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ABSTRACT
We study strong normalization in a lambda calculus of proof-terms

with co-control for the intuitionistic sequent calculus. In this se-

quent lambda calculus, themanagement of formulas on the left hand

side of typing judgements is “dual" to the management of formulas

on the right hand side of the typing judgements in Parigot’s lambda-

mu calculus - that is why our system has first-class “co-control".

The characterization of strong normalization is by means of inter-

section types, and is obtained by analyzing the relationship with

another sequent lambda calculus, without co-control, for which a

characterization of strong normalizability has been obtained before.

The comparison of the two formulations of the sequent calculus,

with or without co-control, is of independent interest. Finally, since

it is known how to obtain bidirectional natural deduction systems

isomorphic to these sequent calculi, characterizations are obtained

of the strongly normalizing proof-terms of such natural deduction

systems.
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1 INTRODUCTION
We study strong normalization in the system λµ̃, a lambda calculus

of proof-expressions with co-control for the intuitionistic sequent

calculus [9]. In this sequent lambda calculus, the management of

formulas on the left hand side of typing judgements is “dual” to

the management of formulas on the right hand side of the typing
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judgements in Parigot’s λµ-calculus [17] - that is why our system

has first-class “co-control".

In λµ̃, there is a variant of the µ̃-operator of Curien and Her-

belin’s λµµ̃-calculus [3] which, when appearing in the hole of a

“co-continuation”, may trigger a kind of dual “structural substitu-

tion” (a “co-continuation” is, roughly, a non-value with a hole in

“tail” position, while a continuation is a non-value with a hole in

head position). This is the reduction rule that defines the behavior

of µ̃ and where co-control operation is concentrated. Such a rule

coexists with four other reduction rules which, together, reduce

expressions of λµ̃ to a form corresponding to the cut-free proofs of

LJT [12] - hence, logically, the reduction rules express a combina-

tion of cut-elimination and focalization [15]. It is known [9] that

the typable λµ̃-terms are strongly normalizing.

Since the seminal work of Coppo and Dezani [2], intersection

types became a powerful tool for characterizing strong normaliza-

tion in different frameworks [1, 4, 5]. We employ them to obtain a

characterization of strong normalizability in λµ̃ as typability in a cer-
tain intersection-type assignment system. The system we propose

for λµ̃ is obtained by adapting the system for assigning intersection

types used to characterize the strongly normalizing proof-terms of

λGtz, in previous work by the authors and colleagues [10, 11]. The

λGtz-calculus [7] is another sequent lambda calculus, where the

treatment of the µ̃-operator follows the original and simpler one

found in [3]: the µ̃-operator is a term-substitution former, and its

reduction principle triggers an ordinary term substitution.

The characterization of strong normalizability in λµ̃ is proved,

not by re-running the proof for λGtz, but by “lifting” the charac-

terization in λGtz. This requires a detailed comparison of the two

rewriting systems, which is of independent interest, as it highlights

sensitive choice points in the design of calculi of proof terms for the

sequent calculus, particularly the treatment of proof-term variables

and the related substitution principles.

Finally, since it is known how to obtain bidirectional natural

deduction systems isomorphic to these sequent calculi [7, 9], char-

acterizations are obtained of the strongly normalizing proof-terms

of such natural deduction systems. To the best of our knowledge,

it is the first time that intersection type systems are formulated in

the bidirectional style. As we will see, such combination is quite

revealing.

Overview of the paper. In Section 2 we recall our departure

systems λGtz and its intersection-type system. Next, in Section 3,

we recall system λµ̃ and introduce an intersection-type system for

it, and give the immediate connection at level of typability between

the two type systems. The challenge is the relationship between

the reduction systems of λGtz and λµ̃ and the respective notions
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of strong normalizability. We are led to make several adjustments

to λGtz in Section 4 to establish the required equivalence. For the

adjusted λGtz, one has to recheck that the original type system still

characterizes strong normalizability - this is done in Section 5. Once

this is completed, the characterization for λµ̃ follows easily, and is

proved in the same section. Section 6 recalls the bidirectional natu-

ral deduction system λlet [9] and introduces an intersection-type

system for it which characterizes strong normalizability, profiting

from the isomorphism with λµ̃. Section 7 concludes.

2 BACKGROUND
In this section, we recall the sequent calculus λGtz of [7] and its

characterization of strong normalizability taken from [10, 11].

2.1 The λGtz-calculus
The abstract syntax of λGtz is given by:

Terms t ,u,v ::= x | λx .t | tk
Contexts k ::= x̂ .v |u :: k

where x ranges over a denumerable set of term variables. As usual,

λx . and x̂ . are considered to be binders and the sets of free vari-

ables Fv(t) and Fv(k) are defined accordingly. We work modulo

α-conversion and adopt Barendregt’s convention and assume that

free and bound variables of a term are different.

One way of seeing this system is as a variant of the λ-calculus
where the application constructor has been replaced by the con-

structor tk , which we call a cut. A context k has the general form

u1 :: · · · :: um :: x̂ .v ,

for somem ≥ 0. Here we assume the expression to be bracketed

from the right, with u1 (resp. x̂ .v) at the surface (resp. bottom)

of the expression. If m = 0, then tk is t(x̂ .v) and may be seen

as an explicit substitution; otherwise, tk is an enlarged concept

of function application, with t the function expression, ui ’s the
arguments, and x̂ .v the awaiting substitution. This enlarged concept

of substitution gives the possibility of chaining more than one

argument (whenm > 1), and is “generalized”, in the sense of [13],

because it contains the refereed awaiting substitution.

The reduction rules of λGtz are the following:

(β) (λx .t)(u :: k) → u(x̂ .tk)
(π ) (tk)k ′ → t(k@k ′)
(σ ) t(x̂ .v) → [t/x]v
(µ) x̂ .xk → k, if x < k

where [u/x]t (or [u/x]k) denotes meta-substitution, and k@k ′ is
defined by (u :: k)@k ′ = u :: (k@k ′) and (x̂ .v)@k ′ = x̂ .vk ′.

Rule β generates an explicit substitution, which can be executed

by rules σ . Rule π profits from the fact that contexts can be ap-

pended to simplify the function expression. The βπσ -normal forms

of λGtz are given by:

(βπσ -normal terms) tnf ,unf ,vnf ::= x | λx .tnf
| x(unf :: knf )

(βπσ -normal contexts) knf ::= x̂ .tnf | unf :: knf

As to rule µ, suppose k is a µ-redex. If k occurs in tk , then the

µ-reduction

t(x̂ .xk ′) → tk ′ (1)

is a σ -reduction as well. If k occurs in u :: k , then the µ-reduction
u :: (x̂ .xk ′) → u :: k ′ removes an unnecessary break in the chain

of arguments.

The system λGtz comes with a type system for assigning sim-

ple types [7]. Logically, this type system is a sequent calculus for

intuitionistic implicational logic, and the expressions are proof-

expressions for this proof system: x corresponds to the axiom, λx .t
and u :: k correspond respectively to right and left introduction

of implication, tk corresponds to cut, and x̂ .v corresponds to the

inference that selects or activates a formula on the antecedent of

the sequent (while deactivation is captured by the cut xk). More-

over, while rule µ corresponds to the elimination of a redundant

sequence of deactivation followed by activation of the same for-

mula, the other reduction rules correspond to cut-elimination rules:

β is the main step, with the cut-formula principal in both premises,

whereas σ (resp. π ) reduces a cut whose cut-formula is not principal

in the right (resp. left) premise.

We do not give more details about this type system, because a

generalization of it for assigning intersection types is recalled next.

2.2 Intersection types
The abstract syntax of intersection types is given by:

A,B ::= p | A → B | A ∩ B

wherep ranges over a denumerable set of type variables. We assume

that intersection types are commutative A ∩ B ≡ B ∩A, associative
(A∩ B) ∩C ≡ A∩ (B ∩C) and idempotent A∩A ≡ A. Furthermore,

we identify A → (B ∩C) ≡ (A → B) ∩ (A → C).
The intersection type system for λGtz is given in Fig. 1. In these

rules, ∩Ai = A1 ∩ · · · ∩ An , for some n ≥ 1. There are two kinds

of sequents (type assignments) Γ ⊢ t : A for typing terms and

Γ;B ⊢ k : A for typing contexts. The sequents Γ ⊢ t : A and

Γ;B ⊢ k : A are derivable (in λGtz) if they are derivable in the

system of Fig. 1. The term t is typable if, for some A, Γ ⊢ t : A is

derivable.

