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ON RHAM COHOMOLOGY OF LOCALLY TRIVIAL LIE

GROUPOIDS OVER TRIANGULATED MANIFOLDS

JOSE R. OLIVEIRA

Abstract

Based in the isomorphism between Lie algebroid cohomology and piecewise
smooth cohomology, it is proved that the Rham cohomology of a locally trivial
Lie groupoid G on a smooth manifold M is isomorphic to the piecewise Rham
cohomology of G, in which G and M are manifolds without boundary and M is
smoothly triangulated by a finite simplicial complex K such that, for each simplex
∆ of K, the inverse images of ∆ by the source and target mappings of G are trans-
verses submanifolds in the ambient space G. As a consequence, it is shown that
the piecewise de Rham cohomology of G does not depend on the triangulation of
the base.

1. Introduction

It is well known that the de Rham theorem states that the integration map over
smooth singular chains on a smooth manifold induces an isomorphism between the
de Rham cohomology and the singular cohomology of that manifold (see [16]).

When a manifold is smoothly triangulated by a simplicial complex, differential
form can be defined on the corresponding simplicial space as being a family of
differential forms defined on the simplices of the simplicial complex which agree on
the intersection of two simplices and satisfy a regular property when restricted to
each simplex. A differential can be defined by the corresponding exterior derivative
on each simplex, yielding a cochain algebra. Sullivan in [13] and Whitney in [17]
show the cohomology of that cochain algebra is isomorphic to classic cohomologies
of the space.

The Rham-Sullivan theorem (see Sullivan [13], theorem 7.1) implies that the
restriction map from the cochain algebra of the smooth forms on the manifold to
the cochain algebra of the piecewise smooth forms on the simplicial space induces
an isomorphism in cohomology.

Mishchenko and Oliveira in [11] have extended similar those constructions consid-
ered by Whitney and Sullivan to transitive Lie algebroids defined over triangulated
manifolds in which the regularity property of differential forms is the smoothness.
They proved that the restriction map induces an isomorphism in cohomology (for
details, see [11]).
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Since Lie algebroids are the infinitesimal objects of Lie groupoids, the present
work is an extension of the Mishchenko-Oliveira’s work to Lie groupoids defined
over triangulated manifolds. In order to clarify better the intrinsic nature of this
extension, fix a locally trivial Lie groupoid G on a closed smooth manifold M ,
with G also without boundary, and a triangulation of M such that the inverse
images of each simplex ∆ by the source and target mappings of G are transverses
submanifolds in G. Since G is locally trivial, its Lie algebroid is transitive and the
Lie algebroid of the restriction of G to a simplex coincides with the Lie algebroid
of G restricted to that simplex. Likewise to the notion of piecewise smooth forms
on Lie algebroids defined by Mishchenko-Oliveira in [11], an algebra of invariant
piecewise smooth forms can be defined on G. As shown in [4] or [15], the de Rham
algebra made of all invariant smooth forms on G is isomorphic to the algebra of all
smooth forms of its Lie algebroid. This isomorphism jointly with the isomorphism
given in Mishchenko-Oliveira’s theorem (theorem 5.1 of [11]) will ensure that the
algebra made of all invariant piecewise smooth forms on G is quasi-isomorphic
to the algebra of all piecewise smooth forms of its Lie algebroid. We will use this
quasi-isomorphism and the corollary 5.5 of [11] to show that the piecewise de Rham
cohomology of G does not depend on the triangulation of M .

Acknowledgments. I want to thank to Aleksandr Mishchenko, Jesus Alvarez,
James Stasheff and Nicolae Teleman for their strong dynamism to discuss several
topics concerning this work.

2. Rham cohomology of Lie groupoids

We begin by reviewing briefly basic definitions and constructions concerning Lie
groupoids and Lie algebroids. An extensive discussion on these issues can be found
in the book [6] by Mackenzie. The papers [3], [5], [7], [8], [9], [10] and [12] contain a
detailed exposition and many examples. Various definitions and properties stated
through the entire paper can be found, on level of cell spaces, in [1], [13], [14]
and [17]. Throughout this paper, we shall work on manifolds which are smooth,
finite-dimensional and possibly with boundaries of different indices.

