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Abstract 24 

The composition and the evaluation of the antifungal activity and the mechanisms of action of the 25 

essential oils (EO) of Cupressus arizonica leaves of two varieties, glabra and arizonica, were studied. 26 

EOs were extracted by hydrodistillation and the chemical composition was determined by gas 27 

chromatography/mass spectrometry (GC-MS). Both var. arizonica and var. glabra EOs, displayed 28 

high contents of α-pinene (29.76% and 26.53%, respectively) and umbellulone (11.86% and 15.05%, 29 

respectively). The antifungal activity of the EOs of both varieties against pathogenic yeasts of the 30 

genus Candida was investigated and showed that very low concentrations of var. glabra EO, such as 31 

5.10
-2

 µl/ml, were sufficient to inhibit growth of most of the species, while, all species, except C. 32 

albicans (MIC = 5.10
-2

µl/ml), were inhibited for growth with only 10
-2

µl/ml when the EO of var. 33 

arizonica was used.   34 

The cytotoxicity of the EOs was assessed in Saccharomyces cerevisiae (used as a yeast experimental 35 

model) wild type and mutants affected in oxidative stress response and DNA repair pathways. 36 

Oxidative stress imposed by the EOs was determined by flow cytometry and the genotoxicity was 37 

assessed by yeast comet assay. A higher loss of yeast viability was observed with incubation of the EO 38 

from var. arizonica (5x10
-2

 µl/ml, 60% viability loss) compared to var. glabra (5.10
-2

µl/ml, 30% 39 

viability loss). DNA damage was observed as long comet tails when cells were exposed to the EO of 40 

var. arizonica and of var. glabra, (17 and 13 µm, respectively), compared to the negative control (5 41 

µm). Intracellular oxidation increased in cells treated with the EOs, the var. arizonica being more 42 

active in the oxidant activity. The results obtained with the wild type yeast strain suggest that the EOs 43 

cause toxicity via an oxidative mechanism. To investigate the mechanism of oxidation, mutants 44 

affected in the oxidative stress response (yap1) and base excision repair DNA pathway (apn1) were 45 

investigated. The results show that the yap1 and apn1 yeast mutant strains are more sensitive to EOs 46 

than the wild type. For mutants affected in nucleotide excision repair (rad4), a pathway not involved 47 

in the repair of oxidative DNA damage, the results were similar to those obtained with the wild type.  48 

Keywords: Cupressus arizonica; essential oil; yeasts; genotoxicity; oxidative stress 49 

  50 
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1. Introduction 51 

The genus Cupressus, common name cypress, are native from warm temperate locations of the 52 

northern hemisphere. This genus, represented by 30 perennial species around the world, presents a 53 

large variety of forms, sizes and colors and some are extensively cultivated (Eckenwalder and James, 54 

2009). A large number of species are known to possess different pharmacologic properties, namely 55 

due to their essential oils (EO) contents (Koukos et al., 2001). Some Cupressus species have been used 56 

in folk medicine. Cupressus sempervirens, a cypress native from the Eastern Mediterranean region, 57 

has been widely cultivated as an ornamental tree and used for medicinal purposes; the EO obtained 58 

from cones and young branches has anthelmintic, antipyretic, antirheumatic, antiseptic, astringent, 59 

balsamic and vasoconstrictive properties (Moerman, 1991). Additionally, taken internally, the EO is 60 

used in the treatment of whooping cough, the spitting up of blood, spasmodic coughs, colds, flu and 61 

sore throats (Lawless, 1995). Applied externally as a lotion or in a diluted way (e.g. using an oil such 62 

as almond), it astringes varicose veins and hemorrhoids, tightening up the blood vessels (Lawless, 63 

1995). A resin is also obtained from the tree by making incisions in the trunk, which has a vulnerary 64 

action on slow-healing wounds vessel. Cupressus macrocarpa is also used for its medicinal value; a 65 

decoction of the foliage has been used in the treatment of rheumatism (Monteuus and Bailly, 1985). 66 

Cupressus arizonica, the Arizona cypress, is a species native to the southwest of America. There are 67 

five varieties identified by botanists: var. arizonica (Carz), var. glabra (Cglb), var. nevadensis, var. 68 

montana and var. stephensonii. Carz and Cglb are the varieties most frequently found in the world 69 

because of their use in gardens and as source of timber (Askew and Schoenike, 1982). Both varieties, 70 

Carz and Cglb, have been introduced in Tunisia in arboretums since 1960 (Bouroulet, 1994). The 71 

Arizona cypress is widely cultivated as an ornamental tree, used for windbreaks in desert areas and as 72 

a timber source. Recently, the EO of this species has been reported to have important biological 73 

activities, namely larvicidal activity (Sedaghat et al., 2011), antimicrobial activity (Chéraif et al., 74 

2007), and antifungal activity against Aspergillus flavus (Ali et al., 2013) and the anthracnose-causing 75 

fungal plant pathogens Colletotrichum acutatum, C. fragariae and C. gloeosporioides (Adams et al., 76 

