))

la = l for all a

and ua = u for all a

We assume that

v(3) > v(1), v(5), therefore

repulsed by them.

But v(3) < v(2), v(4),

therefore attracted to them.

u

u

l

Feasible square

of the allocations

Figure 1. Forces acting on particle #3

Optimal resource allocation in stochastic activity networks 753

Each particle in this example is represented by a two-dimensional vector:

x(m) =
(

x
(m)
1 , x

(m)
2

)

, for m = 1, ..., 5. The “charge” of each particle is the average

value of the objective function at that point, denoted by ν(x(m)),m = 1, . . . , M .
This value is determined through Monte Carlo sampling (there are K samples)
of the vector of work contents (Wa)a∈A which, together with the allocation x(m),
determine the “resource cost” as well as the time of project completion, denoted

by t
(m)
nn through standard critical path calculations. Knowledge of t

(m)
nn enables

determining the penalty for tardiness beyond the specified project due date T .
We define νmin as the minimal (average) value among all M points,

νmin = min
m
{ν(x(m))} (9)

It is important, for stability reasons, to “normalize” and “scale” these values,
which result in the charge q(m) at point x(m). This charge is evaluated as follows,

q(m) = exp

[

−n×
ν(x(m))− νmin

∑M

k=1

[

ν(x(k))− νmin

]

]

, m = 1, 2, ..., M. (10)

Observe that a large ν(x(m)) results in a small q(m), and conversely, a small
ν(x(m)) results in a large q(m). Indeed, at νmin the charge is 1, the maximum.
The charge q(j) of particle j determines the force of attraction or repulsion
between particle j and the other particles. For each pair of particles x(j) and
x(k) suppose that ν(x(j)) < ν(x(k)), implying that q(j) > q(k). Then, particle
x(k) is “attracted” to particle x(j) by a force given by

F (j, k) =

[

(x(j) − x(k))×
q(j) · q(k)

∥

∥x(j) − x(k)
∥

∥

2

]

, ∀j, k (11)

and particle x(j) is “repulsed” by particle x(k) by the force of the same magnitude
in the opposite direction. The direction of the attraction/repulsion force is along
the line between the two particles with the arrow pointing from x(k) to x(j) for
particle k and the reverse for j. The resultant vector force F (m) on each particle
m is calculated by conventional methods (see Fig. 1). The force F (m) is then
normalized to yield,

F (m) = vector sum (F (j, m)), j 6= m, m = 1, . . . , M. (12)

This procedure is repeated for each particle x(m), m = 1, . . . , M . Each
particle x(m) is then moved in the specified direction by a random step given by

x(m′) ← x(m) + β · (RNG)(m) · F (m)
norm (13)

where β is selected randomly ∈ (0, 1) and (RNG)(m) is the range of feasible
movement of the particle towards the lower or upper bound. For instance,

754 A.P. TERESO, R.A. NOVAIS, M.M.T. ARAÚJO, S.E. ELMAGHRABY

suppose the allocation to activity a is bound by la = 0.5 ≤ xa ≤ 2.0 = ua,

and that the current value of xa of the particle is x
(m)
a = 1.4, and movement of

the particle is towards increasing xa. Then (RNG)
(m)
a = 2 − 1.4 = 0.6. If the

random selection of β resulted in β = 0.638, then the coordinate shall change

from xm
a to x

(m+1)
a = xm

a + 0.638× 0.6× F
(m)
norm = xm

a + 0.3828F
(m)
norm.

The movement of the particles continues X(1) → X(2) → · · · → X(I) until
stopping condition is satisfied (with I = 25n). The allocation yielding νmin at
algorithm stop is selected as the “optimal” allocation.

For each repetition of the experiment, a set of K vectors of work contents
is generated and stays fixed thereafter. For each of the M particles generated
during the EM process, the objective function is evaluated for each of the work
contents generated. In other words, we calculate the value of the objective func-
tion for each particle, for each of the K vectors of work content. As mentioned
before, the value of the particle (its “charge”) is based on the average of the K

values, ν(m) =
∑K

k=1
ν(k)

K
. These average values are used in EM to decide on

the forces acting on the particle. Finally, when we stop the movement of the
particles we have one particle νmin, whose average value is minimal. If more
than one particle attains the minimum value, one is selected arbitrarily.

After a brief review of fundamental principles of the EM we now address the
issue of the main differences between it and the DPM in dealing with randomness
of the work content. For more insight into the DPM see Tereso, Araújo and
Elmaghraby (2004).

DPM relies heavily on defining the state of the process which, in the case
of interest to us, is the time of realization of the nodes in a uniformly directed
cutset (udc) in the project network. Given the state of the project, the resource
allocation vector to each activity in the udc{xa|a ∈ udc} defines the activity
(stochastic) duration according to (1). The aggregate set of activities in the
udc determines the (random) times of realization of the next adjacent udc’s.
Applying the dynamic programming recursion equation, results in the recursive
optimization of the resource allocation at each possible state of the process.
This explains the need to discretize both the state space and the decision spaces
in the DPM. It also leads to the estimation of the computational complexity as

O
(

|dN |
N
|dD|

D
|A|

)

, (14)

where N is the average number of “source nodes” in any udc, dN is the number
of discrete times of realization of any node, D is the average number of activities
in any udc, dD is the average number of discrete decisions for any activity, and A
is the number of udc’s in the network. The form of (14) explains the diffculty in
solving large scale projects via DPM with any meaningful discretization scheme.
The EM confronts the randomness in the work content of the activities in a
completely different manner. It simply samples the work content of each activity
following standard Monte Carlo sampling procedures (by securing the inverse of

Optimal resource allocation in stochastic activity networks 755

the cumulative distribution function of the random number generated). Then,
for each sample, determines the various time and cost parameters in the network
following standard CPM calculations. Repeated sampling of the work content
generates the distributions of these parameters on the basis of which the various
measures of performance are based. The complexity of the EM increases linearly
in the number of activities in the project, and depends rather heavily on the
size of the population (the parameter M) and the number of random samples
taken (the parameter K).

1.4. Objective function and population analysis

The goal of the Electromagnetism approach in our problem is to minimize the
expected project cost associated with each particle (assignment of resources)
in the population by changing its resource assignment. One has to be very
careful in choosing the algorithm parameters K, M and n. The parameters
that influence the algorithm run time are:

• Number of sampled work contents (K) – The EM will calculate the
solution for each vector of work contents generated, returning the mean
value. A larger number of sampled work contents per activity will result
in a more accurate value of the average cost.
• Population size (M) – A large number of particles will result in testing

a large number of solutions in each iteration. A larger population yields
a better result.
• Number of network activities (n) – A project with large number of

activities leads to a larger and more complex network. The EM will take
more time finding or calculating the CPM value (representing total dura-
tion of the project using the Critical Path Method, used to calculate the
total cost).

We assumed that the project has a due date T and a Tardiness Cost (TC).
The penalty constant cL represents the cost per unit time after the due date.
The objective is to find the resource allocation among activities so as to minimize
total cost C. This cost is given by:

C =

n
∑

a=1

RCa + TC, (15)

where RCa is the resource cost of activity a (see (6)) and TC is the tardiness
cost (see (7)).

If we increase the amount of resource to each activity, the TC will be lower,
but the RC will be higher. The objective is to balance these two costs to achieve
the minimal overall cost of the project.