Lie groupoids. Let G and M be two smooth manifolds. The manifold G is called
a Lie groupoid with base M if the following is given: two surjective submersions
α : G −→ M and β : G −→ M , called the source projection and the target
projection respectively, a smooth mapping 1 : M −→ G called the object inclusion
mapping, a smooth multiplication in G ∗G = {(h, g) ∈ G× G : α(h) = β(g)} and
a mapping G −→ G called inverse mapping and denoted by g −→ g−1, satisfying
the identities shown in the definitions 1.1.1 and 1.1.3 of Mackenzie’s book [6].

The smooth mapping

(β, α) : G −→M ×M

g −→ (β(g), α(g))

is called the anchor of the Lie groupoid G with baseM . The Lie groupoid G is said
to be locally trivial if its anchor is a surjective submersion. For each x, z ∈M , the
manifolds Gx = α−1(x) and Gz = β−1(z) are called the α-fibre of G in x and the
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β-fibre of G in z respectively. Analogously, if X and Z are subsets of M , the sets
α−1(X) and β−1(Z) of G are denoted by GX and GZ respectively.

We assume now that G and M are manifolds without boundary. If X and Z

are submanifolds of M , possibly with boundaries of different indices, then the sets
GX and GZ are submanifolds of G. Let N be a submanifold of M , possibly with
boundaries of different indices, such that the manifolds GN and GN are transverses
submanifolds in the ambient space G. By taking the restrictions of the projections
and of the object inclusion mapping, the manifold GN ∩GN is a Lie groupoid with
base N . The Lie groupoid GN ∩ GN will be called the Lie groupoid restriction of
G to N and denoted by G!!

N .

Lie algebroids. Let M be a smooth manifold, TM the tangent bundle to M

and Γ(TM) the Lie algebra of the vector fields on M . A Lie algebroid on M is a
vector bundle π : A −→M with base M equipped with a vector bundle morphism
ρ : A −→ TM , called anchor of A, and a structure of real Lie algebra on the vector
space Γ(A) of the sections of A such that the map ρΓ : Γ(A) −→ Γ(TM), induced
by ρ, is a Lie algebra homomorphism and the action of the algebra C∞(M) on Γ(A)
satisfies the natural condition:

[ξ, fη] = f [ξ, η] + (ρΓ(ξ) · f)η

for each ξ, η ∈ Γ(A) and f ∈ C∞(M). The Lie algebroid A is called transitive if
the anchor γ is surjective.

Let ϕ : N →֒ M be a submanifold, possibly with boundaries of different indices
and assume that A is transitive. We recall that the Lie algebroid restriction of A
to the submanifold N , denoted by A!!

N , is the Lie algebroid ϕ!!A constructed as
inverse image of A by the mapping ϕ (see [6], [7] and [11] for more details).

From Lie groupoids to Lie algebroids. We recall the construction of the Lie
algebroid of a Lie groupoid. Let M be a smooth manifold and G a Lie groupoid on
M with source projection α : G −→M and target projection β : G −→M . Denote
by 1 :M −→ G the object inclusion mapping of G and Gx = α−1(x) the α-fibre of
G in x, for each x ∈M . Denote by A(G) the disjoint union

⊔
x∈M T1xGx equipped

with the structure of vector bundle on M . Consider the map ρ : A(G) −→ TM

defined by ρ(a) = Dβ1x(a). Define a Lie bracket on Γ(A(G)) in the following way:
for each ξ and η ∈ Γ(A(G)), the Lie bracket is defined by

[ξ, η] = [ξ′, η′]G

in which ξ′ and η′ denote the unique α-right-invariant vector fields on G such that
ξ′1x = ξx and η′1x = ηx, ∀x ∈ M (see Kubarski [4]). Then, (A(G), [·, ·], ρ) is a Lie
algebroid on M and is called the Lie algebroid of the Lie groupoid G.