Proposition 2.1 (Generation lemma).

(1) Γ ⊢ x : A iff x : ∩Ai ∈ Γ and A ≡ Ai for some i ∈ {1, . . . ,n}.
(2) Γ ⊢ λx .t : A iff A ≡ B → C and Γ,x : B ⊢ t : C .
(3) Γ;B ⊢ x̂ .t : A iff Γ,x : B ⊢ t : A.
(4) Γ ⊢ tk : A iff there exists B ≡ ∩Bi and Γ;B ⊢ k : A and

Γ ⊢ t : Bi for all i ∈ {1, . . . ,n}.
(5) Γ;B ⊢ t :: k : A iff B ≡ ∩Ci → D and Γ;D ⊢ k : A and

Γ ⊢ t : Ci for all i ∈ {1, . . . ,n}.

Proof. Easy since the system in Fig. 1 is syntax-directed. �

The rest of the section deals with the main properties of this in-

tersection type system for λGtz, proven in [10, 11], that are relevant
for the new results presented in this paper.

Theorem 2.2 (Subject Reduction). If Γ ⊢ t : A and t → t ′,
then Γ ⊢ t ′ : A.

Proposition 2.3 (Typability of normal forms). βπσ -normal
forms of λGtz calculus are typable in the system of Fig. 1.Hence so
are βπσµ-normal forms.
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Figure 1: Intersection types for the λGtz-calculus

∃i ∈ {1, · · · ,n}A = Ai
Γ,x : ∩Ai ⊢ x : A

(Ax)
Γ ⊢ t : Ai , ∀i ∈ {1, · · · ,n} Γ;∩Ai ⊢ k : B

Γ ⊢ tk : B
(Cut)

Γ,x : A ⊢ v : B

Γ;A ⊢ x̂ .v : B
(Sel)

Γ,x : A ⊢ t : B

Γ ⊢ λx .t : A → B
(→R )

Γ ⊢ t : Ai , ∀i ∈ {1, · · · ,n} Γ;B ⊢ k : C

Γ;∩Ai → B ⊢ t :: k : C
(→L)

Figure 2: Typing rules of the λµ̃-calculus

Ax
Γ |A ⊢ [] : A

Cut
Γ ⊢ t : A Γ |A ⊢ k : B

Γ ⊢ tk : B

L ⊃
Γ ⊢ u : A Γ |B ⊢ k : C
Γ |A ⊃ B ⊢ u :: k : C

R ⊃
Γ,x : A ⊢ t : B
Γ ⊢ λx .t : A ⊃ B

Pass
Γ,x : A|A ⊢ k : B
Γ,x : A ⊢ xˆk : B

Act Γ,x : A ⊢ v : B
Γ |A ⊢ µ̃x .v : B

Theorem 2.4 (Characterization of SN in λGtz). A term is
strongly normalising in λGtz if and only if it is typable in the system
given in Fig. 1.

3 THE CALCULUS WITH CO-CONTROL
In this section, we first recall the system λµ̃ from [9] and then we

propose an intersection type system for it.

3.1 The λµ̃-calculus
The abstract syntax of λµ̃ is given by the following grammar:

(Terms) t ,u,v ::= λx .t | xˆk | tk
(Generalized vectors) k ::= [] | µ̃x .v |u :: k

This is a syntax of proof-expressions for the sequent calculus in

Fig. 2, which is a proof system for intuitionistic implicational logic.

The system handles two kinds of sequents: Γ ⊢ t : A and Γ |A ⊢ k : B.
The distinguished formula A in the latter is not exactly a “stoup”

or a focused formula, because the operator µ̃x .t may select an

arbitrary formula from the context Γ. The construction xˆk comes

from Herbelin’s λ-calculus [12], but here it forms a pair with µ̃x .t :
logically, these are an activation/passification pair, in the style of

the λµ-calculus, but acting on the l.h.s. of sequents.

The other reading of the system in Fig. 2 is as a system for

assigning simple types to expressions that come, not from some

anonymous syntax, but rather from an interesting variant of λ-

calculus: λµ̃ is a formal, relaxed, vector notation for λ-terms with

first class co-control [9]. Let us see what this means.

In the vector notation λµ̃ one has three possible forms for terms,

namely λx .t , xˆk and tk , while the original, informal, vector no-

tation consists of the forms λx .M , x ®N , and (λx .M)N ®N . The third

form of the former notation is more general, and this explains the

qualification “relaxed”. In λµ̃, a variable x is not a term, and the

third form cannot result from substitution of t for x in the second

Figure 3: Reduction rules of λµ̃

(β) (λx .t)(u :: k) → (u(µ̃x .t))k
(µ̃) H[µ̃x .t] → [H/x]t
(ϵ) t[] → t

(π1) (xˆk)k ′ → xˆ(k@k ′)
(π2) (tk)k ′ → t(k@k ′)

form. An immediate question is: what does a variable in λµ̃ stand

for. In addition, λµ̃ has primitive syntax for the vectors themselves:

in their inductive definition one finds the empty vector [] and the

vector constructor u :: k , but also another base case, the co-control

operator µ̃x .v .

The notation µ̃x .t comes from λµµ̃ [3]; but here, contrary to what

happens in λµµ̃, the reduction rule that defines the behavior of µ̃
does not trigger a term-substitution, it triggers a kind of “structural

substitution” as found in the λµ-calculus, whose actual parameter

is a certain context captured in the reduction step.

The notion of context that µ̃ captures is this:

H ::= xˆ[·] | t([·]) | H[u :: [·]] (2)

These expressions are called co-continuations. Informally, a co-

continuation is a context with one of the forms

xˆ(u1 :: · · · :: um :: [·]) or t(u1 :: · · · :: um :: [·]) .

The operator u :: k is “right associative”, so the hole [·] is under a

chain of arguments, but at “tail” position, while in a continuation

[·]N1 · · ·Nm of the λ-calculus or λµ-calculus the hole is in “head”

position. The co-control rule µ̃ triggers co-continuation substitution
[H/x]_, in whose definition the only non-routine case is:

[H/x](xˆk) = H[k ′] with k ′ = [H/x]k . (3)

This equation says that variables in λµ̃ stand for co-continuations,

and that the context k in xˆk will be filled in the hole of H , if H

happens to be substituted for x .

The reduction rules of λµ̃ are in Fig. 3. Let π := π1 ∪ π2. The πi -
rules employ concatenation of generalized vectors k@k ′, defined
by the obvious equations []@k ′ = k ′ and (u :: k)@k ′ = u :: (k@k ′),
together with (µ̃x .t)@k ′ = µ̃x .tk ′. Rule µ̃ can be partitioned into

three cases:

(ρ) yˆ(µ̃x .t) → [yˆ[·]/x]t
(σ ) u(µ̃x .t) → [u([·])/x]t
(τ ) H[u :: µ̃x .t] → [H[u :: [·]]/x]t
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Rule µ̃ eliminates all occurrences of the µ̃-operator. The remain-

ing rules eliminate all occurrences of cuts tk . So the βµ̃ϵπ -normal

forms correspond to a well-known representation of β-normal λ-

terms, namely cut-free λ-terms [12]. Hence, the reduction rules of

λµ̃ not only perform cut-elimination, but also focalization [15], as

the normal forms live in the focused fragment LJT .
Here are some computational intuitions about the reduction

rules. The πϵ-normal forms are the terms with the forms λx .t ,
xˆk and (λx .t)(u :: k): these are in correspondence with the three

forms of the informal vector notation for λ-terms - so the men-

tioned rules eliminate the “relaxed” aspect of the vector notation.

We are disregarding for a moment that the vectors k may start

from an occurrence of the co-control operator. Rule µ̃ eliminates

such possibility, so the µ̃πϵ-normal are a formal vector notation in

perfect correspondence with the informal one: we may see such

formal notation as living inside λ-calculus: in fact they constitute

the fragment of λ proved isomorphic to the ordinary λ-calculus in
[6]. Finally, βµ̃πϵ-normal forms are a formal vector notation for

the β-normal λ-terms, only allowing the forms λx .t and xˆk .