1997).  77 

http://en.wikipedia.org/wiki/Genus
http://en.wikipedia.org/wiki/Cupressus
http://en.wikipedia.org/wiki/Species
http://en.wikipedia.org/wiki/Native_plant
http://en.wikipedia.org/wiki/Variety_%28biology%29
http://www.google.com/url?sa=t&rct=j&q=cupressus+arizonica+essential+oil+activity&source=web&cd=1&ved=0CCUQFjAA&url=http%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3129023%2F&ei=TN7kTqvFAcHc8AO7p6z0Aw&usg=AFQjCNEFOa6yhPMogQh2yT1vw4WjK2oTvw
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During the last few decades, fungal infections have been considered as serious health and life-78 

threatening diseases, particularly among immune-compromised patients. As the number of these 79 

patients grows gradually, the incidence of opportunistic fungal infections has been increasing 80 

(Chamegriha et al., 1997). In addition, many pathogenic fungi are also responsible for a wide range of 81 

superficial infections affecting human health (Pierre-Leandri et al., 2003). The increasing impact of 82 

these infections, incidence of drug-resistant pathogens, and the toxicity of the available antifungal 83 

drugs, are important factors that lead to heightened interest in the study of alternative natural products 84 

such as EOs (Cavaleiro et al., 2006). The objective of the present work is to evaluate the EOs of Carz 85 

and Cglb as potential products against fungal infections by characterizing their chemical composition 86 

and investigating the degree and mechanisms of cytotoxicity. 87 

 88 

1. Material and Methods 89 

1.1. Plant material and extraction of the essential oils 90 

The aerial parts of Carz and Cglb were collected from the El Kriieb arboretum (North West of 91 

Tunisia). The leaves were separated, dried at room temperature, and used for the extraction of the EOs. 92 

The EOs were extracted by hydrodistillation of dried plant material (150 g of each sample in 500 mL 93 

of distilled water) using a Clevenger-type apparatus for 3 h. The oils were stored in sealed glass vials 94 

at 4-5 °C prior to analysis and bioactivity experiments. 95 

 96 

1.2. Analysis of the essential oils 97 

Chemical analysis of the EOs was done by GC/MS in a Hewlett-Packard 5972 MSD System. An HP-5 98 

MS capillary column (30 m x 0.25 mm ID, film thickness of 0.25 µm) was used for separation of 99 

compounds and directly coupled to the mass spectrometer. The carrier gas was helium, with a flow 100 

rate of 1.2 ml/min. The oven temperature was programmed at 50 °C for 1 min, then 50-240 °C at 5 101 

°C/min, and subsequently held isothermal for 4 min. Injector port: 250 °C, detector: 280 °C, split ratio: 102 

1:50. Volume injected: 0.1 µl of EO 1% solution (diluted in hexane); mass spectrometer: HP5972 103 

recording at 70 eV; scan time: 1.5 s; mass range: 40-300 amu. The software used to handle mass 104 

spectra and chromatograms was ChemStation. The identification of the compounds was based on mass 105 
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spectra (compared with Wiley 275.L, 6
th
 edition mass spectral library). Further confirmation was done 106 

from Kovats retention index data generated from a series of alkanes retention indices. 107 

 108 

1.3. Yeast strains, culture and sample preparation 109 

Wild type and some mutants of Saccharomyces cerevisiae and several Candida species were used 110 

throughout this work (Table 1). Saccharomyces cerevisiae mutants include yap1, an oxidative stress-111 

sensitive mutant affected in the gene YAP1, encoding the basic leucine zipper transcription factor 112 

involved in the transcription of a set of genes of the oxidative stress response (Coleman et al., 1999; 113 

Schnell and Entian, 1991). Other mutants include the apn1, affected in APN1, encoding the major 114 

apurinic/apyrimidinic endonuclease of the base excision repair (BER) pathway involved in the 115 

removal of oxidized nitrogenous bases and the mutant rad4, affected in RAD4, encoding a subunit of 116 

the nuclear excision repair factor 2 of the nucleotide excision repair (NER) pathway involved in the 117 

recognition of bulky, non-oxidative DNA damage. 118 

All yeast strains were maintained on YPDA (yeast peptone dextrose agar) medium, containing yeast 119 

extract (1%), peptone (2%), glucose (2%) and agar (2%). For the preparation of liquid cultures, 5–10 120 

ml YPD (YPDA lacking agar) was inoculated with a single colony of yeast and incubated overnight at 121 

30 ºC, 200 rpm, and diluted with fresh medium to a density of 1.2 × 10
7
 cells/ml. The cells were 122 

harvested after two generations by centrifugation (2 min at 14000 × g, 4 ºC), washed twice with the 123 

same volume of ice-cold deionized water and diluted back to the same concentration with ice-cold 124 

deionized water or ice-cold S buffer (1M sorbitol, 25 mM KH2PO4, pH 6.5). 125 

 126 

1.4. Viability assay 127 

Yeast cells from exponentially growing cultures were harvested by centrifugation at 14,000 x g, 2 min, 128 

at 4 ºC, washed twice with the same volume of sterilized deionized H2O at 4 ºC and suspended in the 129 

same volume of S buffer. Aliquots of the suspension were incubated at 30 ºC, 200 rpm, in the presence 130 

of the EO of Carz or Cglb at different concentrations (0.1 to 1x10
-3

 µl/ml) or α-pinene (3x10
-3

 to 6x10
-

131 

5
 µl/ml) for 90 min, harvested by centrifugation (2 min at 5000 × g, 4 ºC), washed twice with sterilized 132 

deionized H2O at 4 ºC and suspended in the same volume of sterilized deionized H2O. One hundred 133 
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microliters of the suspensions were serially diluted to 10
−4

 in deionized sterilized H2O and spread on 134 

YPDA Petri dishes. After incubation at 30 °C for 48 h, the colonies were counted and the viability was 135 

calculated as percentage of colony-forming units (CFU), taking 100% viability for the sample of cells 136 

treated without EO (but containing the same amount of ethanol). 137 

 138 

1.5. Comet assay 139 

The yeast comet assay was performed as described previously (Azevedo et al., 2011).  Briefly, from 140 

the S buffer cell suspension, approximately 10
6
 cells were harvested by centrifugation (2 min, 14,000 141 