Lie groupoids and Lie algebroids enjoy some of the properties of Lie groups and
Lie algebras. We notice that not every Lie algebroid is integrable to a Lie groupoid.
The theorem 4.1 of the paper [2] shows necessary and sufficient conditions so that
a Lie algebroid is integrable to a Lie groupoid.

The proposition 3.5.18 of [6] sates that, if the Lie groupoid G is locally trivial,
the Lie algebroid A(G) is transitive.

Next proposition relates the restriction of a locally trivial Lie groupoid with the
restriction of its Lie algebroid.
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Proposition 2.1. Let G be a locally trivial Lie groupoid on a smooth manifold

M , in which G and M are manifolds without boundary, and A(G) denote the Lie

algebroid of G. Let N be a submanifold of M such that GN and GN are transverses

submanifolds in the ambient space G. Then, the Lie algebroid of G!!
N is the Lie

algebroid A!!
N .

Smooth forms on Lie groupoids. Let G be a Lie groupoid on a smooth manifold
M with source projection α : G −→ M , target projection β : G −→ M and object
inclusion mapping 1 : M −→ G. Since α is a surjective submersion, it induces a
foliation F on G. Let TF denote the tangent bundle of F and RM = M × R the
trivial vector bundle on M of fibre R.

Definition 2.2. A smooth α-form of degree p on the Lie groupoid G is a smooth
section of the exterior vector bundle

∧p
(T ∗F ;RM ).

Therefore, a smooth form on G is a family ω = (ωg)g∈G such that, for each
g ∈ G, one has

ωg ∈

p∧( ⊔

g∈G

T ∗
gGα(g);R

)

The set Ω∗
α(G;M) of all smooth α-forms on G is a commutative graded algebra.

The usual exterior derivative along the α-fibres is defined by

(dpαω)(X1, X2, · · ·, Xp+1) =

p+1∑

j=1

(−1)j+1Xj · (ω(X1, · · ·, X̂j , · · ·, Xp+1)) +

+
∑

i<k

(−1)i+kω([Xi, Xk], X1, · · ·, X̂i, · · ·, X̂k, · · ·, Xp+1)

in which ω ∈ Ωp
α(G;M) and X1, X2, · · ·, Xp+1 are smooth vector α-fields on G.

The complex Ω∗
α(G;M) is a cochain algebra defined over R.

We are going now to consider invariant forms. For each g ∈ G, the right trans-
lation Rg corresponding to g is the mapping Rg : Gβ(g) −→ Gα(g) defined by
Rg(h) = hg. A smooth form ω ∈ Ω∗

α(G;M) is called right invariant or simply
invariant if the equality

(Rg)
∗((ια(g))

∗ω) = (ιβ(g))
∗ω

holds for each g ∈ G, in which ιx : Gx →֒ G denotes the inclusion mapping for
each x ∈ M (see the third section of [4] in which the representation is the trivial
representation on the trivial bundle M × R). The set Ω∗

α,R(G;M), consisting of
all α-forms on G which are invariant under all groupoid right translations, is a
subcomplex of (Ω∗

α(G;M), d∗α) and hence it is a cochain algebra.

Definition 2.3. Keeping the same hypotheses and notations as above, the Rham
cohomology of G is the cohomology vector space of the cochain algebra Ω∗

α,R(G;M).

This cohomology vector space is denoted by H∗
α,R(G;M).

Smooth forms on Lie algebroids. We shall recall briefly the notion of smooth
forms on Lie algebroids and its cohomology. Let M be a smooth manifold and A a
Lie algebroid on M . A smooth form on A is a section of

