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Abstract 

This paper presents the development of a simulation model, which was 

incorporated into a GIS in order to calculate the maximum intensity of ur-

ban heat islands based on urban geometry data. The methodology of this 

study is based on a theoretical-numerical basis (Oke’s model), followed by 

the development of a calculation algorithm incorporated into the GIS plat-

form, which is then submitted to an adjustment and used as exemplifica-

tion. The results show that for the same value of H/W ratio, urban canyons 

with greater roughness result in lower heat island intensity values in rela-

tion to the less rough canyons. 
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1. Introduction 

Computational tools have been increasingly used in urban planning re-

search, simulations predicting future scenarios and the inclusion of math-

ematical models. Concerning urban planning, the topic of urban heat is-

lands has been the focus of much research and urban geometry is one of 

the main factors that influence its development.  

The urban heat island phenomenon is defined by the temperature rise in 

dense city centres compared to the surrounding countryside. Air tempera-

tures and surfaces in urban areas tend to be higher than in surrounding ru-

ral areas due to their properties, characterising the formation of heat is-

lands. The heat island phenomenon has been observed in various cities 

around the world, occurring predominantly at night, being able to reverse 

the difference between rural and urban temperatures during the day. 

Cities and urban areas change the climate creating various urban micro-

climates. This is due to a number of complex factors, such as the loss of 

cooling on vegetated surfaces, increased human activity and heat storage 

built in urban environments, as well as the effect of the canyon (Levermore 

and Cheung, 2012). 

In order to characterise the various forms of surface arrangement on a 

scale of the urban cover layer, it is usual to adopt a unit of active surfaces, 

the urban canyon, which consists of walls and floor (usually a street) be-

tween two adjacent buildings. This arrangement recognizes the three-

dimensional nature of urban coverage and allows for interactions between 

buildings, rather than treating them as isolated objects, and is called the 

H/W ratio (a relationship between the height and the width of a street), a 

concept adopted in a numerical model by Oke (1981).  

The H/W ratio application is also found in a study by Schrijvers et al. 

(2015), in which an analysis to identify the dominant factors involved in 

the energy balance of the nocturnal heat island at the level of the buildings 

for an idealized 2D urban geometry was carried out. The authors analysed 

the radiative transfer, conductive heat flux and ventilation (in the CFD 

model) considering a range of H/W ratios (0.0, 0.5, 1.0, 2.0 and 4.0) in or-

der to study the importance of the geometry of the building. The experi-

ments carried out by these authors demonstrated that the air temperature 

for the H/W ratios of 2.0 and 4.0, due to the very stable stratification in the 

lower part of the canyon, was much lower than in the H/W ratios of 0.5 

and 1.0.  



However, the H/W ratio is a parameter that can greatly simplify the in-

terpretation of urban geometry in cities, considering the urban canyon as a 

two-dimensional, homogeneous and infinite profile. Another parameter of 

urban geometry, the roughness length (Z0), considers, as well as the 

height, the façade area and the area occupied by the buildings. Its applica-

tion in urban climate studies often aims to compare urban geometry with 

changes in the wind flow (Zaki et al., 2011, Millward-Hopkins et al, 2011, 

Kanda and Moriizumi, 2009, Sugawara and Narita, 2009). The roughness 

was also one of the twelve morphological parameters used in the study by 

Martins et al. (2013) as indicators of the impact of the urban form on the 

energy demand of the buildings.  

This paper presents the development of a simulation model, which was 

incorporated into a Geographic Information System (GIS) in order to cal-

culate the maximum intensity of urban heat islands (UHImax) based on 

urban geometry data. This tool is called THIS – Tool for Heat Island 

Simulation, and it was developed as a calculation subroutine built into the 

ArcGIS 10.2 GIS.  

The GIS was selected for the development of this tool because of its  

ability to store topological relationships between geographic objects (rep-

resented in the vector model by points, lines or areas) and these objects to 

tabular data (alphanumeric) containing the most diverse characteristics. In 

addition to having numerous analysis tools incorporated into their own 

commercial packages, the GIS consists of a platform on which to develop 

and incorporate new techniques and methods of territorial planning (Silva 

et al., 2004).  

There are many possibilities of using GIS to develop models: allowing 

urban form recognition or prediction of air temperature and heat islands 

(Quant et al., 2015; Peeters and Etzion, 2012; Jusuf and Hien, 2009; Ba-

lázs et al., 2009; Unger Savic and Gál, 2011).  

2. Methodology 

For this research development, the study of the theoretical-numerical basis 

(Oke’s model) was applied by proposing a calculation subroutine. This 

was based on the parameter of H/W ratio, as in Equation 1 (where: ∆Tu-

r(max) is the maximum urban heat island, H is the height of buildings in the 

urban canyon, W is the width of the street in the urban canyon).  
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The subroutine was then created to identify the potential of urban geom-

etries in developing urban heat islands. Thus, comparing the simulated da-

ta to an actual condition of a tropical city, adjustments were made to the 

algorithm, so that the subroutine could be applied to hypothetical urban 

scenarios. 