Even if we start from a µ̃πϵ-normal form, reduction in λµ̃ is far

from being confined to proceed as in the ordinary λ-calculus. For
instance, reduction is “agnostic” [9] to the call-by-value vs call-by-

name dilemma [3]: if we start from (λx .t)(u :: k) andu is another cut

t ′k ′, then a β-step produces (u(µ̃x .t))k and now we may proceed

with a σ -step, executing the explicit substitution u(µ̃x .t) (the call-
by-name option), or perform a series of π -steps (the call-by-value
option), to obtain t ′(k ′@(µ̃x .tk)), where the function expression t ′

of cut u is now the function expression of the whole expression.

To finish this subsection, we stress the parallel between the

µ-operator of λµ and the µ̃-operator of λµ̃. In λµ there are three

reduction rules for the µ-operator: the main rule, which reduces

λµ-terms of the form C[(µa.M)N ], with C = [·]N1 · · ·Nm ; the re-

naming rule; and the η-rule, which reads µa.[a]M → M , if a < M .

• The redex for themain rule of λµ is (µa.M)N filled in the hole

of continuation C, while the particular case τ of reduction

rule µ̃ has redexes consisting of u :: (µ̃x .t) filled in the hole

of a co-continuationH .

• The particular case ρ of reduction rules µ̃ is a renaming rule

because the particular case [yˆ[·]/x]t of context substitu-
tion is very much like a substitution operation that renames

variables, since the critical case of its definition reads

[yˆ[·]/x](xˆk) = yˆk ′ with k ′ = [yˆ[·]/x]k .

• From reduction rule µ̃ we derive the η-rule for µ̃, i.e.

H[µ̃x .xˆk] → H[k] (4)

with x < k .1 In fact, if H has the first (resp. second, third)

form in the inductive definition (2), then (4) corresponds to

a particular case of rule ρ (resp. σ , τ ).

Further computational intuitions about λµ̃ are obtained from

formal comparisons with other calculi, particularly from the iso-

morphism with a specific natural deduction system, obtained in [9]

and recalled later in Section 6.

1
This is in the same spirit of λGtz’s rule named µ !

Figure 4: Maps between λµ̃ and λGtz

(·)∗ : λµ̃ → λGtz

(xˆk)∗ = xk∗

(µ̃x .v)∗ = x̂ .v∗

[]∗ = x̂ .x

(·)+ : λGtz → λµ̃

x+ = xˆ[]

(tk)+ =

{
t+k+ if t is not a var.
xˆk+ if t = x

(x̂ .v)+ =

{
µ̃x .v+ if v , x
[] if v = x

3.2 Intersection types for the λµ̃-calculus
The intersection type assignment system we propose for λµ̃ is “de-

rived” from that of λGtz given before in Fig 1, having in mind how

to map λµ̃ into λGtz. Such a map, together with a map in the oppo-

site direction, is given in Fig. 4, where only the non-homomorphic

clauses are shown. Actually, map (·)∗ injects λµ̃ into λGtz:

Lemma 3.1. For all t ∈ λµ̃, (t∗)+ = t .

Proof. Proved together with (k∗)+ =∗ k , fork ∈ λµ̃. The proof is
a simultaneous induction on t andk , and the only piece of reasoning
needed is that v∗ is never a variable - hence ((tk)∗)+ = (t∗)+(k∗)+

and ((µ̃x .v)∗)+ = µ̃x .(v∗)+. �

The intersection type assignment system we propose for λµ̃ is

given in Fig. 5. Again, in these rules, ∩Ai = A1 ∩ · · · ∩An , for some

n ≥ 1. As with the typing system for λGtz, this is a syntax-directed
typing system, which ensures the usual generation lemmas.

Let t ∈ λµ̃. We say Γ ⊢ t : A is derivable (in λµ̃) if this sequent is
derivable in the system of Fig. 5. We say t is typable if, for some A,
Γ ⊢ t : A is derivable.

Example 3.2. In λ-calculus the term λx .xx , which is a normal

form, is not typable by simple types since self-application is not

typable with simple types, in turn it is typable by intersection types

⊢ λx .xx : ((A → B) ∩A) → B. The λGtz-term u2 := λx .x(x :: ŷ.y),
also a normal form in λGtz, is not typable by simple types, however

it is typable with the same intersection type, as is easily seen. The

same is true of the λµ̃-term t := λx .xˆ(xˆ[] :: []):

(Ax )
x : (A → B) ∩ A |A ⊢ [] : A

(Pass)
x : (A → B) ∩ A ⊢ x ˆ[] : A

(Ax )
x : (A → B) ∩ A |B ⊢ [] : B

(→ L)
x : (A → B) ∩ A |A → B ⊢ (x ˆ[] :: []) : B

(Pass)
x : (A → B) ∩ A ⊢ x ˆ(x ˆ[] :: []) : B

(→ R)
⊢ λx .x ˆ(x ˆ[] :: []) : ((A → B) ∩ A) → B

Notice t∗ = λx .x((x(ŷ.y)) :: ŷ.y) =: u1 and u1 →σ u2 and (u1)
+ =

(u2)
+ = t . We will see this is a rare case where (·)+ collapses
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Figure 5: Intersection types for the λµ̃-calculus

∃i ∈ {1, · · · ,n}A = Ai
Γ | ∩Ai ⊢ [] : A

(Ax)
Γ ⊢ t : Ai , ∀i ∈ {1, · · · ,n} Γ | ∩Ai ⊢ k : B

Γ ⊢ tk : B
(Cut)

Γ,x : A ⊢ t : B

Γ ⊢ λx .t : A → B
(→R )

Γ ⊢ t : Ai , ∀i ∈ {1, · · · ,n} Γ |B ⊢ k : C

Γ | ∩Ai → B ⊢ t :: k : C
(→L)

Γ,x : ∩Ai | ∩Aj ⊢ k : B ∀j ∃i ∈ {1, · · · ,n}, Aj = Ai

Γ,x : ∩Ai ⊢ xˆk : B
(Pass)

Γ,x : A ⊢ v : B

Γ |A ⊢ µ̃x .v : B
(Act)

reduction steps. Moreover, F (u1) = F (u2) = λx .xx , where F is a

map to λ-calculus to be studied below.

Proposition 3.3 (Generation lemma).

(1) Γ |B ⊢ [] : A iff B ≡ ∩Ai and A ≡ Ai for some i ∈ {1, . . . ,n}.
(2) Γ ⊢ λx .t : A iff A ≡ B → C and Γ,x : B ⊢ t : C .
(3) Γ ⊢ tk : A iff there exists B ≡ ∩Bi and Γ;B ⊢ k : A and

Γ ⊢ t : Bi for all i ∈ {1, . . . ,n}.
(4) Γ,x : B ⊢ xˆk : A iff B ≡ ∩Ci and Γ,x : B | ∩Cj ⊢ k : A, where

for each j there is i ∈ {1, . . . ,n} s.t. Cj ≡ Ci .
(5) Γ |B ⊢ t :: k : A iff B ≡ ∩Ci → D and Γ |D ⊢ k : A and

Γ ⊢ t : Bi for all i ∈ {1, . . . ,n}.
(6) Γ |B ⊢ µ̃x .t : A iff Γ,x : B ⊢ t : A.

Proof. Easy since the system in Fig. 5 is syntax-directed. �

In designing the typing system for λµ̃, the only interesting rules

are those for typing xˆk and []: we obtained them by inverting a

typing derivation of xk and x̂ .x in λGtz. This ensured the “only if”

direction in the following result:

Theorem 3.4. Let t ∈ λµ̃. t is typable iff t∗ is typable.

Proof. The “only if” statement follows from this fact: (i) if Γ ⊢

t : A is derivable in λµ̃ then Γ ⊢ t∗ : A is derivable in λGtz, and (ii) if
Γ |A ⊢ k : B is derivable in λµ̃ then Γ;A ⊢ k∗ : B is derivable in λGtz.
The proof is a simultaneous induction on t and k . The generation

lemma of λµ̃ (Prop. 3.3) is used to analyze the given derivations

of Γ ⊢ t : A or Γ |A ⊢ k : B. As said, the two interesting cases are

t = xˆk and k = [].