756 A.P. TERESO, R.A. NOVAIS, M.M.T. ARAÚJO, S.E. ELMAGHRABY

1.5. The Matlab implementation

The EM had been previously implemented in Matlab (Tereso and Araújo, 2004).
The pseudo-code can be accessed at www.dps.uminho.pt/pessoais/anabelat, or
upon request by email from the first author. Here, we will only refer to the more
important aspects of that implementation. There are two main procedures: (1)
the procedure Initialize.m initializes the data structure that supports the popu-
lation of particles. It begins by initializing the project cost and the coordinates
associated with each particle. (2) The procedure envis.m is the main proce-
dure for this implementation. It is composed of a primary loop that calculates
the resultant force acting on a particle, moves the particle in corresponding di-
rection, and executes local search to determine the best particle location each
time. The procedures called in the main loop of envis.m are: (i) the procedure
calcF.m calculating forces acting on particles, (ii) the procedure move.m mov-
ing the particles and (iii) the procedure local.m performing local search. The
loop envis.m executes a number of iterations predefined at the beginning of the
algorithm.

2. Application development

In this section, we discuss main issues of concern in the development of EM
using Java.

2.1. The choice of a programming language

We chose Java as the programming language for implementation of EM because
the dynamic programming model (DPM), proposed to solve the problem stated
in §1.2, was written in both Matlab (Tereso, Araújo and Elmaghraby, 2004)
and Java (Tereso, Mota and Lameiro, 2005), and we wanted to create an ap-
plication enabling direct comparison of EM and DPM. The new application,
dubbed GP2006, would allow us to experiment with both approaches and com-
pare the results. Additionally, Java has also some computational advantages.
It is an Object Oriented (OO) language, which allows for developing a more
structured code. It is easier to program and a higher level language than, e.g.,
C++. It has the hyper threading technology, allowing for taking advantage
of today’s processors, and can be run in different operating systems (Linux,
Windows, Macintosh), a huge advantage over C++, especially in a distributed
implementation.

2.2. Matlab vs. Java

2.2.1. Data structures and input parameters

To represent the project we replaced the list of activities (in the Matlab im-
plementation) containing five fields per activity (source node, target node, pa-

Optimal resource allocation in stochastic activity networks 757

rameter λ, lower and upper bounds on resource allocation) by a more complex
structure. To represent the “list of activities”, we defined three classes in Java:

1. Node – to represent each node of the graph with information about im-
mediately preceding and immediately succeeding nodes and the activities
connected to the node.

2. Activity – to represent an activity with information about parameter λ,
lower and upper bounds on the resource allocation; and

3. Network – which contains a list of activities and nodes.

One of the most important considerations when comparing implementations
in Matlab and Java is the speed of accessing the data structures that support
an algorithm written in Java. In our case we used the data structure called
HashMap. The operations of search, remove, add and travel in this data struc-
ture are much faster than the ordinary list manipulations in Matlab. It is quicker
for the processor to decode and execute a code in Java than in Matlab for these
operations.

We used two HashMaps to support the algorithm. One that holds the pop-
ulations of particles (feasible solutions to the problem) and another to hold the
work content necessary to calculate the Project Cost associated with each parti-
cle, and determine the best particle(s) found in each run of the algorithm. This
support is needed because then we can program the algorithm to execute N
times, each with a different “seed” population of feasible solutions, record the
best particle in each run, and thus secure a population of “best solutions”. More
information about this procedures and code developed can be found in Novais
(2005).

2.2.2. Other important classes

Next we describe some other important classes used in this implementation.

1. We begin by introducing the class that represents the solutions to our
problem, the class Ion. This class holds a number of attributes, namely
attributes to store the Project Cost (solution cost), particle “charge” (force
of attraction or repulsion of the particle to the rest of the population), the
particle coordinates (resource allocation to each activity of the network
project) and the force associated with that particle.

2. The class Project Cost used to calculate the cost of the project associated
with one realization of the work content for each activity. It uses the
CPM, the work content generated at the beginning of the algorithm and
the activity network to calculate the resource cost and the delay cost that
sum up to project cost.

3. The project is represented by an object from the class Network. The
network is constructed using other classes that represent network com-
ponents. These classes are Node and Activity, representing nodes and
activities of the network, respectively.

758 A.P. TERESO, R.A. NOVAIS, M.M.T. ARAÚJO, S.E. ELMAGHRABY

4. The most important class is the class Problem. This class is responsible
for holding all the data structures, and the activity network. It has a
main routine responsible for executing a number of predefined operations
such as CalcF, Move and Local. These operations are the ones mentioned
above in Section 1.5.

5. Finally we have another class named Configuration, which holds all the
parameters used by the algorithm. These parameters are the population
size, the number of activities in the network, the due date, the penalty
cost and the number of work contents to be generated.

For more information on these classes and on the code developed see Novais
(2005). Fig. 2 presents diagrammatically the various classes that support the
algorithm.

1..* 1..*

1..*

1..*

1..*
1

1..*

Problem

-ions:HashMap
-network:Network
-bests:HashMap
-countw:HashMap

+local:void
+move:void
+calcF:void
+calculate:void

ProjectCost

-conf:Configuration
-totalCost:double
-countw:HashMap

+calculate:double

Configuration

-t:int
-net:Network
-cl:int
-m:int
-k:int

Cpm

-durations:double[]
-net:Network

+calcCpm:double

Network

-activities:Vector
-nodes:Vector

Ion

-coordinates:double[]
-forces:double[]
-projectCost:int
-charge:double[]

Best

-ion:Ion
-projectCost:int
-index:int

Node

-preNodes:Vector
-succNodes:Vector
-preActivities:Vector
-succActivities:Vector

Activity

-target:Node
-source:Node
-maxResource:int
-minResource:int

Figure 2. Class diagram

This diagram, written in UML (Unified Model Language) represents a class
diagram. UML is a graphical language used to specify, build and visualize
OO information systems. Class diagrams are most common in modeling OO
systems. We use class diagrams to model the static design view of a system.
For each object, the diagram describes its identity, the relationships with other
objects and the internal attributes and operations (for more details see Booch,
Rumbaugh and Jacobson, 1998).

Optimal resource allocation in stochastic activity networks 759

2.3. The algorithm

In this section we will briefly describe how the algorithm works. To start the
algorithm, we generate randomly K vectors of work content. We used values
of K ranging from 10 to 1200. These vectors are not changed during the same
execution of the algorithm, to keep the objective function stable. Then we
generate M vectors of X (M = 15: size of the population). For each vector of
particles (X) and for each vector of work contents (W) total cost is evaluated.
The objective function value of each particle is the mean cost of all W ’s. Charges
and forces are then evaluated. Points are moved to obtain a set of new m points.
This process continues until the limit number of iterations is reached. In Fig. 3
we present the generic algorithm that describes the steps of this process.