In order to carry out the data collection for the comparison stage using 

the simulated data, 21 study points were selected in two Brazilian cities. 

Six points are located in the city of São José do Rio Preto (data obtained in 

collaboration with Masiero, 2014) and fifteen points in the city of Bauru 

(Leme, 2005).  

Urban air temperatures were registered using data-loggers. For the city 

of São José do Rio Preto, the data-loggers applied were the HOBO Pro v2, 

U23-001 model, Onset brand, using temperature sensors (measurement 

range of -40 to 70ºC) and humidity (0-100%), both with an error of 1%. 

For the city of Bauru, the data-loggers applied were the HOBO H8 Pro Se-

ries Temp/External Temp H08-031-08, Onset brand, using air temperature 

sensors (-30º to 50ºC) and external/superficial (-40º to 100ºC) with a reso-

lution of 0.02ºC in high resolution mode and 0.04ºC in normal resolution. 

Only stable days without rain or fog, clear sky (low cloud cover, less 

than 50%) and low average wind speed (less than 2.0 m/s) were selected. 

The UHImax values of the measurement days were selected at night in the 

hours after sunset (between 18h and 22h). All measurements, in both cit-

ies, were made to 3 meters high (in power supply poles) facing the south to 

avoid direct solar radiation. 

After comparing the simulated data with the measured data, a relation-

ship with the maximum intensity of the heat islands was observed, not only 

with the urban geometry unit - the H/W ratio - but also with the roughness 

(Z0). Therefore, it was necessary to include the roughness equation (Equa-

tion 2). This equation allowed for the calculation of spatial relationships 

between the represented objects in the GIS, as well as the inclusion of the 

correction equations (found specifically for these Brazilian cities in which 

the data measurements were taken).  

)'/*(5.00 AAHZ   (2) 

 

For the roughness equation (Eq. 2), Z0 is the roughness length (m); H is 

the average height of buildings in the urban block (m); A* is the vertical 

surface average area facing the canyon (m²); and A’ is the average area oc-

cupied by each building of urban blocks, the horizontal projection (m²).  
The entire process for calculating the H/W, Z0 and the heat island inten-

sities using the Oke model and adapted model was programmed using a 



subroutine incorporated into the ArcGIS 10. The result of calculating the 

first three output data enabled us to observe the relationships between ur-

ban geometry and the night heat island, and consequently, obtain the 

adapted model, resulting in the development of the tool THIS (Tool for 

Heat Island Simulation). The organization of these steps taken to develop 

the THIS can be observed in Figure 1.  

To develop the subroutine, the coding environment of ArcGIS 10 was 

used. Firstly, the process is based on a logical sequence of tools that meet 

the spatial and numerical relationships needed for the urban geometry cal-

culation. Subsequently, the value of the H/W ratio is determined and the 

UHImax is calculated by incorporating Oke’s equation into the algorithm. 

The computational code was written in Visual Basic language and incorpo-

rated into ArcGIS 10 as a new extension. 

The subroutine runs by recognizing inputs such as street axes (lines), 

buildings (polygons), the buildings´ heights (attributes of the polygons) 

and a distance radius of the building-axis (determined by the user). Then, it 

identifies the average height of the canyon (H) and the average width of 

the canyon (W) in order to determine the H/W ratio. By applying the equa-

tion from Oke’s model, the output generated in the first phase of the de-

velopment process was the UHImax related to each block. This was the 

first raw result without any adjustment. 

The second part is the result of the calculation of the Z0 and the maxi-

mum UHI by the adapted model. Thus, the output data of the THIS is the 

maximum heat island intensities (UHImax) by the original Oke model and 

the adapted model.  

 

 

Figure 1. Sequence of processes involved in the THIS subroutine 

 

The tool was adjusted based on comparing the simulated data from 

Oke’s model with the heat island data obtained from the field measure-



ments. The measured data was obtained from 21 study points in two Bra-

zilian cities (São José do Rio Preto and Bauru), both located in the state of 

São Paulo – Brazil. 

Comparing the field data to that simulated by Oke’s model, two differ-

ent trends for two groups were observed:  

• Group 1 – H/W ratio = 0.16 to 0.28 and Z0 = 0.39 to 1.23: the 

measured data can be found above the simulation of Oke’s model, with 

differences ranging from 1.25ºC to 2.25ºC (simulated data underestimated 

UHI intensity);  

• Group 2 – H/W ratio = 0.28 to 1.25 and Z0 = 2.39 to 15.98: meas-

ured data is below the simulation of Oke’s model, with differences ranging 

from 0.53ºC to 3.63ºC as values of the H/W ratio increase (simulated data 

overestimated UHI intensity). 