Case t = xˆk . Suppose Γ,x : ∩Ai ⊢ xˆk : B in λµ̃. Then in

λµ̃, Γ,x : ∩Ai | ∩ Aj ⊢ k : B, where each Aj is an Ai - and this

allows us to derive in λGtz, by rule Ax , Γ,x : ∩Ai ⊢ x : Aj for

each j . The IH gives Γ,x : ∩Ai | ∩ Aj ⊢ k
∗
: B in λGtz. We obtain

Γ,x : ∩Ai ⊢ xk
∗
: B in λGtz, as required, by one application of Cut .

Case k = []. Suppose Γ | ∩ Ai ⊢ [] : A in λµ̃ with A = Ai for
some i ∈ {1, · · · ,n}. We want Γ | ∩Ai ⊢ x̂ .x : A in λGtz, and this is

obtained by an application of Ax followed by an application of Sel .
The “if” statement follows from two facts. The first is Lemma 3.1.

The second is: if Γ ⊢ t : A is derivable in λGtz then Γ ⊢ t+ : A
is derivable in λµ̃, and (ii) if Γ |A ⊢ k : B is derivable in λGtz
then Γ;A ⊢ k+ : B is derivable in λµ̃. The proof is a simultaneous

induction using the generation lemma of λGtz (Prop. 2.1). �

4 λGTZ REVISITED
We have analyzed the relationship between λµ̃ and λGtz w.r.t. typ-
ing. Now we want to do the same w.r.t. reduction. It turns out

that, in order to get satisfactory results, one needs to make several

adjustments in the reduction rules of λGtz, namely:

(1) Change the definition of the rule β .
(2) Refine the definition of k@k ′, which causes an indirect

change in the definition of rule π .
(3) Add a new reduction rule named τ .
(4) Define rule µ as a relation on terms.

We call λGtz′ the variant of λGtzwith these modifications; we refer

to the definitions of λGtz as the original or native ones, while we
call the definitions of λGtz′ the revised ones. Notice the syntax of

expressions is not changed. So the typing system of Fig. 1 is not

changed either, nor are changed the notions of derivable sequent

or typable term. Let us see the four adjustments one by one.

First adjustment. The rule β now reads

(λx .t)(u :: k) → (u(x̂ .t))k .

The contractum reduces by π to u(x̂ .tk), and this is the contractum
of the original definition. In this paper, we prefer not to incorporate

in the definition of β this reduction step, as this is the style of β in

λµ̃.
Second adjustment. The definition of k@k ′ is refined in the

case of k = x̂ .v . If v , x , (x̂ .v)@k ′ is defined (as before) to be

x̂ .vk ′; but now we put (x̂ .x)@k ′ = k ′. So, in this second case, we

are incorporating in the definition the reduction step x̂ .xk ′ →µ k ′.
Third adjustment. For the definition of rule τ , we need the con-

cepts of co-continuation and co-continuation substitution in λGtz.
In the previous papers on λGtz, no such concepts were introduced.

So here we first provide the “native” definitions of co-continuation

H , substitution [H/x]_, and rule τ , thus completing the defini-

tion of λGtz. Afterwards “revised” definitions of substitution and τ
pertaining to λGtz′ will be given.

Informally, a co-continuation in λGtz is a context of the form

t(u1 :: · · · :: um [·])

that is, a cut with a hole in the right end, hidden below a chain of

applications of the operator ::, expecting a k to form a cut. Formally,

these contexts are generated by:

H ::= t([·]) | H[u :: [·]] (5)
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Figure 6: The revised definition of co-continuation substitu-
tion in λGtz′

[H/x]x =

{
t ifH = t([·])
H[x̂ .x] otherwise

[H/x](tk) =

{
([H/x]t)([H/x]k) if t , x
H[[H/x]k] if t = x

With this inductive definition, H[k], denoting the cut resulting

from filling k in the hole ofH , can be defined by recursion onH

as follows:

t([·])[k] = tk
H[u :: [·]][k] = H[u :: k]

A cut t(u1 :: · · ·um :: x̂ .v) can be written asH[k] inm + 1 differ-
ent ways. Pattern-matching a cut with H[k] is a way of extracting

the component k hidden at the right end of the cut.

In λµ̃, variables stand for co-continuations, as seen from equation

(3) in the definition of [H/x]_. In λGtz, variables are, and stand for,
terms; and we only have the ordinary substitution [t/x]_. We could

define a substitution operation in λGtz analogous to [H/x]_ in λµ̃,
with critical clause

[H/x]x = H[x̂ .x] ,

but this would be artificial. This operation can be defined in terms

of ordinary substitution: [H/x]e := [H[ŷ.y]/x]e , for e = v,k . This
is possible becauseH[x̂ .x] is a term.

With this in place, the native rule τ is defined to be:

H[u :: x̂ .v] → [H[u :: ŷ.y]/x]v , if v , x .

The proviso is needed, otherwise redex and contractum would be

the same term in the case v = x .
We now move to the revised concepts. These depend on incor-

porating in the definition of [H/x]_ the following reductions, that

can be observed in λGtz:

[t([·])/x]x = t(x̂ .x) →σ t (6)

[H/x](xk) = (H[x̂ .x])([H/x]k)
→π H[(x̂ .x)@([H/x]k)]
→µ H[[H/x]k]

(7)

The π -reduction in (7) is a particular case of

(H[k])k ′ →π H[k@k ′] , (8)

and this is easily proved by induction onH .

The revised definition of [H/x]v and [H/x]k is by simultaneous

recursion on v and k , where all clauses are homomorphic, except

those given in Fig. 6.

The revised concept of co-continuation substitution generalizes

ordinary substitution:

Lemma 4.1. In λGtz′, [t([·])/x]e = [t/x]e , for e = v,k .

Proof. By simultaneous induction on v and k . �

Given the discussion above (recall (6) and (7)) about the reduction

steps built in the revised concept of co-continuation substitution,

the following is expected.

Lemma 4.2. In λGtz′, [H[u :: ŷ.y]/x]e →∗
π µ [H[u :: [·]]/x]e , for

e = v,k .

Proof. By simultaneous induction on v and k . �

The revised rule τ is defined to be:

H[u :: x̂ .v] → [H[u :: [·]]/x]v , if v , x .

Here of course we employ the revised concept of substitution.

Lemma 4.2 implies that t →τ t ′ in λGtz′ can be decomposed

into a “native” τ -reduction step followed by a πµ-reduction.
Fourth adjustment. Rule µ now reads

H[x̂ .xk] → H[k] . (9)

Notice that the original definition of µ is a relation on contexts,

from which we derive this new one by compatible closure. So we

are adopting now a slightly less general version of the rule.

Comments. In all, we touched all reduction rules of λGtz but
σ , and added the new τ . Actually, once τ is added, rule µ, in the

revised form (9), becomes derivable, very much like what happens

in λµ̃ with the η-rule for µ̃. To see this, consider the two possible

cases of H in grammar (5). If H has the first form, then reduction

(9) is a particular case of σ (recall (1)); else H = H ′[u :: [·]] and

reduction (9) is a particular case of τ :

H[x̂ .xk] = H ′[u :: (x̂ .xk)]
→τ [H/x](xk)
= H[[H/x]k] (by def. in Fig. 6)

= H[k] (since x < k)

The reduction (8) still holds in λGtz′. Conversely, everyπ -reduction
step has this form; indeed, rule π can be given as the union of the

following two rules:

(π1) (H[x̂ .v])k → H[x̂ .vk], v , x
(π0) (H[x̂ .x])k → H[k]

In Lemma 4.2, π can be restricted to π0 (recall calculation (7)).

So t →τ t ′ in λGtz′ can be decomposed into a “native” τ -reduction
step followed by a π0µ-reduction.

We will need a further split:

(π11) (H[x̂ .v])k → H[x̂ .vk], v , x , k , ŷ.y
(π10) (H[x̂ .v])(ŷ.y) → H[x̂ .v(ŷ.y)], v , x

Regarding σ , it is useful to single out these particular cases:

(ϵ1) t(x̂ .x) → t (t not a var.)
(ϵ0) y(x̂ .x) → y

We let ϵ := ϵ0 ∪ ϵ1.
From now on, when we refer to the reduction rules we mean the

revised one, unless we explicitly say we mean otherwise. In partic-

ular, from now on we are interested in the strong normalizability

of λGtz-terms as determined by the new rules.

