
Layers, resources and property templates in the
specification and analysis of two interactive systems

José Creissac Campos
Dep. Informática /

Universidade do Minho &
HASLab / INESC TEC

Braga, Portugal
jose.campos@di.uminho.pt

Paul Curzon and Paolo
Masci

EECS, Queen Mary University
of London

Mile End, London E1 4NS,
UK

p.curzon@qmul.ac.uk,
p.m.masci@qmul.ac.uk

Michael Harrison
School of Computing Science,

Newcastle University,
Newcastle-upon-Tyne, UK
Universidade do Minho &

HASLab/INESC TEC, Queen
Mary University London

michael.harrison@ncl.ac.uk

ABSTRACT
The paper briefly explores a layered approach to the analysis
of two interactive systems (Nuclear Control and Air Traffic
Control), indicating how the analysis enables exploration of
the particular features emphasised by the use cases relating
to the examples. These features relate to the interactive be-
haviour of the systems. To facilitate the analysis, property
templates are proposed as heuristics for developing appropri-
ate requirements for the respective user interfaces.

Author Keywords
Formal methods, interactive systems, usability heuristics

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g. HCI):
Miscellaneous

INTRODUCTION
Formal modelling can have substantial benefits when they en-
able clarification of the assumptions made about a design.
This paper looks at two case studies, provided as part of the
preparation for the Workshop on Formal Methods in Human
Computer Interaction. In the two cases to be discussed, for-
malism has already been used by the providers of the case
studies to explore different features of the two examples. The
nature of their analyses and the illustrative examples suggest
different approaches to analysis in the two cases. The first
case appears to focus on features of the device interface while
the second case uses a notation for describing the tasks sup-
ported by the interface. In this paper we indicate how a com-
mon modelling approach based on layers can be used to spec-
ify the systems, enabling clear distinctions between levels of
analysis while at the same time maintaining the integrity of
the specification. We further comment that the analysis of

properties in relation to these layers can be facilitated through
the use of property templates.

THE USE CASES
Two examples of safety critical interactive systems1 dis-
cussed in the paper illustrate two distinct and important fo-
cuses commonly found in the analysis of interactive systems.
Both examples present the interactive behaviour of the sys-
tem, and a description of normative tasks that should be fol-
lowed by operators to use the system. The first, the nuclear
control example, focuses on the user interface and on check-
lists2, while the second, the air traffic control (ATC) example,
focuses on the user interface and distributed tasks carried out
by operators and pilots in coordination.

In the first case the analysis is concerned with the role of an
operator in interacting with a device. It is concerned with
whether the operator can control aspects of the system in a
clearly understandable way and be aware of the situation and
the recovery mechanism if a failure occurs that can only be
managed by the protection system. The focus of a model of
the nuclear use case would be the display, the graphics, the
status display, the sliders, the enabled actions and how these
change the display. It would also be concerned with how ef-
fectively the protection system supports failure events. The
properties of the protection system will be concerned with
whether the system blocks the user effectively when unsafe
actions are detected, and whether the user can trace the pro-
cess through the information provided by the interface.

In the second use case there are more details about the tasks
that controllers and the pilots are engaged in. The two op-
erators have different roles and these roles are made explicit
through a notation for describing the tasks. The question in-
vited by the ATC description is how the arrival sequence dis-
play supports their activities and roles.

Whatever the level of analysis of the user interface, there are
low level questions about the underlying system that are nec-
essary to understand the design of the user interface. These
1https://sites.google.com/site/wsfomchi/use-cases
(downloaded 28/5/15)
2http://www.hci-modeling.org/nppsimulator/
BWRSimulationDescription.pdf (downloaded 28/5/15)

1

Appears in Benjamin Weyers, Judy Bowen, Alan Dix,
Philippe Palanque (Eds) Proceedings of the Workshop on
Formal Methods in Human Computer Interaction (FoMHCI),
a workshop of the 7th ACM SIGCHI Symposium on
Engineering Interactive Computing Systems (EICS),
Duisburg, Germany, June, 2015.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/154274762?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

include: understanding which parts of the underlying process
are visible in the user interfaces; which user actions produce
visible feedback that can help the operators assess what has
been done, and what has been achieved; and whether there
are modes, and how transparent the effect of these modes is.
In fact, interactive systems of any complexity have a common
characteristic that some elements of the state of the system are
perceivable (for example, visible or audible), and that user ac-
tions transform the state [5]. Furthermore, not all actions are
permitted all of the time, and the behaviour of actions can
depend on distinguished state attributes called modes, see [6]
for further discussion.