1. Generate K vectors of W=(w1..wn) randomly

2. Generate m vectors of X=(x1..xn) to start with

3. For each vector X

4. For each vector W

5. rc=∑xaWa

6. tc = cLmax {0, tnn-T}

7. c=rc+tc

8. End for

9. f = ∑ c / K

10. Evaluate charges

11. Evaluate forces

12. End for

13. Move the points

14. Go to step 3 until nº of iterations specified is reached

 Figure 3. The algorithm

2.4. Distributed implementation of the Electromagnetism approach

In the distributed implementation we have a machine called Server that begins
by creating the problem configuration, setting up the parameters (work con-
tents, population size, activity network and number of clients) and setting up
all data communication channels with the clients. The communication between
the server and the clients can be described in the following steps: (1) The server
sends the configuration to all the clients in the network. In this step the server
also sends the work contents necessary for all clients to calculate the project
cost associated with each ion belonging to the population. (2) The clients send
one message each telling if the configuration and work contents have been well
received. (3) The server now sends all ions one by one to each client in order
to calculate the associated project cost. (4) The clients calculate project cost
and return the solution to the Server, which evaluates the mean of all the re-
sults, associating the value to ion’s project cost. Steps 3 and 4 are repeated for

760 A.P. TERESO, R.A. NOVAIS, M.M.T. ARAÚJO, S.E. ELMAGHRABY

all ions and all iterations of the algorithm. (5) After collecting all population
values, the Server sends a signal to all clients telling them to shut down. After
that, the server stores the best solution and terminates.

We use sockets and data streams for communication between server and
clients. The Server creates a communication socket associated with an IP ad-
dress. To connect to the server, clients must have this address in a configuration
file, set up manually. The Server process expects a number of connections, which
is set in its own configuration file.

The algorithm itself was not changed with respect to evaluating charges and
forces. It was changed in that it distributes all the vectors of work contents
generated over the available computers of the network for evaluating the total
cost of each sample vector. In this way we could take advantage of the available
resources. That is, if we generate 800 vectors of work contents, and we have 10
computers in a network, each one will evaluate the cost of 80 vectors. Strictly
speaking this may be viewed as a distributed load allocation implementation for
the EM rather than a distributed implementation of EM.

3. Results

3.1. Experiment layout

We used a set of 14 networks with the number of activities ranging from 3 to
49. The networks chosen enabled analysis of a spectrum of different network
complexities. These networks were also used in prior studies (Tereso, Araújo
and Elmaghraby, 2004; Tereso and Araújo, 2004; Tereso, Mota and Lameiro,
2005), allowing for comparison of performance and results. Table 1 shows the
characteristics of each network tested.

The due date T was selected using CPM and duration of the longest path,
assuming the mean work content and the quantity of resource xa equal to 1.
Thereby the duration of each activity is fixed at y = W . T was selected to
be slightly greater (1.04-1.09) than the length of the longest path (in the CPM
calculations). cL was set up so as to allow for some tardiness cost if the quantity
of resources used is low. We normalized the marginal resource cost cR at 1.

In the EM implementation we used different seeds for each run, to generate
the Work Contents randomly. Then we selected the best result obtained for
all the runs. The seed was generated based on the value of the actual time, in
milliseconds, in order to ensure randomness.

3.2. Single mode results

The results reported here were obtained using an Intel Pentium IV E 2.6 GHz
with 512MB of RAM under Microsoft Windows XP Professional SP2. The
details of the networks tested are described in Appendix A (Net1 to Net13).

A common characteristic of the algorithms proposed for solving problems
like the one under study is the presence of several random components, which

Optimal resource allocation in stochastic activity networks 761

Table 1. Network characteristics

Network N◦ of CP length Due date Ratio
(

T

CP

)

Unit Delay
activities (n) (T) Cost (cL)

1 3 15 16 1.067 2

2 5 115 120 1.043 8

3 7 62.9 66 1.049 5

4 9 100 105 1.050 4

5 11 26.67 28 1.050 8

6 11 62.08 65 1.047 5

7 12 44.72 47 1.051 4

8 14 35.5 37 1.042 3

9 14 178.58 188 1.053 6

10 17 44.98 49 1.089 7

11 18 106.11 110 1.037 10

12 24 212.05 223 1.052 12

13 38 143.99 151 1.049 5

14 49 210.12 221 1.052 5

leads to obtaining different results under different executions. Hence the need
for extensive experimentation according to a well-designed scheme, in order to
be able to reach meaningful results.

The experiments allowed us to compare the performance of the EM in Java
with its performance in the previous Matlab implementation (Table 4). We
were also able to compare the performance of the EM in Java with the DPM in
Java as presented in Tereso, Mota and Lameiro (2005). Tables 2 and 3 give the
results of EM and DPM in Java for different numbers of K. In Tables 2 and 3
we present, besides the network parameters (n, T and cL), the total expected
cost obtained (C), the run time (RunT) and the number of objective function
evaluations done (N.Ev). K1 is a parameter used in the DPM, and represents
the number of discretization points used for the decision variables.

Table 2 and 3 demonstrate that the EM has the advantage over DPM in
computing speed, with the advantage growing for large networks. For networks
with 20 or more activities DPM is incapable of reaching any conclusion in rea-
sonable time, while EM succeeds in achieving the result. DPM has the upper
hand over EM when dealing with small networks. This is because the EM has
to create and initialize a population with M elements under all network sizes
and configurations, which is a “fixed cost” in run time that adversely impacts
the total run time for small networks, but is relatively insignificant for large
networks.

In Table 4 we present EM run time for Matlab versus Java implementations.
As expected, Java is faster than Matlab. The effort spent on using a faster

programming language allowed us to save a lot of time in obtaining the results
(up to 43 minutes in Network 13).

762 A.P. TERESO, R.A. NOVAIS, M.M.T. ARAÚJO, S.E. ELMAGHRABY

Table 2. Results for selected networks (K = 10)

n T cL EM (Java) DPM (Java)

C RunT N.Ev C RunT K1

Net1 3 16 2 23 0.23s 1125 44 0.02s 5

Net2 5 120 8 166 0.42s 1875 305 0.14s 5

Net3 7 66 5 66 0.84s 2625 194 0.19s 5

Net4 9 105 4 290 1.77s 3375 400 5.22s 5

Net5 11 28 8 66 3.02s 4125 130 22.42s 5

Net6 11 65 5 263 4.06s 4125 272 2m 33s 5

Net7 12 47 4 166 5.13s 4500 183 19m 13s 5

Net8 14 37 3 98 7.30s 5250 120 1h 36m 17s 5

Net9 14 188 6 202 10.31s 5250 1276 18h 16m 23s 5

Net10 17 49 7 54 18.94s 6375 141 4h 52m 23s 5

Net11 18 110 10 182 32.78s 6750 358 218h 50m 5

Net12 24 96 16 639 1m 03s 7875 * * *

Net13 38 151 5 771 1m 47s 9000 * * *

K: Number of work contents generated; n: Number of activities; cL: Unit delay cost;
C: Total cost; RunT : Run time; N. ev.: Number of project evaluations; K1: Number
of discretization points; * Solution aborted because the network too big for DPM.