Comparison of the two rewrite systems. We now study the

simulation properties of (·)∗ and (·)+ which justify the changes

made to λGtz. Let us start with (·)∗. The first thing to do is to

extend this map to co-continuations:

(xˆ[·])∗ = x([·])
(t([·]))∗ = t∗([·])

(H[u : [·]])∗ = H∗[u∗ :: [·]]
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From this definition it follows easily, by induction onH , that

(H[k])∗ = H∗[k∗] . (10)

Lemma 4.3. For all t ,v,k1,k2,H ∈ λµ̃:

(1) (k1@k2)
∗ = k∗

1
@k∗

2
.

(2) [H∗/x]v∗ = ([H/x]v)∗.

Proposition 4.4 (Simulation). Let t1, t2 ∈ λµ̃.

(1) If t1 →β t2, then t∗
1
→β t∗

2
.

(2) If t1 →µ̃ t2, then t∗
1
→στ t∗

2
.

(3) If t1 →π t2, then t∗
1
→π t∗

2
.

(4) If t1 →ϵ t2, then t∗
1
→ϵ1 t

∗
2
.

Proof. The proof consists of 4 proofs by induction on t1 →R t2,
for R = β , µ̃,π , ϵ . However, we show all the base cases first, and

then argue the inductive cases uniformly.

Cases β and ϵ . Straightforward.
Case π . Easy, using the first item of Lemma 4.3.

Case µ̃: t1 = H[µ̃x .v] → [H/x]v = t2. We have three sub-cases.

First subcase: H = t([·]). Then

t∗
1

= t∗(x̂ .v∗) (by defs.)

→σ [t∗/x]v∗

= [t∗([·])/x]v∗ (by Lemma 4.1)

= [(t([·]))∗/x]v∗

= ([t([·])/x]v)∗ (by Lemma 4.3)

= t∗
2

Second subcase:H = xˆ([·]). Analogous to the previous subcase.

Third subcase:H = H0[u :: [·]]. Then

t∗
1

= H∗
0
[u∗ :: x̂ .v∗] (by defs. and (10))

→τ [H∗
0
[u∗ :: [·]]/x]v∗ (v∗ is never a var.)

= [H∗/x]v∗ (by def. ofH∗
)

= ([H/x]v)∗ (by Lemma 4.3)

= t∗
2

�

Proposition 4.4 fully confirms the idea that (·)∗ injects λµ̃ into

λGtz′: each reduction step in the source is simulated by a reduc-

tion step in the target. There is even a reasonable correspondence

between reduction rules.

Next we study simulation in the opposite direction, and things

will not be as smooth. Again, the first thing to do is to extend map

(·)+ to co-continuations:

(x([·]))+ = xˆ([·])
(t([·]))+ = t+([·]) t not a var.

(H[u : [·]])+ = H+[u+ :: [·]]

From this definition it follows easily, by induction onH , that

(H[k])+ = H+[k+] . (11)

In the next result we employ notation→=R to denote the reflexive

closure of →R .

Lemma 4.5. For all v,k1,k2,H ∈ λGtz′:

(1) k+
1
@k+

2
→=π1 (k1@k2)

+.
(2) [H+/x]v+ →∗

ϵ ([H/x]v)+.

In the following result, we opted to include an item for µ, because
its direct prove gives a result slightly more precise than the one

that is obtained by the fact that µ ⊂ σ ∪ τ .

Proposition 4.6 (Simulation). Let t1, t2 ∈ λGtz′.

(1) If t1 →β t2, then t+
1
→+β µ̃π t+

2
.

(2) If t1 →π t2, then t+
1
→+π t+

2
.

(3) If t1 →µ t2, then t+
1
→µ̃ t+

2
.

(4) If t1 →τ t2, then t+
1
→+µ̃ϵ t+

2
.

(5) If t1 →σ t2, then:
(a) t+

1
= t+

2
, if t1 →ϵ0 t2;

(b) t+
1
→ϵ t+

2
, if t1 →ϵ1 t2;

(c) t+
1
→+µ̃ϵ t+

2
, otherwise.

Proof. The proof consists of 5 proofs by induction on t1 →R t2,
for R = β ,π , µ,τ ,σ . We show the base cases.

Case β : t1 = (λx .t)(u :: k) → (u(x̂ .t))k = t2. Then

t+
1
= (λx .t+)(u+ :: k+) →β (u+(µ̃x .t+))k+ =: v .

Now there are 4 subcases:

• u not a variable and t , x . Then v = t+
2
.

• u not a variable and t = x . Then

v = (u+(µ̃x .xˆ[]))k+ →µ̃ (u+[])k+ = t+
2
.

• u = y and t , x . Then

v = ((yˆ[])(µ̃x .t+))k+ →π (yˆ(µ̃x .t+))k+ = t+
2
.

• u = y and t = x .

v = ((yˆ[])(µ̃x .xˆ[]))k+ →π (yˆ(µ̃x .xˆ[]))k+ →µ̃ (yˆ[])k+ = t+
2
.

Case τ . t1 = H[u :: x̂ .v] → [H[u :: [·]]/x]v = t2, if v , x . Let
H0 = H[u :: [·]].

t+
1

= H+[u+ :: (µ̃x .v+)] (by def. and (11) and v , x )
= H+

0
[µ̃x .v+] (by def.)

→µ̃ [H+
0
/x]v+

→∗
ϵ ([H0/x]v)

+
(by item 2 of Lemma 4.5)

= t+
2

Case σ . There are 4 subcases.
Case ϵ0: t1 = y(x̂ .x) → y = t2. Then t+

1
= yˆ[] = t+

2
.

Case ϵ1: t1 = t(x̂ .x) → t = t2, with t not a variable. Then

t+
1
= t+[] →ϵ t+ = t+

2
.

Third subcase: t1 = t(x̂ .v) → [t/x]v = t2, with t not a variable
and v , x .

t+
1

= t+(µ̃x .v+) (by def.)

→µ̃ [t+([·])/x]v+

= [t([·])+/x]v+ (by def.)

→∗
ϵ ([t([·])/x]v)+ (by Lemma 4.5)

= ([t/x]v)+ (by Lemma 4.1)

Fourth subcase: t1 = y(x̂ .v) → [y/x]v = t2, with v , x . Analo-
gous to the previous subcase.

Case π . Easy, using item 1 of Lemma 4.5.
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Case µ: t1 = H[x̂ .xk] → H[k] = t2, if x < k .

t+
1

= H+[µ̃x .xˆk+] (by def. and (11))

→µ̃ [H+/x](xˆk+)
= H+[[H+/x]k+] (by def.)

= H+[k+] (since x < k+)
= t+

2
(by (11))

�

Except for the collapse of ϵ0-reduction steps by (·)+, both Propo-

sitions 4.4 and 4.6 give strict simulations, in the sense that each

reduction step in the source calculus is mapped to at least one re-

duction step in the target calculus. That is why these propositions

are useful to prove the next theorem.

Theorem 4.7. Let t ∈ λµ̃. t is βµ̃ϵπ -SN iff t∗ is βσπµτ -SN in
λGtz′.

Proof. The “if” statement follows immediately from Proposi-

tion 4.4. As to the “only if” statement, suppose t∗ is not βσπµτ -
SN, and let ρ be an infinite reduction sequence staring from t∗.
Since →ϵ0 is obviously terminating, ρ contains infinitely many

R-reduction steps, with R , ϵ0. From Proposition 4.6, we conclude

that (t∗)+ has an infinite reduction sequence, that is, (t∗)+ is not

βµ̃ϵπ -SN. But (t∗)+ = t , by Lemma 3.1. �

5 STRONG NORMALIZATION
This section has 3 subsections. In the first two, we continue the

revisiting of λGtz and prove that the typing system of Fig. 1 also

characterizes strong normalizability in λGtz′, by adjusting the proof
given in [10, 11]. From this we get the characterization of strong

normalizability in λµ̃ in the third subsection.