∧∗ (
A∗;M ×R

)
. The set
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Ω∗(A;M) of all smooth forms on A is a commutative cochain algebra defined over
R, in which the differential is given by

dp : Ωp(A;M) −→ Ωp+1(A;M)

dpω(X1, X2, · · ·, Xp+1) =

p+1∑

j=1

(−1)j+1(γ ◦Xj) · (ω(X1, · · ·, X̂j, · · ·, Xp+1)) +

+
∑

i<k

(−1)i+kω([Xi, Xk], X1, · · ·, X̂i, · · ·, X̂k, · · ·, Xp+1)

for ω ∈ Ωp(A;M) and X1, X2, · · ·, Xp+1 ∈ Γ(A).
The Lie algebroid cohomology of A is the cohomology vector space of the cochain

algebra Ω∗(A;M). This cohomology vector space is denoted by H∗(A;M).
We notice that the proposition 7 of the paper [4], combined with the subsequent

paragraphs, states that the mapping

Ψ : Ω∗
α,R(G;M) −→ Ω∗(A;M)

Ψ(ω)x = ω1x

is an isomorphism of cochain algebras (cf. the paragraph preceding the theorem
1.2 of [15]). In addition, we have

H∗
α,R(G;M) ∼= H∗(A;M)

(cf. theorem 1.2 of [15]).

3. Piecewise de Rham cohomology of Lie groupoids

We begin by recalling Mishchenko-Oliveira’s theorem (see [11], theorem 5.1). Let
M be a compact smooth manifold, smoothly triangulated by a simplicial complex
K, and A a transitive Lie algebroid on K. A piecewise smooth form on A is a
family (ω∆)∆∈K of smooth forms, each form ω∆ defined on A!!

∆, such that, if ∆
and ∆′ are simplices of K, with ∆′ face of ∆,

(ω∆)/∆′ = ω∆′

Let Ω∗(A;M) and Ω∗(A;K) denote respectively the cochain algebras of smooth
forms and piecewise smooth forms on A. Consider the restriction mapping

Ω∗(A;M) −→ Ω∗(A;K)

ω −→ (ω/∆)∆∈K

Mishchenko-Oliveira’s theorem states that this mapping induces an isomorphism in
cohomology.

We introduce now the notion of piecewise de Rham cohomology of Lie groupoids.
LetG be a locally trivial Lie groupoid with baseM such thatG andM are manifolds
without boundary and M is smoothly triangulated by a simplicial complex K. Let
α : G −→ M , β : G −→ M and 1 : M −→ G denote respectively the source
projection, the target projection and the object inclusion mapping. Suppose that,
for each simplex ∆ of K, the manifolds G∆ and G∆ are transverses submanifolds
in the ambient space G. Analogous to piecewise smooth forms on Lie algebroids,
we give now the notion of invariant piecewise form on G.
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Definition 3.1. An invariant piecewise α-form of degree p on G is a family
ω = (ω∆)∆∈K such that, for each simplex ∆ ∈ K, ω∆ ∈ Ωp

α,R(G
!!
∆; ∆) is an invariant

α-form of degree p on G!!
∆ and, if ∆ and ∆′ are two simplices of K in which ∆′ ≺ ∆,

the equality (ω∆)/∆′ = ω∆′ holds.

The C∞(G)-module of all invariant piecewise α-forms of degree p on G is denoted
by Ωp

α,R(G;K). A wedge product and an exterior derivative can be defined on the
module

Ω∗
α,R(G;K) =

⊕

p≥0

Ωp
α,R(G;K)

by the corresponding operations on each algebra Ω∗
α,R(G

!!
∆; ∆), giving to Ω∗

α,R(G;K)
a structure of cochain algebra defined over R.

Definition 3.2. The piecewise de Rham cohomology of the Lie groupoid G,
denoted by H∗

α,R(G;K), is the cohomology of the cochain algebra Ω∗
α,R(G;K).

Our aim is to relate the Rham cohomology H∗
α,R(G;M) of G to the piecewise

de Rham cohomology H∗
α,R(G;K) of G. For that, we have to consider a mapping

φ from the complex Ω∗
α,R(G;K) to the complex Ω∗(A(G);K). In order to obtain

such mapping φ, we recall that, for each simplex ∆ of K, we have an isomorphism

ψ∆ : Ωp
α,R(G

!!
∆; ∆) −→ Ωp(A(G!!