The parameter Z0 was included in the subroutine, after verifying the 

testing phase of Oke’s model. This adjustment phase identified different 

trends of UHImax for different groups of Z0. Through this classification, 

carried out in this first adjustment phase, correction equations (called 

adapted model here) could be included. Thus, the Z0 calculation was in-

corporated into the code, so that the GIS could classify the blocks and ap-

ply the correction equation (the result obtained using the Oke’s model) 

corresponding to each Z0 range calculation. Thus, the correction equations 

are also included in the model, according to the deviation indicated by the 

equation of Z0.  

After the subroutine has been completed, a simulation of twelve hypo-

thetical urban scenarios was performed. These scenarios correspond to dif-

ferent configurations of urban blocks, both in the value of H/W and in the 

roughness length (Z0) as both parameters are calculated by the subroutine 

itself.  

In order to cover a wide range of scenarios, for the verification of the in-

fluence of urban geometry on maximum heat island intensity (UHImax), 

the following H/W ratio values were determined for the simulation: 0.25, 

0.5, 1, 2, 3 and 4. This H/W ratio scale was simulated for both Z0>2.0 and 

Z0<2.0, extrapolating the two groups of values for which different growth 

trends were found of the UHImax.  

Table 1 presents a classification of the simulated scenario (hypothetical 

urban blocks) based on the predefined criteria for the simulation and Fig-

ure 2 illustrates the geometries of these scenarios in a simplified and three-

dimensional way.  

 



Table 1. Determination of the criteria for simulations of urban scenarios 

Range of 

Z0 

Block H/W 

avg. 

H 

avg. 

W 

avg. 

L  

avg. 

C  

avg. 
A* A’ Z0 

< 2.0 

A1 0.25 4 16 8 8 32 64 1.00 

A2 0.5 8 16 8 20 64 160 1.60 

A3 1 16 16 30 70 480 2.100 1.83 

A4 2 20 10 30 110 600 3.300 1.82 

A5 3 30 10 100 250 3.000 25.000 1.80 

A6 4 40 10 200 420 8.000 84.000 1.90 

≥ 2.0 

B1 0.25 4 16 10 3 30 30 2.67 

B2 0.5 8 16 25 12 300 300 2.67 

B3 1 16 16 20 40 800 800 3.20 

B4 2 20 10 20 40 800 800 5.00 

B5 3 30 10 20 40 800 800 11.25 

B6 4 40 10 30 60 1800 1.800 13.33 

. Legend: H avg.: average height of buildings (m); W avg.: average width of the 

roadway measured form the face to face of buildings (m); L avg.: average width of 

buildings (m); C avg.: average length of buildings (m); A*: average area of the fa-

cade facing the axis (m²); A’: average occupied area of the buildings (m²); and Z0: 

roughness length (m).  

 

 

Figure 2. Representation of the geometry of the twelve simulated hypothetical 

scenarios 

 



3. Results 

The comparison between real and simulated data using the Oke model for 

the same points showed an increasing tendency of UHImax compared to 

the value of H/W. However, the correlation between these data was low; 

the coefficient of determination (R²) was 0.63 and the standard deviation 

was 2.20.  

It was found that this low correlation is due to the differentiated behav-

iors for two Z0 ranges. When the analysis was performed by Z0 ranges, the 

correlation of the data (R² of 0.80 and 0.97 for the two different Z0 ranges) 

was obtained.  

The range of ‘Z0 = 0.39 to 1.23’ shows the relationship between UHI-

max values for a range of H/W between 0.16 and 0.28. The measured val-

ues are above those simulated by the Oke model, with differences of 

1.25ºC to 2.25ºC. The coefficient of determination of this relation is R² = 

0.80 with a standard deviation of 1.15.  

The range of ‘Z0 = 2.39 to 1.98’ presents results for the range of H/W of 

0.28 to 1.25. There is a greater correlation between the curves of the simu-

lated values by the Oke model and the actual data, which also presents a 

relation directly proportional to the H/W, but less strongly than the Oke 

model. The curve of the real data, however, was below the curve of the 

Oke model, with differences varying from 0.53ºC to 3.63ºC. This relation-

ship showed a coefficient of determination of R² = 0.97, with a standard 

deviation of 2.13.  

The difference in trend noted between the two ranges of Z0 presented 

served as an additional parameter for the calibration of the Oke model for 

the cities analysed in this study. As the real data of the studied cities pre-

sented a gap of values of Z0 between 1.23 and 2.39, this gap could cause a 

problem of a lack of values in the simulation. For this problem to be 

avoided, the possible values of Z0 when inserting the equations in the tool 

code were extrapolated. This extrapolation considers Z0 values smaller 

than 2.0 for the first group, and greater or equal to 2.0 for the second group 

(Figure 3).  