STRUCTURE OF THE MODELS
It is important to distinguish between interactive systems and
the components of the interactive systems. Interactive sys-
tems are socio-technical systems involving people, devices,
and artefacts (desks, pieces of paper, pens, tablets and so on).
The primary focus of the modelling approach illustrated here
is based on the models of the interactive devices that are a part
of the interactive system, whilst the property templates pre-
sented capture aspects of the system that can facilitate device-
user interaction.

Users have difficulty understanding the progress of a system
when elements of the state of the system, that are relevant to
that understanding, are not visible in a form that makes sense
to them. At the same time, confusion can arise when actions
relevant to the current activity are either apparently or actu-
ally disabled by the system, or when the actions have an unex-
pected or inconsistent effect with respect to the users’ knowl-
edge and experiences of the system. Actions and states are
therefore elemental in understanding interactive behaviour.
Modes are also important. It is unusual that an interactive
system is so simple that actions always have the same effect.

To achieve the goals and activities required of the users, most
interactive systems are designed more or less effectively to
ensure that the information required (we call them informa-

tion resources [2]) are made explicitly available, and in a
form that can be easily understood by the users. A role of
a model of the interactive system is therefore to make these
information resources explicit so that assumptions about the
constraints they impose may be analysed.

The interface specification
Interactive systems can be specified by defining the set of ac-
tions, including user actions, that are possible within them.
These actions affect the state of the system and are affected by
many attributes of the state of the system. In the case of the in-
teractive device they are often determined by the mode of the
device. The model of the interactive system we develop aims
to make explicit the relevant information resources needed
for the analysis of the interactive behaviour of the system and
that includes models of the interactive devices as well as the
particular actions that define the activities that are the work
of the system. The interface specification describes what the
display shows and captures the effects of user level actions.
The display will show some features of the state of the reac-
tor, these features may be encoded as part of the interface. It

will also show the user actions that are translated into actions
within the reactor. The specification includes display wid-
gets: showing simple status information. These include the
RKS, RKT , KNT , TBN , WP1, WP2 ,CP , AU . These
displays are associated with a range of colours. The change of
colour presumably results from some combination of reactor
states not made clear in the documentation. The display also
shows actions associated with the valves: SV 1, SV 2 ,WV 1,
WV 2.

Analysis of an interactive device is then concerned with prov-
ing that relevant feedback is given on completing an action,
that relevant information is available before an action is car-
ried out, that it is possible to recover from an action in spec-
ified circumstances, that it is always possible simply to step
to some home mode whatever the state of the device and that
actions can be completed consistently.

Structuring specifications
We structure our model of the interactive system as four lay-
ers. The first layer simply specifies the constants and types
used throughout the specification. It includes types relating
to the devices involved and the entities that are in the broader
system. For example, in the case of the reactor these types
would include pressure and volume defined as part of an
aggregate type defining the tanks. There would also be types
associated with pumps and valves. Constants would include
maximum and minimum values that could raise error events
in certain situations.

The second layer describes assumptions about the underlying
process, managed or controlled by the devices, that are re-
quired as a basis for understanding the user interface specifi-
cation. In practice this layer is often reused across families of
device models when exploring the effects of differing user in-
terfaces [7]. It will describe the most primitive representation
of the nuclear process or the aircraft space required to con-
sider the interactive system. A specification of the underlying
reactor, describing the details of the relation between reac-
tor core and turbine, would include attributes defining water
level and pressure for each. The specification at this level
would also define the characteristics of the pumps and valves.
The pumps would be associated with rates per minute and the
valves would be on or off. A number of actions will be spec-
ified at this level. An action tick would represent the interval
of one minute and update the levels and pressure depending
on the setting of pump and valve. There will be further ac-
tions switching pumps on and off, opening and closing valves
and changing the value of flow in the pump.

The third layer describes the interfaces for the various devices
used in the interactive system. These models use the process
descriptions described in the second layer. They make those
aspects of the state visible through the interface explicit. They
describe the user actions, including for example how the slid-
ers or buttons or other display widgets work. The third layer
of the specification of the nuclear control user interface spec-
ifies how the user sets, controls and views the operation of the
device. It is specific to this particular interface, whereas the
reactor specification may be more generic.

2

The fourth, and final, layer makes explicit the information
resources that are required for different actions in different
circumstances. It captures constraints on action based on the
goals and activities that the user achieves or carries out [2].
This layer contains an interactive system view. The activities
and actions are “resourced” by user interfaces for devices that
are used in the interactive system or, indeed, any other source
of relevant information that is present within the interactive
system. It adds attributes that are not captured by the devices
and includes (meta-)actions that describe activities that may
involve actions of the interactive devices. An example of this
fourth layer used in a different context can be found in [9].