∆);∆)

given by (ψ∆(ω))x = ω1x . Consider now an invariant piecewise α-form

ω = (ω∆)∆∈K ∈ Ωp
α,R(G;K)

For each simplex ∆ ∈ K, take the smooth form ξ∆ = ψ∆(ω∆) ∈ Ωp(A(G!!
∆);∆).

If ∆′ is a simplex of K such that ∆′ is a face of ∆, then (ξ∆)/∆′ = ξ∆′ and so
ξ = (ξ∆)∆∈K is a piecewise smooth form on A(G). Keeping these hypotheses and
notations, we state our next proposition.

Proposition 3.3. The mapping Φ : Ω∗
α,R(G;K) −→ Ω∗(A(G);K) defined by

Φ((ω∆)∆∈K) = (ψ∆(ω∆))∆∈K

is well defined and is an isomorphism of cochain algebras.

We can state now the main proposition of this paper. Denote by rG the restric-
tion mapping

rG : Ω∗
α,R(G;M) −→ Ω∗

α,R(G;K)

rG(ω) = (ω/∆)∆∈K

and assume that M is compact. Our proposition is the following.

Proposition 3.4. The mapping rG induces an isomorphism in cohomology.

Proof. The diagram

Ω∗
α,R(G;M)

rG

��

iso
// Ω∗(A;M)

rA

��

Ω∗
α,R(G;K)

iso
// Ω∗(A;K)
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is commutative, where rA is the restriction map given at the Mishchenko-Oliveira’s
theorem (see theorem 5.1 of [11]). We apply the Mishchenko-Oliveira theorem 5.1
of [11] in cohomology and the proof is done. �

Our last proposition states that the piecewise de Rham cohomology of a locally
trivial Lie groupoid on a compact triangulated manifold does not depend on the
triangulation of the base, that is, for any simplicial subdivision of the simplicial
complex, the piecewise de Rham cohomologies of the two triangulated manifolds
are isomorphic. Precisely, this statement is our next proposition.

Corollary 3.5. Keeping the same hypotheses and notations as above, let L be

other simplicial complex which is a simplicial subdivision of K. Then, the piecewise

de Rham cohomology of G obtained by the triangulation corresponding to K is

isomorphic to the piecewise de Rham cohomology of G obtained by the triangulation

corresponding to L. In addition, this isomorphism is induced by the restriction map.

Proof. Denote by φ : Ω∗
α,R(G;K) −→ Ω∗

α,R(G;L) the map given by restriction.
The diagram

Ω∗
α,R(G;M)

ww♦♦
♦♦
♦♦
♦♦
♦♦
♦

''◆
◆◆

◆◆
◆◆

◆◆
◆◆

Ω∗
α,R(G;K)

φ
//

��

Ω∗
α,R(G;L)

��

Ωp(A;K)
φA

// Ωp(A;L)

is commutative. By the corollary 5.5 of [11], the mapping φA induces an isomor-
phism in cohomology. By the propositions 3.3 and 3.4 above, the mappings non
labeled induce isomorphisms in cohomology and so the mapping φ also induces an
isomorphism in cohomology.
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locales et globales, Comptes Rendus Acad. Sci. Paris, Ser A, 263 (1966), 907-910.
[13] D. Sullivan, Infinitesimal computations in topology, Publ. I.H.E.S. 47 (1977), 269-331.
[14] , Differential forms and the topology of manifolds, Manifolds - Tokyo 1973, Pro-

ceedings of International Conference on Manifolds and Related Topics in Topology, Uni-
versity of Tokyo Press, 1975, 37-49.

[15] A. Weinstein and P. Xu, Extensions of symplectic groupoids and quantization, J. reine
angew. Math. 417 (1991), 159-189

[16] A. Weil, Sur les théorèmes de de Rham, Comment. Math. Helv. 26 (1952), 119-145
[17] H. Whitney, Geometric Integration Theory, Princeton University Press, 1957.

Department of Mathematics, Minho University, Braga, Portugal

E-mail address: jmo@math.uminho.pt


	1. Introduction
	2. Rham cohomology of Lie groupoids
	3. Piecewise de Rham cohomology of Lie groupoids
	References