× g, 4 °C), re-suspended in zymolyase buffer (2 mg/ml zymolyase, 20,000 U/g, ImmunO
TM

 20T, in S 142 

buffer and 50 mM ß-mercaptoethanol) and incubated at 30 °C for 30 min, 200 rpm in order to digest 143 

the cell walls. Cell wall-devoid cells (spheroplasts) were washed twice by centrifugation (2 min, 144 

14,000 × g, 4 °C) with ice-cold S buffer, incubated at 30 
0
C, 200 rpm, with the EO from Carz or Cglb, 145 

(10
-3

 to 5.10
-5

µl/ml) for 90 min and washed twice with ice-cold S buffer as before. For the negative 146 

and positive controls, the EO was replaced by, respectively, the same amount of ethanol or H2O2 (10 147 

mM in S buffer). The spheroplasts were washed twice as before, re-suspended in 1.5% (w/v in S 148 

buffer) low melting point agarose at 30 ºC and, immediately, 60 µl of the suspension was spread on a 149 

microscopy glass slide with a base layer of 0.5% (w/v in deionized water) normal melting point 150 

agarose. The suspension was covered with a coverslip and the glass slide was placed on ice for 5 min 151 

until agarose becomes solidified. The coverslip was gently removed and the glass slide was incubated 152 

in lysis buffer (30 mM NaOH, 1 M NaCl, 0.05% w/v laurylsarcosine, 50 mM EDTA, 10 mM Tris–153 

HCl, pH 10) for 20 min to denature proteins and unwind genomic DNA. Subsequently, the slides were 154 

incubated twice in electrophoresis buffer (30 mM NaOH, 10 mM EDTA, 10 mM Tris–HCl, pH 10) for 155 

20 min and the samples were then submitted to electrophoresis in the same buffer for 10 min at 0.7 156 

V/cm, 4 ºC. After electrophoresis, the samples were neutralized by incubation in neutralization buffer 157 

(10 mM Tris–HCl, pH 7.4) for 10 min at 4 ºC, and fixed by two consecutive 10 min incubations in 158 

76% (v/v) and 95% (v/v) ethanol. The slides were then air-dried and visualized in a fluorescence 159 

microscope upon staining with GelRed (10 µg/ ml; Biotium). The representative images of each slide, 160 

containing at least 50 comets, were acquired at a magnification of ×400 using a Leica Microsystems 161 
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DM fluorescence microscope. The tail length of the comets was analyzed with the free edition of 162 

CometScore™ software and the analytic parameter tail length (in µm) was chosen as a measure of the 163 

DNA damage. 164 

 165 

1.6. Flow cytometry 166 

Yeast cells from exponentially growing cultures were harvested as above, washed twice with the same 167 

volume of ice-cold PBS (137 mM NaCl, 2.7 mM KCl, 4.3 mM Na2HPO4, 1.47 mM KH2PO4, pH 7.4), 168 

diluted to 0.02 optical density at 600 nm and 500 µl were used for the measurement of the auto 169 

fluorescence. The cells were loaded with 50 µM dichlorofluorescein diacetate (H2DCFDA) by 170 

incubation at 30 °C, 200 rpm, during 1 h in the dark, after which they were washed twice by 171 

centrifugation as described above with the same volume of ice-cold PBS. Aliquots of 1 mL were 172 

mixed with the EO of each variety at different concentrations, or with the same volume of ethanol for 173 

the negative control, and incubated for 90 min, at 30 °C, 200 rpm, in the dark. Approximately twenty 174 

thousand cells of each sample were analyzed by flow cytometry in an Epics® XLTM cytometer 175 

(Beckman Coulter) equipped with an argon-ion laser emitting a 488 nm beam at 15 mW. The green 176 

fluorescence was collected through a 488 nm blocking filter, a 550 nm long-pass dichroic and a 225 177 

nm band-pass filter. The data were analyzed and histograms were made with the Flowing Software. 178 

 179 

1.7. Statistical analyses 180 

Each experiment was done at least in three independent experiments, in triplicate, and the results are 181 

presented as the mean value ± the standard deviation (SD). Comet assay results are the mean ± SD of 182 

three independent samples in which at least 50 comets were analyzed. GraphPad prism version 5 was 183 

used for statistical analyses. Statistical analyses of the data were performed using ANOVA One-Way, 184 

and the means were compared using Tukey’s multiple comparison test. P-values less than 0.05 were 185 

considered to be significant. 186 

 187 

2- Results and Discussion 188 

 189 
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2.1- Chemical analysis of the essential oils 190 

The chemical composition of the EOs from Carz and Cglb was analyzed by GC/MS, and results are 191 

shown in Table 2. A total of 55 compounds were identified comprising 96.62% and 90.42% of the EO 192 

content for Carz and for Cglb, respectively. The major constituents, in both varieties, were α-pinene 193 