5.1 Typability implies SN
We define a map F : λGtz′ → λ. More precisely, we define F (t), for
t ∈ λGtz′, and define F ′(N ,k), for k ∈ λGtz′, given a λ-term N , by

simultaneous recursion on t and k , as follows:

F (x) = x
F (λx .t) = λx .F (t)
F (tk) = F ′(F (t),k)

F ′(N ,u :: k) = F ′(NF (u),k)

F ′(N , x̂ .t) =

{
(λx .F (t))N if t , x
N otherwise

The case analysis in the last clause is a novelty relatively to map F
studied before in [10, 11], without which the statement relative to

τ in Prop. 5.2 below does not work.

F is readily extended to co-continuation by:

F (t([·])) = F (t) F (H[u :: [·]]) = F (H)F (u) . (12)

The following is easily proved by induction onH :

F (H[x̂ .t]) =

{
(λx .F (t))F (H) if t , x
F (H) otherwise

(13)

We consider the λ-calculus equipped with β and π , where rule
π is the union of the two following rules:

(π1) (λx .M)NP → (λx .MP)N
(π2) M((λx .P)N ) → (λx .MP)N

Lemma 5.1. LetM,N , ®Q be in λ and t ,u,k,k ′ be in λGtz.

(1) F ′((λx .M)N ®Q,k) →+π (λx .F ′(M ®Q,k))N , provided ®Q is not
empty or k , ŷ.y.

(2) F ([u/x]t) = [F (u)/x]F (t).
(3) (λx .F ′(x ®Q,k))N →β F ′(N ®Q,k), if x < FV (k) ∪ FV ( ®Q).

Proof. There is a similar lemma in [11], but the provisos in item

1 here are new. Let us see the proof of this item. It is by induction

on k . Let n be the length of ®Q .
Fist case: k = ŷ.v , v , y.

F ′((λx .M)N ®Q,k)

= (λy.F (v))((λx .M)N ®Q) (by def.)

→n
π1 (λy.F (v))((λx .M ®Q)N )

→π2 (λx .(λy.F (v))(M ®Q))N

= (λx .F ′(M ®Q,k))N (by def.)

Case k = ŷ.y.

F ′((λx .M)N ®Q,k)

= (λx .M)N ®Q (by def.)

→n
π1 (λx .M ®Q)N

= (λx .F ′(M ®Q,k))N (by def.)

Case k = u :: k0.

F ′((λx .M)N ®Q,k)

= F ′((λx .M)N ®QF (u),k0) (by def.)

→+π (λx .F ′(M ®QF (u),k0))N (by IH)

= (λx .F ′(M ®Q,k))N (by def.)

�

Proposition 5.2. Let t , t ′ ∈ λGtz′.
(1) If t →β t ′, then F (t) = F (t ′).
(2) If t →σ t ′, then:
(a) F (t) = F (t ′), if t →ϵ t ′

(b) F (t) →β F (t ′), otherwise.
(3) If t →π0 t

′, then F (t) = F (t ′).
(4) If t →π1 t

′, then
(a) F (t) = F (t ′), if t →π10 t

′

(b) F (t) →+π F (t ′), otherwise.
(5) If t →µ t ′, then F (t) →β F (t ′)

(6) If t →τ t ′, then F (t) →+β F (t ′).

Proof. Each item is proved by induction on t →R t ′. The base
cases follow easily with the help of Lemma 5.1, except case τ , which
needs a little twist: in fact, item (6) has to be proved after items

(3) and (5). Let us see why. We have seen that t →τ t ′ in λGtz′

can be decomposed into a “native” τ -reduction step followed by a

π0µ-reduction. Using items (3) and (5), it suffices to check a “native”

τ -reduction step t = H[u :: x̂ .v] → [H[u :: ŷ.y]/x]v = t ′, with
v , x .

F (t) = (λx .F (v))(F (H)F (y)) (by (12), (13) and v , x )
→β [F (H)F (u)/x]F (v)

= [F (H[u :: ŷ.y])/x]F (v) (by (12) and (13))

= F (t ′) (item 2. in Lemma 5.1)

�
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Proposition 5.3. Let t ∈ λGtz′. If F (t) is βπ -SN, then t is βσπµτ -
SN.

Proof. Follows from Prop. 5.2 plus termination of R-reduction,
where R = βϵπ0π10. Termination of R-reduction is proved in two

steps. First, π10-reduction is terminating. Let n(t) be a measure

witnessing this fact. Second, a R-reduction step on t decreases

the measure (l(t),m(t),n(t)), where l(t) (resp.m(t)) is the number

of occurrences of λ (resp. x̂ .x) in t , and these tuples are ordered

lexicographically. �

As the typing system for the λ-calculus we take system named

D in [14]. In this system we have the ordinary rules for assigning

simple types, plus the introduction and the two elimination rules

for ∩. We say a λ-term is typable if it is typable in this system.

Proposition 5.4. If t ∈ λGtz′ is typable then F (t) is typable.

Proof. It suffices to prove the soundness of F : (i) if Γ ⊢ t : A
in λGtz′, then Γ ⊢ F (t) : A in D; (ii) if Γ;A ⊢ k : B in λGtz′

and Γ ⊢ N : A in D, then Γ ⊢ F ′(N ,k) : B in D. The proof

is a simultaneous induction on t and k . This is Prop. 16 in [10],

except that now the definition of F has the case separation in the

definition of F ′(N , x̂ .t). So it remains to check the case k = x̂ .x .
From Γ;A ⊢ x̂ .x : B in λGtz′ we get A = ∩Ai and B = Aj for some

j ∈ {1, · · · ,n}. Since F ′(N , x̂ .x) = N , we want Γ ⊢ N : B in D. But

this follows from the given Γ ⊢ N : A by a sequence of applications

of the elimination rules for ∩. �

Now we collect the strong normalization result for λGtz′:

Proposition 5.5. If t ∈ λGtz′ is typable, then t is βσπµτ -SN.

Proof. Suppose t is typable. By Prop. 5.4, F (t) is typable. Hence
F (t) is β-SN (a classical result found in [14, 18]). By the theorem in

[8], F (t) is βπ -SN. By Prop. 5.3, t is βσπµτ -SN. �

5.2 SN implies typability
In order to prove the completeness, i.e., that all strongly normalizing

terms in λµ̃ are typable in the intersection type system given in

Fig. 5, we will first show that this property holds for λGtz′ with
typability defined by the intersection types system in Fig. 1. We

apply the method established in [10] and just stress the differences,

which are very few. First we prove that all normal forms in λGtz′

are typable and then we prove subject expansion at root position.

The βσπ -normal forms of λGtz′ are exactly the same as those

of λGtz (given before in subsection 2.1), because the rule σ is the

same in both systems, and although we changed rules β and π in

λGtz′, the notion of βπ -redex was not changed.

Lemma 5.6 (Typability of normal forms). βσπ -normal forms

of λGtz′ are typable in the system of Fig. 1. Hence so are βσπµτ -
normal forms.

Proof. The βσπ -normal forms of λGtz′ and λGtz are the same,

and typability is defined by the same typing system, so the result

follows by Prop. 2.3. �

Lemma 5.7 (Inverse substitution lemma).

(1) Let Γ ⊢ [t/x]v : A and let t be typable. Then there is a basis
Γ′ and a type B ≡ ∩Bi , such that Γ′,x : ∩Bi ⊢ v : A and
Γ′ ⊢ t : Bi for all i .

(2) Let Γ;C ⊢ [t/x]k : A and let t be typable. Then there is a basis
Γ′ and a type B ≡ ∩Bi , such that Γ′,x : ∩Bi ;C ⊢ k : A and
Γ′ ⊢ t : Bi for all i .

Proof. Along the lines of the proofs in [10] and [11]. �

Lemma 5.8 (Inverse append lemma). If Γ;B ⊢ k@k ′ : A, then
there is a typeC ≡ ∩Ci s.t. Γ;B ⊢ k : Ci , for all i , and Γ;∩Ci ⊢ k ′ : A.

Proof. By induction on the structure of k . We consider the new

case when k ≡ x̂ .x , i.e., (x̂ .x)@k ′ = k ′. Let Γ;B ⊢ k ′ : A. The
following is an axiom Γ,x : B ⊢ x : B, hence Γ;B ⊢ x̂ .x : B.
Therefore the required C ≡ Ci ≡ B and i ∈ {1}. �

Proposition 5.9 (Subject expansion at root position). Let
R = βσπ . If t ∈ λGtz′ and t →R t ′, where t is a contracted redex
and t ′ is typable, then t is typable.