The adapted model provided results of higher correlation with measured 

data than those calculated by the Oke model. Data simulated by the 

adapted model result in a R² of 0.92 with a standard deviation of 1.01. The 

adjustment of this simulated data curve can be seen in the graph in Figure 

3, where the UHImax curve by the adapted model significantly approxi-

mates the measured UHImax curve.  

 



 

Figure 3. Two groups of trends validate the model.  

 

The simulation using the THIS of the hypothetical scenarios (Figure 4) 

made it possible to compare the two roughness ranges that presented dif-

ferent tendencies to predict the UHImax during the validation process.  



 

Figure 4. Graph of results showing the simulation of urban scenarios  

 

Observing the graph shown in Figure 4, it can be seen that the trend 

curve of the Oke model is similar to the predicted UHImax adapted model 

curve for roughness values less than 2.00. This leads us to reflect on the 

fact that the 31 study points in cities in Australia, Europe and North Amer-

ica measured by Oke (1981) would have bigger occupied areas of build-

ings compared to the façade area and height of these buildings. However, 

in that study it is not possible to confirm this assumption, as the author 

presents the measurements of urban geometry only by the Sky View Factor 

(SVF).  

In all simulated H/W values, the UHImax intensity for lower roughness 

scenarios (Z0 < 2.0) was higher than for the higher roughness scenarios (Z0 

≥ 2.0) with differences ranging from 2.04ºC to 7.31ºC as the H/W in-

creased. Considering the roughness length calculation equation (Eq. 2) for 

the same H/W values, urban scenarios in which buildings with a larger oc-

cupied area in relation to the façade area predominate tend to have higher 

UHImax values.  

For urban scenarios where the building facades are predominantly larger 

than the areas occupied by them for the same H/W values, UHImax values 



tend to be lower. The simulated results for scenarios with Z0 < 2.0 present 

UHImax values twice as large as the Z0 ≥ 2.0 scenarios for the same H/W 

value.  

It is important to emphasize here that the calibration of the model, how-

ever, was based on data from urban canyons of H/W from 0.15 to 1.25. 

Therefore, the values obtained from the simulation for the H/W ratio 2.00, 

3.00 and 4.00 are predictions based on the extrapolation of the calibration 

of the model performed for the measured urban geometry data.  

As a result of the comparison of part of a neighborhood surveyed in the 

city of São José do Rio Preto (SP-Brazil), Figure 5 shows the simulation 

using the THIS of a map of the maximum heat island intensity simulated 

by the Oke model (Figure 5a) and the adapted model (Figure 5b). Corre-

spondingly, Figure 6 shows the same map result, viewed using the 

ArcScene extension.  

 

 
(a) 

 
(b) 

 

Figure 5. Map of the UHImax simulated by the Oke model (a) and the adapted 

model (b) using the THIS  

 

 
(a) 

 
(b) 

Figure 6. Map of the UHImax simulated by the Oke model (a) and the adapted 

model (b) using the THIS and viewed by using the ArcScene extension 

 

Legend 

Points 

Axis 

Buildings 

UHImax 



4. Conclusion 

The importance of the Oke model to develop climate studies is clear and 

serves as the basis for the development of many other studies. However, 

due to its simplifications and limitations, the Oke model underestimated 

maximum urban heat island values for urban canyons of roughness less 

than 2.00 and overestimated for scenarios of roughness higher and equal 

than 2.00 in comparison between measured and simulated data. The tool 

was validated by analysing the relationship between the measured and 

simulated data using the Oke model, and incorporating correction equa-

tions into the calculation subroutine. Thus, the adapted model was ob-

tained and the THIS was completed.  

The results obtained by the comparison between the simulation and the 

Oke model and the data obtained from the survey in the two Brazilian cit-

ies showed a coefficient of determination R² of 0.63 and standard deviation 

of 2.20. The data simulated by the adapted model of THIS presented good 

correlation with the measurement data, with R² of 0.92 and a standard de-

viation of 1.01, showing the importance of the tool validation process for 

scenario simulations in different cities. Including the additional roughness 

length parameter (Z0) was fundamental for this increase in the calculation 

performance by the tool.  

In addition, the results show that for some Brazilian cities, not only can 

the value of the H/W ratio influence the intensities of the nocturnal heat is-

land, but also the variation of the façade and occupation areas of the build-

ings that form the urban canyon. Thus, greater roughness represents atten-

uation of heat island intensity values for the same value of the H/W ratio. 

However, a more in-depth study of the impact of this configuration on oth-

er factors influencing the urban microclimate, such as changes in wind 

speed and direction, is suggested.  

The development of this tool intends to help researchers and planners in 

heat island formation trends in different urban scenarios and suggests a 

more in-depth discussion concerning the influence of different configura-

tions of urban geometry on the formation of heat islands.  
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