(29.76% and 26.53%, respectively), umbellulone (11.86% and 15.05%), terpinen-4-ol (5.72% and 194 

4.08%), limonene (4.09% and 4.12%), β-sesquiphellandrene (3.11% and 2.01%), δ-terpinene (2.86% 195 

and 2.06%) and camphor (2.68% and 1.83%). Therefore, the EO from the leaves of both varieties of C. 196 

arizonica can be considered α-pinene and umbellulone-rich oils. This is in accordance with previous 197 

studies of EOs from leaves of C. arizonica EO cultivated in Tunisia (Cheraif et al., 2007). However, 198 

EOs from leaves of specimens from Italy, USA (Texas) and Algeria contained only 7.8%, 7.6% and 199 

10.5% α-pinene, respectively (Adam et al., 1997; Chanegriha et al., 1997; Flamini et al., 2003). 200 

Moreover, umbellulone is more abundant in the EO from C. arizonica cultivated in Italy (45.1%) and 201 

Algeria (37.3%) than in Tunisia, which reached only 15.05% in Cglb and 11.86% in Carz (Table 2). 202 

The comparison of EOs from both varieties revealed significant differences in the chemical 203 

composition (Table 2), namely camphene hydrate and α-cedrene, two constituents present in Carz with 204 

a proportion of 3.82% and 4.12% respectively, and β-cubebene, calmanene and 14-norcadin-5-en-4-205 

one present only in Cglb. Interestingly, cis-muurola-4(14),5-diene  is a compound found in significant 206 

amounts in EO of cultivated specimens from Iran (10%) and north Tunisia (9.4%) (Afsharypuor and 207 

Tavakoli, 2005; Cherail et al., 2007). In our samples, this compound was not detected and this result is 208 

similar to EOs from Italian, Texan, Algerian and French C. arizonica (Adam et al., 1997; Chanegriha 209 

et al., 1997; Pierre-Leandi et al., 2003). The differences found between the main constituents of the 210 

EO obtained from C. arizonica cultivated in Tunisia and those cultivated in other countries can be 211 

related to the climate and soils differences (Chéraif et al., 2007). Our data support the observation that 212 

the composition of Cupressus EO is significantly dependent on the geographic origin of the plants, 213 

since the relative amounts of the most abundant components can be considerably different in EOs 214 

from plants cultivated in Texas (Adams et al., 1997), Argentina (Malizia et al., 2000) and France 215 

(Pierre-Leandri et al., 2003); umbellulone can be found in much higher amounts than α-pinene in 216 
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Algerian plants (Chanegriha et al., 1997); or the main constituents do not include umbellulone in 217 

plants cultivated in Iran (Afsharypuor and Tavakoli, 2005). 218 

In EOs of both varieties (Table 2), there is a marked predominance of monoterpene hydrocarbons 219 

(47.22% and 41.24%, respectively), oxygen containing monoterpenes (33.03% and 27.8%) and 220 

sesquiterpene hydrocarbons (11.23% and 19.06%). Monoterpene content is higher in Carz (80.25%) 221 

than in Cglb (69.04%), while sesquiterpenes are more abundant in Cglb (20.32%) than Carz (14.75%). 222 

 223 

2.2- Antifungal activity of the essential oils of C. arizonica var. arizonica and var. glabra   224 

In this study we tested antifungal activity of C. arizonica EO of varieties Carz and Cglb, against the 225 

yeast model organism S. cerevisiae and a group of pathogenic Candida, including the most virulent 226 

ones: C. albicans, C. glabrata, C. parapsilosis, C. tropicalis, C. dubliniensis and C. bracarensis 227 

(Table 1). The Candida species were selected by their relevance as human fungal pathogens and 228 

frequency of clinical cases (Moran et al. 2012; Clark et al. 2002; Dar-Odeth et al. 2003; Pfaller et al. 229 

2003; Pereira et al., 2008). Candida albicans, a species most frequently isolated in patients, is 230 

responsible for about 50% of candidemia, whereas C. glabrata represents 10-20% of candidemia  231 

(Eggimann et al. 2003). Candida tropicalis is one of the more common Candida causing human 232 

diseases in tropical countries, and is considered the most prevalent pathogenic yeast species of the 233 

Candida-non-albicans group (Rajendra et al. 2010). Saccharomyces cerevisiae is a model organism 234 

that can allow us to study the mechanisms of EOs antifungal activity.  235 

We tested several concentrations of Carz and Cglb EOs and determined their minimum inhibitory 236 

concentrations (MICs) that inhibited the growth of selected yeasts (Table 3). The growth of S. 237 

cerevisiae and Candida species was very sensitive to EOs, especially C. tropicalis (with a MIC of 10
-3

 238 

and 10
-2

, for Cglb and Carz EOs, respectively).  239 

Saccharomyces cerevisiae cells were exposed to the EO of varieties Carz and Cglb and several 240 

aliquots were harvested, diluted, and spread on YPDA plates in order to count colonies and estimate 241 

viability as CFUs. Saccharomyces cerevisiae viability significantly decreased in a dose-dependent 242 

manner from 10
-3

 µl/ml up to 10
-1

µl/ml EOs concentrations where nearly all cells lost viability (Fig. 243 

1). As depicted in Fig. 1, when cells were incubated with 10
-2

µl/ml and 5x10
-2

µl/ml EO of Carz, the 244 
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viability was lower (approximately 65% and 40%, respectively; Fig. 1B) when compared to the EO 245 

from Cglb (approximately 90% and 70%, respectively; Fig. 1A). These results suggest that the EO 246 

from Carz is more cytotoxic than the EO obtained from Cglb, a trend that was already observed for 247 