Table 3. Results for selected networks (K = 100)

n T cL EM (Java) DPM (Java)

C RunT N.Ev C RunT K1

Net1 3 16 2 37 0.66s 1125 44 0.02s 5

Net2 5 120 8 321 2.16s 1875 305 0.14s 5

Net3 7 66 5 175 6.14s 2625 194 0.19s 5

Net4 9 105 4 312 14.61s 3375 400 5.22s 5

Net5 11 28 8 122 26.94s 4125 130 22.42s 5

Net6 11 65 5 253 31.57s 4125 272 2m 33s 5

Net7 12 47 4 160 47.77s 4500 183 19m 13s 5

Net8 14 37 3 120 1m 07s 5250 120 1h 36m 17s 5

Net9 14 188 6 810 1m 40s 5250 1276 18h 16m 23s 5

Net10 17 49 7 161 3m 05s 6375 141 4h 52m 23s 5

Net11 18 110 10 386 5m 22s 6750 358 218h 50m 5

Net12 24 96 16 622 10m 25s 7875 * * *

Net13 38 151 5 1580 17m 05s 9000 * * *

Optimal resource allocation in stochastic activity networks 763

Table 4. Matlab vs. Java (K = 100)

Matlab (EM) Java (EM)
Net1 14.0s 0.7s
Net2 32.4s 2.2s
Net3 1m 6s 6.2s
Net4 1m 48s 14.6s
Net5 2m 18s 27.0s
Net6 2m 42s 32.0s
Net7 3m 30s 47.8s
Net8 4m 12s 1m 07s
Net9 5m 01s 1m 40s
Net10 7m 30s 3m 05s
Net11 9m 42s 5m 22s
Net12 18m 30s 10m 25s
Net13 60m 00s 17m 05s

3.3. Distributed mode results

Now, we review the results for the EM in the distributed mode. Note that these
tests are different from those presented in the previous section because they
were made using a network of computers. When comparing one algorithm to its
distributed version we need to run the algorithm in a single mode version, using
one computer that belongs to the network. The network used in the tests was
composed of six Intel Pentium IV E 3.0 GHz with 496MB of RAM computers,
under Microsoft Windows XP Professional SP2.

In this version, we tested networks 1 to 13 listed above plus network 14
with 49 activities, also presented in Appendix A. The tests demonstrate the
advantage of the EM in its distributed version for large networks (#9 through
#14): the processing times are significantly shorter and no network was aborted
before completion. We used K = 300, K = 600 and K = 1200. The parameter
M was fixed, as before, at 15. In this paper we tested only the impact of
parameters K and n and added one more parameter to these tests, which is the
number of clients (c) present in the network. The results obtained are presented
in Table 5 and 6.

As can be seen, the results were obtained in a shorter time by the distributed
version of EM algorithm, for the larger networks (Net10 to Net14). Even for the
medium size networks, when K is high, the running times for the distributed
mode are smaller than for the single mode. These results show the advantage
of the distributed mode for the more complex objective functions and for large
networks. For the smaller problems, using the distributed mode is not worth
the effort due to the time spent on communication.

764 A.P. TERESO, R.A. NOVAIS, M.M.T. ARAÚJO, S.E. ELMAGHRABY

T
a
b
le

5
.

R
esu

lts
fo

r
selected

n
etw

o
rk

s
(K

=
3
0
0
,
K

=
6
0
0
,
K

=
1
2
0
0
,
S

M
,
D

M
(c

=
6
))

n
T

c
L

K
=

3
0
0

K
=

6
0
0

K
=

1
2
0
0

K
=

3
0
0

K
=

6
0
0

K
=

1
2
0
0

N
e
t1

3
1
6

2
2
.8

1
s

5
.3

6
s

1
1
.4

4
s

3
m

2
7
s

3
m

0
2
s

2
m

4
5
s

N
e
t2

5
1
2
0

8
1
1
.7

0
s

2
3
.0

3
s

4
6
.4

7
s

4
m

2
1
s

4
m

2
1
s

4
m

2
7
s

N
e
t3

7
6
6

5
3
3
.4

5
s

1
m

0
8
s

2
m

1
6
s

5
m

2
6
s

5
m

0
3
s

5
m

3
5
s

N
e
t4

9
1
0
5

4
1
m

2
4
s

2
m

4
7
s

5
m

3
1
s

6
m

9
s

5
m

3
5
s

6
m

5
6
s

N
e
t5

1
1

2
8

8
2
m

3
5
s

5
m

0
4
s

1
0
m

1
7
s

7
m

0
1
s

7
m

5
5
s

7
m

5
5
s

N
e
t6

1
1

6
5

5
3
m

0
2
s

6
m

0
2
s

1
1
m

5
9
s

7
m

0
3
s

8
m

0
9
s

7
m

2
9
s

N
e
t7

1
2

4
7

4
4
m

2
9
s

8
m

5
6
s

1
8
m

1
5
s

8
m

1
5
s

8
m

1
4
s

7
m

2
4
s

N
e
t8

1
4

3
7

3
6
m

2
8
s

1
2
m

4
9
s

2
5
m

5
1
s

9
m

2
3
s

9
m

1
7
s

8
m

4
5
s

N
e
t9

1
4

1
8
8

6
9
m

1
3
s

1
8
m

2
5
s

3
7
m

2
4
s

9
m

5
1
s

9
m

4
2
s

9
m

5
4
s

N
e
t1

0
1
7

4
9

7
1
7
m

4
4
s

3
5
m

0
3
s

1
h

1
0
m

2
4
s

1
0
m

2
6
s

1
1
m

1
0
s

1
1
m

5
3
s

N
e
t1

1
1
8

1
1
0

1
0

2
9
m

5
9
s

1
h

2
3
s

2
h

1
m

1
5
s

1
1
m

5
4
s

1
1
m

5
9
s

1
2
m

0
5
s

N
e
t1

2
2
4

9
6

1
6

5
8
m

5
0
s

1
h

5
7
m

0
5
s

3
h

5
8
m

0
3
s

1
3
m

3
2
s

1
3
m

3
4
s

1
7
m

0
7
s

N
e
t1

3
3
8

1
5
1

5
1
h

3
9
m

2
7
s

3
h

1
8
m

2
4
s

6
h

3
7
m

5
8
s

1
5
m

2
1
s

1
5
m

2
3
s

1
9
m

4
1
s

N
e
t1

4
4
9

2
2
1

5
2
4
h

3
0
m

*
*

3
8
h

3
0
m

*
*

3
8
h

3
0
m

*
*

1
h

0
1
m

1
h

1
6
m

5
9
s

2
h

0
6
m

S
M

:
sin

g
le

m
o
d
e;

D
M

:d
istrib

u
ted

m
o
d
e;

*
*

T
est

w
a
s

a
b
o
rted

.

Optimal resource allocation in stochastic activity networks 765

Table 6. Results for selected networks (K = 600, SM , c = 2, c = 4, c = 6)

n T cL K SM c=2 c=4 c=6
DM DM DM

Net1 3 16 2 600 5.36s 2m 45s 2m 38s 3m 02s

Net2 5 120 8 600 23.30s 3m 28s 3m 58s 4m 21s

Net3 7 66 5 600 1m 08s 4m 29s 4m 50s 5m 03s

Net4 9 105 4 600 2m 47s 6m 46s 6m 11s 5m 35s

Net5 11 28 8 600 5m 04s 8m 02s 7m 09s 7m 55s

Net6 11 65 5 600 6m 02s 7m 45s 6m 47s 8m 09s

Net7 12 47 4 600 8m 56s 8m 12s 8m 33s 8m 14s

Net8 14 37 3 600 12m 49s 9m 48s 9m 01s 9m 17s

Net9 14 188 6 600 18m 25s 9m 38s 9m 28s 9m 42s

Net10 17 49 7 600 35m 03s 11m 04s 11m 16s 11m 10s

Net11 18 110 10 600 1h 23s 14m 27s 11m 40s 11m 59s

Net12 24 96 16 600 1h 57m 05s 16m 53s 13m 33s 13m 34s

Net13 38 151 5 600 3h 18m 24s 19m 24s 18m 06s 15m 23s

Net14 49 221 5 600 38h 30m * 2h 30m 1h 45m 1h 16m 59s

In Table 6 one can see the difference of using a network with two, four or six
computers, or only one computer. The single mode implementation is better
when dealing with the small networks (Net1-Net6). For large networks (Net13-
Net14), the use of a network with six computers is worth the effort, compared
with the other solutions. For the medium networks, the results are better for
the distributed mode implementation, but the use of six computers is not always
the better choice.