Proof. We check the case of the new β rule. Suppose Γ ⊢ (u(x̂ .t))k :

A and show Γ ⊢ (λx .t)(u :: k) : A. By Generation Lemma (Prop. 2.1.4)

there is a B ≡ ∩Bj such that Γ;∩Bj ⊢ k : A and Γ ⊢ u(x̂ .t) : Bj for all
j . Then again by Generation Lemma (Prop. 2.1.4) there is aC ≡ ∩Ci
such that Γ;∩Ci ⊢ x̂ .t : Bj and Γ ⊢ u : Ci for all i . Further, this
implies, by Generation Lemma (Prop. 2.1.3) that Γ,x : ∩Ci ⊢ t : Bj ,
hence Γ ⊢ λx .t : ∩Ci → Bj , for all j. Then we have

Γ ⊢ λx .t : ∩Ci → Bj , ∀j

Γ ⊢ u : Ci , ∀i Γ;∩Bj ⊢ k : A
(→ L)

Γ;∩Ci → ∩Bj ⊢ u :: k : A
(Cut )

Γ ⊢ (λx .t )(u :: k ) : A

taking into account that ∩Ci → ∩Bj ≡ ∩(∩Ci → Bj ), due to the

assumed equivalence on types.

The rest of the proof is along the lines of the proofs in [10] and

[11] and relies on Lemmas 5.7 and 5.8. �

Proposition 5.10. If t ∈ λGtz′ is βσπµτ -SN, then t is typable.

Proof. As in [10, 11], by induction on the length of the longest

reduction path out of a strongly normalising t ∈ λGtz′, with a

subinduction on the size of t , using Lemma 5.6 and Prop. 5.9. �

Theorem 5.11 (Characterization of SN in λGtz′). Let t ∈

λGtz′. t is βσπµτ -SN iff t is typable.

Proof. By Prop. 5.5 and 5.10. �

5.3 SN in λµ̃.
Everything is in place for the main result of this paper.

Theorem 5.12 (Characterization of SN in λµ̃). Let t ∈ λµ̃. t
is βµ̃πϵ-SN iff t is typable.

Proof.

t is βσπµτ -SN iff t∗ is βσπµτ -SN (by Thm. 4.7)

iff t∗ is typable (by Thm. 5.11)

iff t is typable (by Thm. 3.4)

�
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Figure 7: Typing rules of λlet

Γ,x : A ◃ x : A
Hyp

Γ ◃ H : A Γ,x : A ⊢ P : B

Γ ⊢ letx := H in P : B
Let

Γ,x : A ⊢ M : B

Γ ⊢ λx .M : A ⊃ B
Intro

Γ ◃ H : A ⊃ B Γ ⊢ N : A
Γ ◃ HN : B

Elim

Γ ◃ H : A
Γ ⊢ app(H ) : A

WCoercion
Γ ⊢ M : A

Γ ◃ hd(M) : A
SCoercion

Figure 8: Reduction rules of λlet

(beta) hd(λx .M)N → hd(letx := hd(N ) inM)

(let) letx := H in P → [H/x]P
(triv) app(hd(M)) → M

(head1) hd(app(H )) → H
(head2) K[hd(letx := H in P)] → letx := H inK[hd(P)]

6 NATURAL DEDUCTION
When first introduced in [9], λµ̃ was accompanied by an isomorphic,

bidirectional, natural deduction system, called λlet. In this section,

we recall the latter system and profit from the mentioned isomor-

phism, transferring the characterization of strong normalizability

from λµ̃ to λlet. In [9], the isomorphic natural deduction system

helped to clarify what co-control means, by translating the sequent

calculus syntax to the more familiar format of natural deduction.

λlet is a kind of “computational” λ-calculus (in the sense of Moggi)

agnostic w.r.t call-by-name vs call-by-value [3, 9]. Building a bidi-

rectional intersection-type assignment system for such a calculus

is a novelty.

6.1 The λlet-calculus
The proof-expressions of the calculus are given by:

(Terms) M,N , P ::= λx .M | app(H ) | letx := H in P
(Heads) H ::= x | hd(M) |HN

Notice that variables x and applications HN are not terms.

The fist way of understanding this syntax is as a syntax of proof-

expressions for the bidirectional natural deduction system in Fig. 7.

The system handles two kinds of sequents: Γ ⊢ M : A and Γ ◃H : A.
Four rules are standard, with the appropriate kind of sequent de-

termined by the kind of expression being typed. The remaining

two rules switch the kind of sequent, and are called coercions. How-
ever, despite the superficial impression, the two coercions are quite

different, one being called weak and the other strong. The first

difference is that only the strong coercion breaks the sub-formula

property - see [9] for details.

The reduction rules of λlet are in Fig. 8. We single out two par-

ticular cases of let: ren, when H = x ; and sub, when H = hd(M).

Figure 9: Map Θ : λµ̃ −→ λlet

Θ(λx .t) = λx .Θt
Θ(xˆk) = Θ(x ,k)
Θ(tk) = Θ(hd(Θt),k)

Θ(H , []) = app(H )

Θ(H , µ̃x .t) = letx := H inΘt
Θ(H ,u :: k) = Θ(HΘu,k)

We put t := let\(ren∪ sub). Let head := head1 ∪head2. Notice that
rules beta and head1 are relations on heads.

A second way of understanding the syntax of λlet is as bidi-
rectional “computational” λ-calculus. Rule beta generates a let-

expression, which can be reduced away by the separate rule let.
Notice that let is ready to fire with any H , i.e. any expression the

formal parameter x can stand for (no need to wait for a value to be

computed); in addition, let triggers ordinary substitution [H/x]P .
Rule head2 employs certain contexts that we call continuations,

generated by the grammar:

K ::= app([·]) | letx := [·] in P | K[[·]N ] (14)

So a continuation is a context with one of the forms

app([·]N1 · · ·Nm ) letx := [·]N1 · · ·Nm in P

Rule head2 is a general form of the assoc-rule for let-expressions.

Notice K[hd(app(H ))] → K[H ] is a head1 reduction.
Every closed non-abstraction term P can be written in a unique

way as K[hd(M)] - let us call hd(M) the singled-out head. If thisM
is not an abstraction, P is a head-redex, whose reduction produces

another closed non-abstraction with simpler singled-out head. Oth-

erwise P contains a β-redex, if K has the third form in (14); or P is

a triv-redex (resp. let-redex), if K has the first (resp. second) form

in (14) - and then the abstraction is returned (resp. substituted) by

the reduction of redex P . It follows that rules triv and head1 have
rather different roles, despite looking similar because both erase a

double coercion. See [9] for more on this.

The normal forms w.r.t. all reduction rules are given by:

M ::= λx .M | app(H ) H ::= x |HN

That is, these normal forms are characterized by the absence of

occurrences of lets and hd(_). Lets are eliminated by let whereas
all the other rules concur to eliminate the coercion hd(_).

The isomorphism. See Fig. 9 for the map Θ : λµ̃ −→ λlet.
There is actually a function Θ : λµ̃ −Terms −→ λlet −Terms , to-

gether with an auxiliary functionΘ : λlet−Heads×λµ̃−Vectors −→
λlet − Terms . Let Θ(t) = M , Θ(ui ) = Ni and Θ(v) = P . The idea
is to map, say, t(u1 :: u2 :: µ̃x .v) to letx := hd(M)N1N2 in P , and
xˆ(u1 :: u2 :: []) to app(xN1N2): left-introductions are replaced by

applications, inverting the associativity of non-abstractions.