MIC values of C. tropicalis (Table 3). 248 

Antifungal activity of EOs from different plants has been reported extensively in the literature 249 

(Bakkali et al., 2008). Previous publications reported the antimicrobial activity of the EO from C. 250 

arizonica against several bacteria (Cheraif et al., 2007), Aspergillus flavus (Karbin et al., 2009) and the 251 

strawberry anthracnose causing fungal plant pathogens Colletotrichum acutatum, C. fragariae and C. 252 

gloeosporioides (Ali et al., 2013).  253 

 254 

2.3- Mechanisms of action of the essential oils of C. arizonica var. arizonica and var. glabra  255 

 256 

2.3.1- The essential oils of C. arizonica var. arizonica and var. glabra are more cytotoxic to yeast 257 

mutants affected in the oxidative stress response 258 

 259 

In order to clarify the mechanism of action of these EOs, the cytotoxicity was investigated in S. 260 

cerevisiae mutant strains affected in the oxidative stress response and in DNA repair pathways. As 261 

depicted in Fig. 1, a remarkable decrease in viability was observed in S. cerevisiae mutant strains 262 

affected in the oxidative stress response (yap1 and apn1), as compared with the wild type strain. 263 

Viability of yap1 mutant strain was significantly affected (circa 20% less, Fig. 1C-D) when compared 264 

with the wild type viability, for as low as 10
-3

 µl/ml of EO. Increased sensitivity was also observed 265 

with the apn1 mutant strain (Fig. 1E-F). Interestingly, rad4 was the mutant strain less affected by both 266 

EOs (Fig. 1G-H), viability being comparable to that of the wild type strain (Fig. 1A-B). These results 267 

strongly suggest that the toxicity of the EOs is mediated by an oxidative stress-inducing mechanism 268 

since the yap1 mutant is unable to activate the cellular response against oxidative stress and the apn1 269 

mutant is affected in the repair of oxidative DNA damage. On the other hand, the rad4 mutant strain, 270 

which displays an EO resistance similar to the wild type, is fully able to repair oxidative DNA damage 271 

as it is only affected in the NER pathway (De Laat et al., 1999; Kamileri et al., 2012), which is not 272 
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involved in oxidative DNA damage. The cytotoxic effects of some EOs mediated by oxidative stress 273 

or prooxidant mechanisms and/or mitochondria damage have been reported before (Bakkali et al., 274 

2008). 275 

The presence of a significant amount of α-pinene in both EOs, as shown in Table 2, suggests that this 276 

compound might be a major cytotoxic agent since it is known to induce oxidative stress (Singh et al., 277 

2006; Iwamoto et al., 2012; Pinto et al., 2013), with different targets, including the DNA. Therefore, 278 

we decided to investigate if this compound promotes similar effects in the viability of all S. cerevisiae 279 

strains tested. We used equivalent amounts of α-pinene present in the quantities of EOs (based in the 280 

composition data, Table 1) used in the viability tests (Fig. 1). In fact, for the concentrations of α-281 

pinene tested we observed a similar effect in viability (Fig. 2), S. cerevisiae wild type and rad4 mutant 282 

strains being less sensitive than yap1 and apn1 mutants. Therefore, these results corroborate α-pinene 283 

citoxicity and since this compound is the most abundant in the EOs Carz and Cglb (Table 2), it is 284 

likely that it might be also the main cytotoxic agent of these oils.  285 

 286 

2.3.2- The essential oils of C. arizonica var. arizonica and var. glabra increase intracellular 287 

oxidation in yeast cells 288 

Higher sensitivity of the mutant strains affected in oxidative stress response, yap1 and apn1 to Carz 289 

and Cglb EOs strongly suggests an oxidative activity in their cytotoxic effects (Figs. 1 and 2). Hence, 290 

we hypothesized that the EOs would have an intracellular effect in terms of redox state. To investigate 291 

whether the oxidant effect of the EOs is mediated by altered intracellular redox state in yeast, cells 292 

incubated with both oils were analyzed by flow cytometry with a redox-sensitive probe, H2DCFDA, 293 

which is fluorescent in the oxidized form. This lipophilic compound permeates the cells where it is 294 

deacetylated to dichlorofluorescein by intracellular esterases. The deacetylated form is hydrophilic and 295 

becomes trapped inside the cells. 296 

Intracellular fluorescence of cells has shifted in a dose-dependent manner to higher values when cells 297 

were incubated with the EOs (Fig. 3A-H). This suggests that cells undergone intracellular oxidation as 298 

a result of the activity of EOs of both varieties. Once again, Carz EO was more active, displaying 299 

more pronounced shifts of fluorescence towards higher values, which correlates with results of 300 
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viability (Fig. 1), and higher α-pinene content compared to Cglb EO (Table 2). All samples were 301 

monitored under the fluorescence microscope, which confirmed that fluorescence was exclusively 302 

intracellular (Fig. 3I-J). 303 

The oxidative activity of both EOs would be more pronounced in cells with impaired oxidative stress 304 

response pathways. Therefore, we investigated the intracellular oxidation level in the mutants tested 305 

previously using 10
-3

 µl/ml EO, a concentration that did not promote marked effects in loss of viability 306 