4. Conclusions and directions for future research

4.1. Conclusions

Our experimental results indicate conclusively that EM is far superior to DPM
for large networks: it is capable of solving large problems which are not solvable
by DPM, and for those that can be solved by DPM it is much faster.

An intriguing observation is that EM almost always secured better values
of the criterion function than DPM which is an optimizing method. How can
that be? The answer lies in the fact that the solution obtained by DPM is in
fact the best solution of a constrained version of the original problem. This
is due to the need to discretize both the state and decision spaces since both
are continuous. For example, using a 5 point discretization scheme and lower
and upper bounds on the permissible allocation of 0.5 and 1.5; respectively, the
DPM is in fact restricted to decision values in the set {0.5, 0.75, 1.0, 1.25, 1.5}.
This means that the optimal solution given by the DPM is constrained to this
set of values and may not be the “true” optimum. Actually, it constitutes an

766 A.P. TERESO, R.A. NOVAIS, M.M.T. ARAÚJO, S.E. ELMAGHRABY

experimental upper bound on the “true” optimum. Observe that using the EM
yields a solution that may not be the “true” optimum, because we are using an
heuristic approach and we limit the size of the population (M) and the number
of iterations (to 25n); hence the asymptotic properties of the EM need not be
realized. However, the values tested by the EM belong to a larger set (in fact,
the interval between the lower and upper bounds on the resource allocation)
and hence do yield better values.

We may thus conclude that the use of EM opens a new chapter in the
studies of the problem of resource allocation in activity networks. As to the
use of the object oriented programming language Java, we may assert that the
computational performance improved significantly and the run time spent on
this implementation is much lower than with Matlab, as evidenced in Table 4
and in Fig. 4.

0

500

1000

1500

2000

2500

3000

3500

4000

N
e
t1

N
e
t2

N
e
t3

N
e
t4

N
e
t5

N
e
t6

N
e
t7

N
e
t8

N
e
t9

N
e
t1
0

N
e
t1
1

N
e
t1
2

N
e
t1
3

R
u
n

 T
im

e
(s
)

Networks

Java vs. Matlab

Matlab (EM)

Java (EM)

Figure 4. Java vs. Matlab

The difference between both running times is obvious.
The K parameter is one of the most important parameters in this algorithm.

It tells how “heavy” an Ion evaluation is. Tables 2 and 3 indicate that at increas-
ing K the run time increases as well. One has to choose carefully the value of
parameter K: while a greater K brings precision to the solution, it also brings
additional run time. Fig. 5 results from Table 5 and shows the influence of
parameter K on the run time.

Fig. 5 indicates that larger samples of work content cause longer running
times. The question is how many work content samples we need to find accept-
able solution. This question is not covered by this paper, but is to be addressed
in future work.

As shown in the tables of Section 3.3, the application running in the dis-
tributed mode returns a better run time for large networks. The worse behavior
in small networks can be explained by the time consumed by the communica-

Optimal resource allocation in stochastic activity networks 767

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

R
u
n

 T
im

e
 (
s)

Networks

Single Mode

SM K=300

SM K=600

SM K=1200

Figure 5. Single Mode, K = 300, K = 600, K = 1200

tion protocol in sending and receiving data. As to large networks, the run time
decreases significantly in the distributed mode implementation. In this case we
can say that the use of the EM in distributed mode is almost indispensable.
Table 6 shows us the results when running with different number of clients.
Based on this table, we produced the charts of Fig. 6 and Fig. 7, which show
the advantages and disadvantages of running the EM on a computer network.

0

100

200

300

400

500

600

Net1 Net2 Net3 Net4 Net5 Net6

R
u
n

 T
im

e
 (
s)

Networks

Small Networks

SM

C=2

C=4

C=6

Figure 6. Comparative results for different number of clients (small networks)

768 A.P. TERESO, R.A. NOVAIS, M.M.T. ARAÚJO, S.E. ELMAGHRABY

0

500

1000

1500

2000

2500

Net6 Net7 Net8 Net9 Net10 Net11 Net12 Net13 Net14

R
u
n

 T
im

e
 (
s)

Networks

Medium Networks

SM

C=2

C=4

C=6

Figure 7. Comparative results for different number of clients (medium networks

Fig. 6 and Fig. 7 demonstrate that the use of the distributed mode is not
necessary for small networks but its use in large networks is indispensable. For
Net14 the algorithm in its single mode version did not stop in acceptable time,
but the distributed mode version obtained one solution in one hour (using K =
300).

The decrease in computing time becomes less significant as the number of
computers involved in the parallel implementation increases. For instance, in
Table 6 there is less (proportionate) gain when the number of computers is
increased from 4 to 6, especially for large problems (see also Figs. 6 and 7).
This may be explained by the increased time spent on communication when the
number of computers involved increases.

In this paper we pay more attention to the running time of the algorithm,
than the solution quality, because this is a stochastic problem with random
values generated. This leads to different results in different executions. The
processes of generating work contents and initial ion’s population have a huge
random component. It is necessary sometimes to run the EM more than once to
find a better solution. So, it is indispensable for the EM to have good running
times.

After seeing the results given by Tables 2 and 3, we note that the solutions
given by the EM with K = 100 were worse than the ones obtained with K = 10.
This can be explained by the fact that when we choose a low K value the range of
solutions given by the algorithm is larger (less precision). The range of solutions
given by the algorithm when running with K = 100 is generally contained in
the range given by the algorithm when running with K = 10 (see Fig. 8). The

Optimal resource allocation in stochastic activity networks 769

best solution value will probably be smaller when running with a small K. In
Tables 2 and 3, only networks 6, 7 and 12 returned a better result when running
with K = 100.

K=100

K=10

min

K=100

min

K=10

Figure 8. Influence of K on the result

During tests made in the distributed mode, we paid no attention to the
performance of computer resources. For instance, the CPU is not running at
100% utilization when, for example, the server is expecting values or the clients
are expecting the ions. This and other aspects can be subject to optimization
on all machines belonging to the network. One can do this by putting two or
more clients on a single machine or by putting one client on the server machine.

4.2. Future research

We would like to try other algorithms, with different philosophies, to solve this
problem. So, a possible next step is to try Evolutionary Algorithms. The
representation and computation of the project cost will be done in the same
way as in the EM, but the strategies to reach the result will be implemented in
a different way.

In our future research, we shall do experimentation using other than the
exponential distribution, such as the uniform, the beta and the Weibull distri-
butions.

In this research we have dealt with only one resource. We hope to extend this
model to have more than one resource associated with each activity, assuming
arbitrary distributions of the work content.

Finally, we have always assumed that an activity can start as soon as it is
sequence feasible (all its predecessors have completed processing). But there
are many instances in which one does not wish to start an activity at the time
it is sequence feasible. An excellent example of that would be an activity that
is not critical and involves a substantial outlay of resources. In such case, one
wishes to postpone its initiation as much as possible. This injects the concept of
intentional delays into the whole process. The question then becomes: what is
the optimal delay in each activity to maximize the present value of the project?
Under such scenario we will have to assume a stream of income and another
stream of expenditure, and a discount factor valid over duration of the project.