Recall from [9] that Θ is an isomorphism between λµ̃ and λlet.
More precisely, Θ is a bijection between the set of λµ̃-terms and

the set of λlet-terms (whose inverse Ψ is shown in Fig. 10). Maps Θ
and Ψ are sound, that is, the implications presented as “rules” in

Fig. 11 are true, where the typing relations are those of Figs. 2 and

7. Moreover, Θ is an isomorphism of reduciton relations:
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Figure 10: Map Ψ : λlet −→ λµ̃

Ψ(λx .M) = λx .ΨM
Ψ(app(H )) = Ψ(H , [])

Ψ(letx := H in P) = Ψ(H , µ̃x .ΨP)
Ψ(x ,k) = xˆk

Ψ(hd(M),k) = (ΨM)k
Ψ(HN ,k) = Ψ(H , (ΨN ) :: k)

Figure 11: Soundness of Θ and Ψ

Γ ⊢ t : A
Γ ⊢ Θt : A

Γ ◃ H : A Γ |A ⊢ k : B

Γ ⊢ Θ(H ,k) : B

Γ ⊢ M : A
Γ ⊢ ΨM : A

Γ ◃ H : A Γ |A ⊢ k : B

Γ ⊢ Ψ(H ,k) : B

Theorem 6.1 (Isomorphism of reduction [9]). Let R be rule β
(resp. µ̃, ϵ , π ) of λµ̃, and let R′ be rule beta (resp. let, triv, head) of
λlet. Then, t →R t ′ in λµ̃ iff Θt →R Θt ′ in λlet.

In particular, the co-control rule µ̃ of λµ̃ is isomorphic to the

let-elimination rule let of λlet.

6.2 Characterization of SN
The intersection type system for λlet is given in Fig. 12. The same

definitions and conventions regarding intersection types adopted

for λµ̃ apply here. In these rules, ∩Ai = A1 ∩ · · · ∩ An , for some

n ≥ 1. If we imposed n = 1, we would recover the system of Fig. 7

for assigning simple types.

Notice how the coercion rules are now an elimination rule and

an introduction rule for ∩. But, precisely because they are coercion

rules, they involve a change in the kind of sequent - let us say a

change of directionality.
On the other hand, we might consider an elimination rule and

an introduction rule for ∩ without change of directionality:

Γ ◃ H : ∩Ai ∃i ∈ {1, · · · ,n}A = Ai
Γ ◃ H : A

∩E

Γ ⊢ M : Ai , ∀i ∈ {1, · · · ,n}

Γ ⊢ M : ∩Ai
∩I

If these rules were primitive, we could take rules Hyp and Elim
in the form they have in the system of Fig. 7 for assigning simple

types - let us denote the latter forms as SHyp and SElim just for the

sake of the present discussion. The claim for Elim is quite obvious:

Γ ◃ H : ∩Ai ⊃ B

Γ ⊢ N : Ai , ∀i ∈ {1, · · · ,n}

Γ ⊢ N : ∩Ai
∩I

Γ ◃ HN : B
SElim

As toHyp, suppose the premise of the rule in Fig. 12 holds. Then we

can rearrange∩Ai as B1∩· · ·∩Bm so that∩Ai = ∩Bk and, for some

k ∈ {1, · · · ,m}, ∩Aj = Bk . Then, we can consider the following

derivation, where the “inferences” named Idem just repeat the

sequent.

Γ,x : ∩Ai ◃ x : ∩Ai
SHyp

Γ,x : ∩Bk ◃ x : ∩Bk
Idem

Γ,x : ∩Bk ◃ x : ∩Aj
∩E

Γ,x : ∩Ai ⊢ x : ∩Aj
Idem

In other words, rules ∩E and ∩I are built in the rules Hyp and Elim
of Fig. 12. But, fortunately, ∩E and ∩I are not primitive, as they

would spoil syntax-directedness.

Maps Θ and Ψ are also sound w.r.t. the systems assigning inter-

section types:

Proposition 6.2. The “rules” of Fig. 11 are true, where the typing
relations are those of Figs. 5 and 12.

Proof. The upper (resp. lower) pair of rules is proved by simul-

taneous induction on t and k (resp.M and H ). �

Theorem 6.3 (Characterization of SN in λlet). LetM ∈ λlet.
M is beta, let, triv, head-SN iffM is typable in the system of Fig. 12.

Proof.

M is typable in the system of Fig. 12

iff Ψ(M) is typable in the system of Fig. 5 (Prop. 6.2)

iff Ψ(M) is SN (Thm. 5.12)

iff M is SN (Thm. 6.1)

�

So this result follows from soundness of Θ and Ψ (Prop. 6.2),

isomorphism (Thm. 6.1), and characterization of strong normaliz-

ability in the sequent calculus side (Thm. 5.12). This pattern could

be applied to other systems. One could take from [7] the natural

deduction system isomorphic to λGtz, extend it with intersection

types, and transfer to it, through the isomorphism, the characteriza-

tion of strong normalizability in λGtz of [10, 11]; or introduce the
variant of such natural deduction system which is isomorphic to

λGtz′, extend it with intersection types, and transfer to it, through

the isomorphism, the characterization of strong normalizability in

λGtz′ contained in Thm. 5.11.

7 CONCLUSIONS
We have studied the sequent λ-calculus with co-control λµ̃, intro-
duced in [9], which is a λ-calculus of proof-terms for an intuition-

istic sequent calculus where the management of formulas on the

left hand side of typing judgments is “dual" to the management of

formulas on the right hand side of the typing judgments in Parigot’s

λµ-calculus, known to be a λ-calculus with a control operator. We

have set up and analyzed the relationship between λµ̃ and λGtz,
another calculus for intuitionistic sequent calculus, given in [7].

The complete characterization of strong normalization in λµ̃ is

obtained by means of intersection types, from a similar characteri-

zation known before for λGtz [10, 11]. Further, we have considered
the bidirectional natural deduction systems isomorphic to these

sequent calculi [7, 9], and built for them bidirectional intersection

type systems giving characterizations of the strongly normalizing

proof-terms of these natural deduction systems.

The λµ̃-calculus was introduced as an improvement over the

λ-calculus [12] (as it is not confined to a focused fragment) and
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Figure 12: Intersection types for the λlet-calculus

∀j∃i ∈ {1, · · · ,n}Aj = Ai

Γ,x : ∩Ai ◃ x : ∩Aj
Hyp

Γ ◃ H : A Γ,x : A ⊢ P : B

Γ ⊢ letx := H in P : B
Let

Γ ◃ H : ∩Ai ∃i ∈ {1, · · · ,n}A = Ai
Γ ⊢ app(H ) : A

WCoercion

Γ,x : A ⊢ M : B

Γ ⊢ λx .M : A ⊃ B
Intro

Γ ◃ H : ∩Ai ⊃ B Γ ⊢ N : Ai , ∀i ∈ {1, · · · ,n}

Γ ◃ HN : B
Elim

Γ ⊢ M : Ai , ∀i ∈ {1, · · · ,n}

Γ ◃ hd(M) : ∩Ai
SCoercion

over systems like λGtz, which simplify the task of understanding

sequent calculus by considering proof variables as term variables.

In this way, the present paper completes the papers [10, 11], in

their purpose of showing the applicability of intersection types to

the sequent calculus, because it does the same with an improved

system.

This supposed improvement is analyzed rigorously, because,

as said, the present paper contains a detailed comparison of the

two designs λGtz and λµ̃ of sequent calculus. This comparison is

interesting on its own, as it highlights many choice points in the

design of a sequent lambda-calculus (treatment of proof variables

and related substitution principles, definition of the reduction rules);

in particular, it reveals the alternatives that exist when defining

co-continuation substitution in the setting with proof variables as

terms variables.

On the other hand, relatively to papers [10, 11], the present paper

opens a new path, as it explores the combination of intersection

type systems and bidirectional natural deduction, a combination

that turned out to be illuminating. There is a range of treatments

of ∩ in intersection type systems: in one end we have a system like

D, where ∩ is treated as a connective, with its primitive rules of

introduction and elimination, which destroy syntax-directedness;

in the opposite end we have systems like those studied in this paper,

enjoying syntax-directedness, where the rules for ∩ are built in the

other rules. The bidirectional natural deduction systemwe proposed

has primitive rules for ∩ without losing syntax-directedness: the

point is that those primitive rules are also coercion rules that change

directionality, and hence are witnessed in the proof-term.

Further work is planned to extend the methods presented in this

paper to characterize strong normalization in proof-term calculi

for multi-conclusion sequent intuitionistic calculus proposed by

Maehara [16], which is used to translate intuitionistic reasoning

into classical one. Another line, but still related to multi-conclusion

systems, is to move from λµ̃ to a classical system where the treat-

ment of l.h.s. formulas of λµ̃ and the treatment of r.h.s. formulas of

λµ coexist and are dual to each other. Initial steps in this direction

are in [9].
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