(Fig. 1A and 1B) and intracellular oxidation (Fig. 3G and 3H) in wild type cells. As depicted in Fig. 4, 307 

yap1 and apn1 mutant strains displayed increased intracellular oxidation upon treatment with both 308 

EOs (Fig. 4A-4H), while the rad4 mutant was not affected (Fig. 4I-4L). These results are in 309 

accordance with the previous observations on viability, where impairment in the oxidative stress 310 

response (in yap1 and apn1 mutants) rendered strains more sensitive. As above, the intracellular origin 311 

of the fluorescence was confirmed by fluorescence microscopy as depicted in a representative sample 312 

(Fig. 4M-N). 313 

The yap1 mutant affected in the transcription factor Yap1 that regulates transcription of genes of the 314 

oxidative stress response is a clear example of a high sensitive yeast strain when challenged with 315 

oxidative toxicants (Kuge and Jones, 1994). In this work, the higher sensitivity of this strain in the 316 

presence of Carz and Cglb EOs, when compared with the wild type strain (Figs. 1-4), is a strong 317 

indication that these oils are oxidative toxicants. Additionally, the apn1 mutant, affected in the 318 

pathway involved in the repair of DNA oxidative damage, was more susceptible to the EOs (Figs. 1-4) 319 

than the rad4 mutant involved in the removal of bulky, non-oxidative DNA damage, which was as 320 

sensitive as the wild type (Figs. 1 and 4). It is interesting to note that we observed the same behavior 321 

when we used α-pinene instead of EOs, suggesting that this is a major antifungal active compound of 322 

Cupressus EOs (Fig. 2). 323 

 324 

2.3.3- The essential oils of C. arizonica var. arizonica and glabra are genotoxic to yeast cells 325 

One of the cellular targets of oxidative stress is DNA. Therefore it is conceivable that the Carz and 326 

Cglb EOs have a genotoxic effect in yeast cells, as occurred with other EOs (Bakkali et al. 2008). To 327 

assess genotoxicity we analysed the DNA damage provoked by the EOs with the yeast comet assay. 328 
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Yeast spheroplasts were treated with 10
-3

 µl/ml, 5.10
-4

 µl/ml, 10
-4

 µl/ml or 5.10
-5

 µl/ml EO from Carz 329 

and Cglb and the DNA damage was subsequently analyzed. As expected, cells exposed to the EOs of 330 

both varieties displayed increased DNA damage, assessed as a comet tail length, in a dose-dependent 331 

manner (Fig. 5A and 5B). At the higher EO concentration tested, 10
-3

µl/ml, in which yeast viability is 332 

unaffected (Fig. 1), DNA damage was significantly higher than in the negative control. Interestingly, 333 

the EO from Carz was more active (Fig. 5A and 5B), which correlates with the higher cytotoxic 334 

activity of this oil in the parental and mutant strains. These results suggest that the oxidant activity of 335 

both EOs target the genome of yeast cells, the EO from Carz being more active than the one from 336 

Cglb. 337 

Oxidative stress-mediated genotoxicity similar to Carz and Cglb EOs was previously reported for EOs 338 

from Piper gaudichaudianum (Sperotto et al., 2013), Cymbopogon species (palmarosa, citronella and 339 

lemongrass) and Chrysopogon zizanioides (vetiver) (Sinha et al., 2014). However, the fact that some 340 

of these EOs are also reported as having the opposite effect, especially at low concentrations (Sinha et 341 

al., 2011; Sinha et al., 2014), together with the activities observed at very low concentrations in Carz 342 

and Cglb, suggests that these EOs have considerably high antifungal activity with high potential for 343 

human applications. 344 

 345 

3- Conclusion 346 

 347 

In this work we showed that the EOs from Carz and Cglb have powerful antifungal activity, namely 348 

against several relevant pathogenic yeasts. We provide compelling evidences based on approaches 349 

using the availability of S. cerevisiae mutant strains affected in specific cellular processes in order to 350 

identify putative EO cytotoxic activities. Antifungal activity of C. arizonica EO is mediated by an 351 

oxidative process leading to increased intracellular oxidation and DNA damage. Moreover, α-pinene is 352 

a major compound responsible for the biological effects induced by EO from Carz and Cglb. The high 353 

antifungal activity of these EOs makes them good candidates for antifungal agents against pathogenic 354 

yeasts. 355 

 356 
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Table 1  469 

Yeast strains used in this work. 470 

Strain name Genotype Reference or origin 

Saccharomyces cerevisiae BY4741 MATa; his3Δ 1; leu2Δ 0; met15Δ 0; ura3Δ 0 Brachmann et al., 1998 

Saccharomyces cerevisiae rad4 MATa; his3D1; leu2D0; met15D0; ura3D0; YER162c::kanMX4  Euroscarf, Germany 

Saccharomyces cerevisiae yap1 MATa; his3D1; leu2D0; met15D0; ura3D0; YML007w::kanMX4 Euroscarf, Germany 

Saccharomyces cerevisiae apn1 MATa; his3D1; leu2D0; met15D0; ura3D0; YKL114c::kanMX4 Euroscarf, Germany 