770 A.P. TERESO, R.A. NOVAIS, M.M.T. ARAÚJO, S.E. ELMAGHRABY

References

Ahn, T. and Erenguc, S. (1995) Resource constrained project scheduling
problem with multiple crashable modes - An exact solution method. Work-

ing Paper Series #95-101, Department of Decision and Information Sci-
ences, University of Florida, Gainesville, FL.

Ahn, T. and Erenguc, S.S. (1998) The resource constrained project schedul-
ing problem with multiple crashable modes: A heuristic procedure. EJOR

107, 250-259.
Artigues, C., Roubellat, F. and Billaut, J.C. (1999) Characterization

of a set of schedules in a resource-constrained multiproject scheduling
problem with multiple modes. Int. J. of Industrial Engineering Theory,

Applications and Practice 6, 112-122.
Artigues, C. and Roubellat, F. (2000) A polynomial activity insertion al-

gorithm in a multi-resource schedule with cumulative constraints and mul-
tiple modes. EJOR 127, 297-316.

Bellenguez, O. (2004) A multi-skill project scheduling problem. Laboratoire
d’informatique de l’université de Tours.

Birbil, S.I. and Fang, S.C. (2003) An Electromagnetism like Mechanism for
Global Optimization. Journal of Global Optimization 25, 263-282.

Birbil, S.I., Fang, S.C. and Sheu, R.-S. (2004) On the Convergence of the
Electromagnetism Method for Global Optimization. Journal of Global

Optimization, 30, 301-318.
Błażewicz, J., Ecker, K., Pesch, E., Schmidt, G. and Węglarz, J.

(2007) Handbook on Scheduling: From Theory to Applications. Springer-
Verlag, Berlin.

Booch, G., Rumbaugh, J. and Jacobson, I. (1998) The Unified Modeling

Language User Guide. Addison-Wesley.
Bouleimen, K. and Lecocq, H. (2003) A new efficient simulated annealing

algorithm for the resource-constrained project scheduling problem and its
multiple modes version. EJOR 149, 268-281.

Buddhakulsomsiri, J. and Kim, D.S. (2006) Properties of multi-mode re-
source constrained project scheduling problems with resource vacations
and activity splitting. EJOR 175, 279-295.

Buddhakulsomsiri, J. and Kim, D.S. (2007) Priority rule-based heuristic
for multi-mode resource-constrained project scheduling problems with re-
source vacations and activity splitting. EJOR 178, 374-390.

Dauzere-Peres, S., Roux, J. and Lasserre, J.B. (1998) Multi-resource
shop scheduling with resource flexibility. EJOR 107, 289-305.

Demeulemeester, E.L. and Herroelen, W.S. (2002) Project Scheduling:

A Research Handbook, Kluwer.
Dieter, D., De Reyck, B., Leus, R. and Vanhoucke M. (2006) A hyb-

rid scatter search/electromagnetism metaheuristic for project scheduling.
EJOR 169, 638-653.

Optimal resource allocation in stochastic activity networks 771

Elmaghraby, S.E. (2000) Optimal Resource Allocation and Budget Estima-
tion in Multimodal Activity Networks. Research Paper, North Carolina
State University, Raleigh-North Carolina, USA.

Erenguc, S.S., Ahn, T. and Conway, D.G. (2001) The resource constrai-
ned project scheduling problem with multiple crashable modes: An exact
solution method. Naval Research Logistics 48 107-127.

Herroelen, W., De Reyck, B. and Demeulemeester, E. (1998)Resource-
Constrained Project Scheduling: A survey of recent developments. Com-

puters and Operations Research 25, 279-302.
Janiak, A. and Szkodny, T. (1994) Job-shop scheduling with convex models

of operations. Mathematics of Computation Modelling 20, 59-68.
Janiak, A. and Kovalyov, M.Y. (1996) Single machine scheduling subject

to deadlines and resource dependent processing times. EJOR 94, 284-291.
Janiak, A. (1998) Minimization of the makespan in a two-machine problem

under given resource constraints. EJOR 107, 325-337.
Janiak, A. and Portmann, M.C. (1998) Genetic algorithm for the permu-

tation flow-shop scheduling problem with linear models of operations. An-

nals of Operations Research 83, 95-114.
Johnson, S.M. (1954) Optimal two- and three-stage production schedules

with setup times included. Naval Research Logistics Quarterly 1, 61-68.
Józefowska, J. and Weglarz, J., eds. (2006) Perspectives in Modern Pro-

ject Scheduling. Springer, New York.
Lorenzoni, L.L., Ahonen, H. and De Alvarenga, A.G. (2006) A multi-

mode resource-constrained scheduling problem in the context of port op-
erations. Computers and Industrial Engineering 50, 55-65.

Neumann, K., Schwindt, C. and Zimmermann, J. (2001) Project Schedul-

ing with Time Windows and Scarce Resources. Lecture Notes in Eco-

nomics and Mathematical Systems 508, Springer, New York.
Novais, R. (2005) Gestăo de Projectos, Relatório de Estágio da Licenciatura

em Engenharia de Sistemas e Informática (in Portuguese). Internal Re-
port, Universidade do Minho, Braga, Portugal.

Penz, B., Rapine, C. and Trystram, D. (2001) Sensitivity analysis of sche-
duling algorithms. EJOR 134, 606-615.

Sprecher, A. (1994) Resource-Constrained Project Scheduling: Exact Meth-

ods for the Multi-Mode Case. LNEMS 409, Springer-Verlag, Berlin.
Sprecher, A., Hartmann, S. and Drexl, A. (1994) Project scheduling

with discrete time-resource and resource-resource tradeoffs. Manuskripte

aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No.
357, Kiel, Germany.

Stork, F. (2001) Stochastic resource-constrained project scheduling. Ph.D.
Thesis, TU Berlin.

Tereso, A.P., Araújo, M.M. and Elmaghraby, S.E. (2004) Adaptive Re-
source Allocation in Multimodal Activity Networks. Int. J. of Production

Economics 92, 1-10.

772 A.P. TERESO, R.A. NOVAIS, M.M.T. ARAÚJO, S.E. ELMAGHRABY

Tereso, A.P. and Araújo, M.M. (2004) The Optimal Allocation in Stocha-
stic Activity Networks via the Electromagnetism Approach. Proceedings

of the Project Management and Scheduling’04, Nancy – France.
Tereso, A.P., Mota, J.R. and Lameiro, R.J. (2005) Adaptive Resource

Allocation Technique to Stochastic Multimodal Projects: a distributed
platform implementation in Java. Control & Cybernetics 35, 661-686.

Tsai, Y.W. and Gemmil, D.D. (1998) Using tabu search to schedule activi-
ties of stochastic resource-constrained projects. EJOR, 111, 29-141.

VanDeVonder, S.,Demeulemeester, E.L. andHerroelen,W.S. (2007)
An investigation of efficient and effective predictive-reactive project sche-
duling procedures. Journal of Scheduling 10, Special Issue on Project
Scheduling under Uncertainty, edited by E.L. Demeulemeester and W.S.
Herroelen.

Van De Vonder, S., Demeulemeester, E.L., Leus, R. and Herroelen,
W.S. (2006) Proactive/reactive project scheduling - Trade-offs and pro-
cedures. In: J. Józefowska and J. Węglarz, eds., Perspectives in Modern

Scheduling, International Series in Operations Research & Management

Science, 92.

Appendix A

All networks presented in this appendix are on A-o-A mode of representation.

Network 1

The first network tested is very simple, having only 3 activities. The due date T
is 16 and the tardiness penalty cL is 2 per unit time. The remaining parameters
are given in Table A1. They are the origin and target node of each activity,
the parameter (λ) of the exponential distribution, representing Work Content
of each activity, and the minimal and maximal amount of resource to allocate
to each activity. The expected duration of activity 1 is 1/λ =1/0.2 = 5, and for
activities 2 and 3: 10 and 14.29, respectively. In this way, the PERT expected
duration for this network is 15. The due date of the project is selected to be a
value above the PERT expected duration (approximately by 5% more).

3

1

2

2

3
1

Figure A1. Network 1

Optimal resource allocation in stochastic activity networks 773

Table A1. Parameters for network 1

Activity 1 2 3

Origin 1 2 1

Target 2 3 3

λ 0.2 0.1 0.07

xmin 0.5 0.5 0.5

xmax 1.5 1.5 1.5

Network 2

This network has 5 activities. The due date is T = 120 and tardiness cost
is cL = 8. Table A2 shows the remaining parameters. The PERT expected
duration for this network is 115.

3

4

1

4
2

3

5

1
2

Figure A2. Network 2

Table A2. Parameters for network 2

Activity 1 2 3 4 5

Origin 1 1 2 2 3

Target 2 3 3 4 4

λ 0.02 0.03 0.04 0.024 0.025

xmin 0.5 0.5 0.5 0.5 0.5

xmax 1.5 1.5 1.5 1.5 1.5

Network 3

This network has 7 activities. The due date is T = 66 and tardiness cost is
cL = 5. The remaining parameters are given in Table A3. The PERT expected
duration is 62.9.

1

3

4 5
1

3

2

2

4

5

7

6

Figure A3. Network 3

774 A.P. TERESO, R.A. NOVAIS, M.M.T. ARAÚJO, S.E. ELMAGHRABY

Table A3. Parameters for network 3
Activity 1 2 3 4 5 6 7

Origin 1 1 2 2 3 3 4

Target 2 3 3 4 4 5 5

λ 0.08 0.06 0.09 0.05 0.07 0.03 0.04

xmin 0.5 0.5 0.5 0.5 0.5 0.5 0.5

xmax 1.5 1.5 1.5 1.5 1.5 1.5 1.5

Network 4

This network has 9 activities. For this network, T = 105 and cL = 4. Table A4
shows the remaining parameters. The PERT expected duration is 100.

3

4

5

6

1

3

4

1

9

8

2

5

7

6

2

Figure A4. Network 4

Table A4. Parameters for network 4
Activity 1 2 3 4 5 6 7 8 9

Origin 1 1 1 2 2 3 3 4 5

Target 2 6 3 4 3 4 5 6 6

λ 0.04 0.01 0.07 0.035 0.05 0.06 0.045 0.06 0.039

xmin 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

xmax 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

4.3. Network 5

Network 5 (Fig. A5) has 11 activities. For this network, T = 28 and cL = 8.
The remaining parameters are given in Table A5. The PERT expected duration
is 26.67.

Optimal resource allocation in stochastic activity networks 775

3

4

5

5

8
11

6

1

4

1

2

7 10

9

6

2

3

Figure A5. Network 5

Table A5. Parameters for network 5
Activity 1 2 3 4 5 6 7 8 9 10 11

Origin 1 1 1 2 3 2 3 4 3 5 4

Target 2 3 4 3 4 5 5 5 6 6 6

λ 0.1 0.09 0.4 0.2 0.3 0.08 0.4 0.2 0.1 0.3 0.3

xmin 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

xmax 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

Network 6

This network has also 11 activities. The due date is T = 65 and the unit cost
of tardiness is cL = 5. See Table A6 for the rest of information. The PERT
expected duration is 62.08.

1

3

4

5

7

6

7

1

3

4

10

11

8
9

6

2

5

2

Figure A6. Network 6

776 A.P. TERESO, R.A. NOVAIS, M.M.T. ARAÚJO, S.E. ELMAGHRABY

Table A6. Parameters for network 6
Activity 1 2 3 4 5 6 7 8 9 10 11

Origin 1 1 1 2 2 2 3 4 4 5 6

Target 2 3 4 3 5 6 6 5 7 7 7

λ 0.1 0.12 0.05 0.08 0.2 0.04 0.03 0.04 0.024 0.15 0.16

xmin 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

xmax 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

Network 7

Network 7 has 12 activities (Fig. A7), with a different topology. It has T = 47
and cL = 4. The remaining parameters are shown in Table A7. The PERT
expected duration is 44.72.

1

3

4

5

6

8
12

11

7

7

8

10

2

4

1
6

2

5

9

3

Figure A7. Network 7

Table A7. Parameters for network 7
Activity 1 2 3 4 5 6 7 8 9 10 11 12

Origin 1 1 1 1 2 2 3 3 4 5 6 7

Target 2 3 4 5 4 7 5 7 6 7 8 8

λ 0.1 0.09 0.08 0.1 0.09 0.08 0.1 0.09 0.08 0.1 0.09 0.1

xmin 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

xmax 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

Network 8

This network has 14 activities. T is 37 and cL is 3. The remaining parameters
are presented in Table A8. The PERT expected duration is 35.5.

Optimal resource allocation in stochastic activity networks 777

3

4

5

6 7

1

3

4
1

6

7

5

8

9

10

2

12

13

14

11

2

Figure A8. Network 8

Table A8. Parameters for network 8
Activity 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Origin 1 1 1 1 2 2 3 3 3 4 2 6 5 4

Target 2 3 4 6 4 6 6 5 4 5 7 7 7 7

λ 0.2 0.25 0.16 0.2 0.1 0.16 0.5 0.25 0.2 0.08 0.09 0.1 0.125 0.1

xmin 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

xmax 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

Network 9

Network 9 has the same number of activities as the previous one (14). Its due
date is 188 and tardiness cost is 6. Other parameters are given in Table A9.
The PERT expected duration is 178.57.

3

4

5

7

9

8

8

11

10

14

10

12

13

9

6

1

4

1

7

6

2

5

2

3

Figure A9. Network 9

778 A.P. TERESO, R.A. NOVAIS, M.M.T. ARAÚJO, S.E. ELMAGHRABY

Table A9. Parameters for network 9
Activity 1 2 3 4 5 6 7

Origin 1 1 1 2 2 3 3

Target 2 3 4 5 6 5 6

λ 0.02 0.03 0.04 0.025 0.035 0.045 0.05

xmin 0.5 0.5 0.5 0.5 0.5 0.5 0.5

xmax 1.5 1.5 1.5 1.5 1.5 1.5 1.5

Activity 8 9 10 11 12 13 14

Origin 4 4 5 6 7 8 9

Target 7 8 9 9 10 10 10

λ 0.06 0.03 0.02 0.015 0.02 0.025 0.03

xmin 0.5 0.5 0.5 0.5 0.5 0.5 0.5

xmax 1.5 1.5 1.5 1.5 1.5 1.5 1.5

Network 10

Network 10 has 17 activities. For this network, T = 49 and cL = 7. The
remaining parameters are shown in Table A10. The PERT expected duration
is 44.98.