Candida albicans ATCC 18804 Wild type, clinical isolate ATCC, USA  

Candida glabrata 8D Wild type, clinical isolate  Department of Biology, 

University of Minho, 
Portugal 

Candida dubliniensis CIPO 82 Wild type, clinical isolate Correia et al., 2004 

Candida parapsilosis 28 B Wild type, clinical isolate Correia et al., 2004  

Candida tropicalis IGC 3097 Wild type, clinical isolate Instituto Gulbenkian de 

Ciência, Portugal 

Candida bracarensis NCYC 3133 Wild type, clinical isolate  Correia et al., 2006 

 471 

  472 
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Table 2  473 

Essential oils composition (% w/w) from leaves of C. arizonica var. arizonica and var. glabra 474 

cultivated in Tunisia. Phytochemical analysis was done using gas chromatography/mass spectrometry 475 

(GC-MS) and data are the mean (±SE) of three independent analyses for each variety (%EO values are 476 

significantly different in the same line at: * p< 0.05, ** p< 0.01, and *** p< 0.001). RI: retention index, %EO: 477 

percentage of EO.  478 
 

No 

 

compound 

 

RI 

 

%EO glabra 

 

%EO arizonica 

 

P 

1 tricyclene 925 0,28 ± 0,14 0,2 ± 0,1  

2 α-thujene 930 0,75 ± 0,03 0,91 ± 0,09  

3 α-pinene 939 26,53 ± 0,73 29,76 ± 0,3 * 

4 camphene 954 0,61 ± 0,03 0,59 ± 0    

5 Sabinene 975 1,7 ± 0,1 2,51 ± 0,01 *** 

6 β-pinene 979 0,68 ± 0,05 0,71 ± 0,01  

7 β-myrcene 990 0,85 ± 0,04 0,75 ±   

8 δ-4-carene 1002 0 0,44 ± 0 *** 

9 α-phellandrene 1005 0,32 ± 0,16 0 *** 

10 δ-3-carene 1011 1,02 ± 1,02 1,72 ± 0 *** 

11 α-terpinene 1017 0,83 ±  1,07± * 

12 p-cymene 1024 1,47 ± 0,18 1,56 ± 0  

13 p-cymen-8-ol 1026 0,35 ± 0,03 0,65 ± 0 *** 

14 Limonene 1029 4,12 ± 0,18 4,09 ± 0,01   

15 δ-terpinene 1059 2,06 ± 0  2,86 ± 0,01 *** 

16 α-terpinolene 1088 0,85 ± 0,08 1,03 ± 0,01   

17 Linalool 1096 0,4 ± 0,05 0,72 ± 0 ** 

18 β-fenchol 1121 1,48 ± 0,01 1,38 ± 0  ** 

19 α-campholenal 1125 0,18 ± 0,09 0,38 ± 0 * 

20 (Z)-pinocarveol 1139 0,9 ± 0 0,59 ± 0 *** 

21 p-menthe-2-en-1-ol 1140 0 0,38 ± 0,01 *** 

22 camphor 1146 1,83 ± 0,11 2,68 ± 0,01 *** 

23 camphene hydrate 1149 0,23 ± 0,11 3,82 ± 0,03 *** 

24 Pinocarvone 1164 0 0,98 ± 0,01 *** 

25 Borneol 1169 0 0,53 ± 0 *** 

26 Umbellulone 1171 15,05 ± 0,26 11,86 ± 0,04 *** 

27 terpinen-4-ol 1177 4,08 ± 0,02 5,72 ± 0 *** 

28 myrtenal 1195 0 0,32 ± 0 *** 

29 (E)-carveol 1217 0 0,49 ± 0,01 *** 

30 β-citronellol 1225 0,6 ± 0,01 0,56 ± 0,01   

31 thymol methylether 1235 0,36 ± 0,03 0,42 ± 0 *** 

32 piperitone 1252 0 0,33 ± 0,01 *** 

33 Bornyl acetate 1285 0,54 ± 0,03 0,89 ± 0,01 *** 

34 Thymol 1290 0,49 ± 0,01 0,33 ± 0,02 * 

35 α-terpinyl acetate 1350 0,89 ± 0,01 0 *** 

36 ionole 1377 1,26 ± 0,02 0,83 ± 0,02 *** 

37 β-cubebene 1388 6,71 ± 0,02 0,32 ± 0 *** 



 21 

38 α-cedrene 1411 0,66 ± 0,08 4,12 ± 0,03 *** 

39 Aromadendrene 1441 1,65 ± 0 0,89 ± 0,06 *** 

40 δ-murrolene 1479 0,69 ± 0,02 0,31 ± 0,03 *** 

41 δ-curcumene 1480 0,55 ±  0  

42 germacrene D 1485 0 0,27 ± 0,13 ** 

43 β-sesquiphellandrene 1522 2,01 ± 0 3,11 ± 0,02 *** 

44 delta-cadinene 1524 0 1,04 ± 0,01 *** 

45 Calmanene 1529 4,5 ± 0,07 0,17 ± 0,02 *** 

46 (Z)-Cadina-1,4-diene 1534 0,36 ± 0 0  

47 α-calacorene 1545 0,53 ± 0 0  

48 (E)-nerolidol 1563 0,23 ± 0,11  0  

49 β-caryophylleneepoxide 1583 0 0,32 ± 0,03 *** 

50 Cedrol 1600 1,36 ± 0,08 1,01 ± 0,08 *** 

51 α-cadinol 1654 0,77 ± 0 0,57 ± 0,01 *** 

52 Cadalene 1674 0,4 ± 0,03 0 *** 

53 14-norcadin-5-en-4-one 1697 2,78 ± 0 0,79 ± 0,03 *** 

54 epi-manoyloxide 1987 0,36 ± 0  0,07 ± 0,07 * 

55 labd-(13E)-8,15-diol 2428 0,7 ± 0,03 1,55 ± 0 *** 

Monoterpene hydrocarbons 41,24 47,22 *** 

Oxygenated monoterpenes 27,8 33,03 *** 

Total monoterpenes 69,04 80,25 *** 

 