3

4

5

6

7

8

9

17

101

2

3

4

6

7

2
5

9

10

11

13

15

16

14

12

8

1

Figure A10. Network 10

Table A10. Parameters for network 10
Activity 1 2 3 4 5 6 7 8 9

Origin 1 1 2 3 2 3 4 4 5

Target 2 3 4 4 6 5 5 7 6

λ 0.167 0.1 0.2 0.1 0.25 0.2 0.1 0.333 0.333

xmin 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

xmax 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

Activity 10 11 12 13 14 15 16 17

Origin 5 5 6 7 7 7 8 9

Target 7 9 8 8 9 10 10 10

λ 0.25 0.5 0.167 0.143 0.5 0.125 0.167 0.11

xmin 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

xmax 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

Optimal resource allocation in stochastic activity networks 779

Network 11

Network 11 (Fig. A11), has 18 activities. Here, T = 110 and cL = 10. Other
parameters are shown in Table A11. The PERT expected duration is 106.11.

3

4

5

6

7

8

7

9

12
10

12 17

14

18

13

14

13

11

15 16

10
11

8

1

1

6

2

5

2

3

Figure A11. Network 11

Table A11. Parameters for network 11

Activity 1 2 3 4 5 6 7 8 9

Origin 1 1 1 2 3 3 4 4 5

Target 2 3 4 5 5 6 7 8 9

λ 0.06 0.04 0.1 0.07 0.08 0.04 0.08 0.2 0.07

xmin 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

xmax 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

Activity 10 11 12 13 14 15 16 17 18

Origin 6 7 8 9 11 10 10 12 13

Target 11 13 10 11 12 12 13 14 14

λ 0.05 0.08 0.07 0.09 0.09 0.05 0.09 0.04 0.06

xmin 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

xmax 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

780 A.P. TERESO, R.A. NOVAIS, M.M.T. ARAÚJO, S.E. ELMAGHRABY

Network 12

Network 12, Fig. A12, is much bigger than the previous (24 activities). Here,
T = 223 and cL = 12. Other parameters are given in Table A12. The PERT
expected duration is 212.05.

1

3

4

5

6

7

8

9

10

12

13

14

16

15

17

1

3

4

6

7

2

5

9

11

8

10

11

12

13

14

15

17

18

19
20

24

23

21

22

16

2

Figure A12. Network 12

Table A12. Parameters for network 12
Activity 1 2 3 4 5 6 7 8

Origin 1 1 1 1 2 2 3 4

Target 2 3 6 8 4 5 14 14

λ 0.025 0.02 0.0222 0.0182 0.0333 0.0286 0.025 0.04

xmin 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

xmax 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

Activity 9 10 11 12 13 14 15 16

Origin 5 5 5 6 6 7 7 8

Target 7 9 13 10 11 10 11 12

λ 0.0333 0.025 0.02 0.0385 0.0357 0.05 0.04 0.0333

xmin 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

xmax 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

Activity 17 18 19 20 21 22 23 24

Origin 9 10 11 12 13 14 15 16

Target 15 15 16 15 17 17 17 17

λ 0.05 0.0556 0.0278 0.0222 0.0667 0.0167 0.04 0.0217

xmin 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

xmax 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

Optimal resource allocation in stochastic activity networks 781

Network 13

Network 13 (Fig. A13), is even bigger than the previous ones (38 activities). For
this network, T = 151 and cL = 5. The remaining parameters are presented in
Table A13. The PERT expected duration is 143.99.

3

4

5

6

7

8

9

10

20
11 12

13

14

16

15

19

18

17

1

3

4

2

6

75

9

11

208

10

12

13

14 15

16

17

18

19

21 22 26

23

31

24

25

27

28

2

33

29

30
32

34

35

37

36
1

38

Figure A13. Network 13

Table A13. Parameters for network 13

Activity 1 2 3 4 5 6 7 8 9 10

Origin 1 1 2 2 2 3 3 3 4 4
Target 2 4 5 9 3 5 6 7 7 10

λ 0.0625 0.0333 0.0625 0.05 0.1 0.0556 0.0667 0.0909 0.0833 0.025
xmin 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
xmax 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

Activity 11 12 13 14 15 16 17 18 19 20

Origin 5 6 6 6 7 7 7 9 10 8
Target 8 9 13 14 13 14 11 11 11 12

λ 0.05 0.0625 0.1 0.125 0.7143 0.0476 0.0625 0.05 0.0526 0.0588
xmin 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
xmax 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

Activity 21 22 23 24 25 26 27 28 29 textbf
Origin 8 9 9 11 10 12 13 13 14
Target 13 12 18 14 17 15 15 16 16

λ 0.0667 0.0555 0.0476 0.0625 0.05 0.0555 0.0625 0.0833 0.0555
xmin 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
xmax 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

Activity 30 31 32 33 34 35 36 37 38

Origin 13 15 3 15 18 17 16 18 19
Target 17 18 16 19 19 19 20 20 20

λ 0.0417 0.0909 0.0909 0.0455 0.0417 0.0333 0.0667 0.125 0.1
xmin 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
xmax 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

782 A.P. TERESO, R.A. NOVAIS, M.M.T. ARAÚJO, S.E. ELMAGHRABY

Network 14

Network 14 (Fig. A14) was the biggest network tested (49 activities). For this
network, T =221 and cL =5. The remaining parameters are shown in Table A14.

39

1

3

4

5

6

7

8

9

10

11

12

13

14

16

15

19

18

17

26

24

22

25

23

21

20

2927

28

33

35

37

34

36

38

30 32

31

43

40

41

42

44
1

2 3

4

5
6

7

8

9
10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

44
45

27

43

28

46

2

31

29

32 33 34

30

35 36 37 38

39

40

41

49

48

47

42

Figure A14. Network 14

Table A14. Parameters for network 14
Activity 1 2 3 4 5 6 7 8 9 10

Origin 1 2 3 2 3 3 4 4 5 5
Target 2 3 4 5 7 16 8 9 11 13

λ 0.01 0.125 0.25 0.16 0.11 0.125 0.11 0.2 0.16 0.11
xmin 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
xmax 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

Activity 11 12 13 14 15 16 17 18 19 20

Origin 5 6 7 8 9 10 11 12 13 14
Target 6 10 15 12 14 17 18 19 23 22

λ 0.14 0.5 0.33 0.2 0.3 0.4 0.5 0.33 0.1 0.44
xmin 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
xmax 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

Activity 21 22 23 24 25 26 27 28 29 30

Origin 15 16 17 18 19 20 21 22 23 24
Target 20 21 24 25 26 39 38 37 36 35

λ 0.14 0.12 0.33 0.2 0.11 0.13 0.14 0.5 0.2 0.16
xmin 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
xmax 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

Activity 31 32 33 34 35 36 37 38 39 40

Origin 25 26 27 28 29 30 31 32 33 34
Target 34 27 28 29 30 31 32 33 34 43

λ 0.14 0.09 0.14 0.14 0.09 0.14 0.5 0.33 0.33 0.08
xmin 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
xmax 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

Activity 41 42 43 44 45 46 47 48 49

Origin 35 36 37 38 39 40 41 42 43
Target 42 41 38 39 40 44 44 44 44

λ 0.13 0.09 0.33 0.13 0.5 0.15 0.5 0.14 0.13
xmin 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
xmax 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