Sesquiterpene hydrocarbons 

 

19,06 

 

11,23 
 

*** 

Oxygenated sesquiterpenes 1,26 3,52 ** 

Total sesquiterpenes 20,32 14,75 *** 

Oxygenated diterpenes 1,06 1,62  

Total 90,42 96,62 *** 

 479 

  480 
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Table 3 481 

Minimum inhibitory concentrations (µl/ml) of the EOs of C. arizonica var. arizonica and var. glabra 482 

in several pathogenic Candida species and S. cerevisae. 483 

Essential oils Yeast species 
 C.  

albicans 

C. 

bracarensis 

C. 

dubliniensis 

C.  

glabrata 

C. 

parapsilosis 

C. 

tropicalis 

S.  

cerevisae 

C. arizonica 

var. glabra 
5x10

-2 5x10
-2 1x10

-2 5x10
-2 5x10

-2 1x10
-3 1x10

-1 

C. arizonica 

var. arizonica 
5x10

-2 1x10
-2 1x10

-2 1x10
-2 1x10

-2 1x10
-2 1x10

-1 

 484 



 

 

Figure captions 

 

 
Fig. 1. Viability of S. cerevisiae and mutant strains in the presence of the EO of C. arizonica. S. cerevisae wild 

type (A and B) and mutant yeast cells yap1 (C and D), apn1 (E and F) and rad4 (G and H) were incubated with 

the EO, from C. arizonica var. glabra (A, C, E and G) and var. arizonica (B, D, F and H), at different 

concentrations (10
-3

, 10
-2

, 5x10
-2

 or 10
-1

 µl/ml) for 90 min at 30 °C. Aliquots of each suspension were harvested, 

serially diluted and spread on YPDA plates. Colonies were counted after 48 h incubation and viability was 

calculated as percentage of control (absence of EO corresponding to 100% viability). Data are the mean±SD of 

three independent experiments (significantly different in relation to control group at: * p< 0.05, ** p< 0.01, and 

*** p< 0.001). 

 

 
Fig. 2. Viability of S. cerevisiae in the presence of α-pinene. S. cerevisiae wild type strain (A) and mutants yap1 

(B), apn1 (C) and rad4 (D) were incubated with α-pinene at different concentrations (6x10
-5

, 10
-4

, 3x10
-4

 and 

3x10
-3

 µl/ml) for 90 min at 30 °C. Aliquots of each suspension were harvested, serially diluted and spread on 

YPDA plates. Colonies were counted after 48 h incubation at 30 ºC and viability was calculated as percentage, 

taking 0 µl/ml concentration as reference (100% viability). Data are the mean ±SD of three independent 

experiments (significantly different in relation to control group at: * p< 0.05, ** p< 0.01, and *** p< 0.001). 

 

Fig. 3. Intracellular oxidation of S. cerevisiae cells exposed to C. arizonica EO from var. arizonica (A, C, E and 

G) and var. glabra (B, D, F and H). S. cerevisae wild type cells were loaded with H2DCFDA and then exposed 

to EO at different concentrations (10
-2

, 5x10
-3

 and 10
-3

 µl/ml) or the same volume of ethanol (A and B) for 90 

min and analyzed for fluorescence by flow cytometry. Data are from a representative experiment from three 

independent replicas. Representative cell of a sample loaded with H2DCFDA and photographed by fluorescence 

microscopy (Leica DM5000) after treatment with EO (I and J). Zoom 100X (I) and 400X (J).
 

 

Fig. 4. Intracellular oxidation of yap1 (A-D), apn1 (E-H) and rad4 (I-L) yeast mutant strains exposed to C. 

arizonica EO from var. arizonica (A, C, E, G, I and K) and var. glabra (B, D, F, H, J and L). Mutant yeast cells 

were loaded with H2DCFDA and then exposed to 10
-3

 µl/ml EO for 90 min and analyzed for fluorescence by 

flow cytometry. Data are from a representative experiment from three independent replicas. Representative cells 

Figure captions



of a sample loaded with H2DCFDA and photographed by fluorescence microscopy (Leica DM5000) after 

treatment with EO (M and N). Zoom 100X (M) and 400X (N). 

 

Fig. 5. Genotoxicity of C. arizonica EO from var. glabra (A) and var. arizonica (B) in S. cerevisiae cells. S. 

cerevisae wild type spheroplasts were treated with EOs at different concentrations (5x10
-5

, 10
-4

, 5x10
-4

 or 10
-3

 

µl/ml) for 90 min at 30 °C. DNA damage was analyzed with the yeast comet assay (see Materials and Methods). 

Controls included cells treated with the EO diluting solvent (ethanol; C-) or cells treated with 10 mM H2O2 (C+). 

Mean±SD values are from three independent experiments (significantly different in relation to control group at: 

* p< 0.05, ** p< 0.01, and *** p< 0.001). 
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