Tool support
Full details of the models that are developed of the two use
cases are not the focus of this paper, rather we intend an indi-
cation of our approach. Indeed different languages might be
used within the context of the approach proposed depending
on the type of analysis intended.

Two approaches to specification and proof are possible with
the example just given: model checking and theorem proving.
In the present case we focus on a theorem proving approach
because an important feature of the analysis, that has issues
from a user interface point of view, concerns the mechanisms
for number entry. Since the domain of numbers is relatively
large, proof using model checking can result in analyses of
very large models that can be intractable.

The automated theorem prover used is Prototype Verifica-

tion System (PVS) [11]. It combines an expressive specifica-
tion language based on higher-order logic with an interactive
prover. PVS has been used extensively in several application
domains. It is based on higher-order logic with the usual basic
types such as boolean, integer and real. New types can be
introduced either in a declarative form (these types are called
uninterpreted), or through type constructors. Examples of
type constructors that will be used in the paper are function
and record types. Function types are denoted [D -> R],
where D is the domain type and R is the range type. Pred-
icates are Boolean-valued functions. Record types are de-
fined by listing the field names and their types between square
brackets and hash symbols. Predicate subtyping is a language
mechanism used for restricting the domain of a type by using
a predicate. An example of a subtype is {x:A | P(x)},
which introduces a new type as the subset of those elements
of type A that satisfy the predicate P on A. The notation (P)
is an abbreviation of the subtype expression above. Predicate
subtyping is useful for specifying partial functions. Depen-
dent subtypes can be defined, e.g., the range of a function or
the type of a field in a record may depend on the value of a
function argument or the value of another field in the record,
respectively.

Specifications in PVS are expressed as a collection of the-

ories, which consist of declarations of names for types and
constants, and expressions associated with those names. The-
ories can be parametrised with types and constants, and can
use declarations of other theories by importing them. The
prelude is a standard library automatically imported by PVS.
It contains a large number of useful definitions and proved

facts for types, including among others common base types
such as Booleans and numbers (e.g., nat, integer and real),
functions, sets, and lists.

The standard format of the specifications is that it contains a
definition of a set of actions

action: TYPE = [state -> state]

which are permitted in particular situations, sometimes all sit-
uations. For each action there is a predicate

per_action: TYPE = [state -> boolean]

that indicates whether the action is permitted.

MODELLING THE CASE STUDIES

Model of the Nuclear Control User Interface
“The operation of a nuclear power plant includes the full
manual or partially manual starting and shut down of the
reactor, adjusting the produced amount of electrical en-
ergy, changing the degree of automation by activating or
deactivating the automated steering of certain elements
of the plant, and the handling of exceptional circum-
stances. In case of the latter, the reactor operator pri-
marily observes the process because the safety system
of today’s reactors suspends the operator step by step
from the control of the reactor to return the system back
to a safe state.”

The interface involves schematics of the process, the avail-
ability of actions as buttons and graphical indications of key
parameters, for example temperature and levels. The speci-
fication of the model can be layered according to the levels
described above as follows. The first layer includes defini-
tions of constants such as the maximum and minimum water
levels in the reactor tank and condenser.

min_wl: nonneg_real
max_wl: {x: nonneg_real | x>min_wl}

The second layer specifies those aspects of the underlying
reactor that are required to produce a model of the interface.
It describes details of the relation between reactor core and
turbine. These details include state attributes defining water
level and pressure for each component of the core and tur-
bine. It also includes a definition of the characteristics of the
pumps and valves. Pump behaviour is abstracted as a num-
ber representing the pumping rate. Valves are abstracted as
on/off switches. Actions are specified that model the events
that are automatically triggered within the system. For exam-
ple, an action tick represents the periodic update of rate and
pressure depending on the setting of pump and valve.

tick(st: process_state): process_state =
p WITH [reactor := tick(p‘reactor)

condensor := tick(p‘condensor)
]

...
tick(r: reactor_state): reactor_state =

r WITH [rate := ...,
pressure := ...

]

3

Further actions represent functions for switching pumps on
and off, opening and closing valves and changing the value
of flow in the pump.

The third layer describes what the reactor user interface
shows on displays, what user actions are permitted, and how
the system changes state in response to user actions. For the
considered user interface, the model includes a specification
of the actual status indicators (RKS, RKT , etc.), as well as
the level and pressure of reactor and condenser.

state: TYPE = [#
r: process_state
rksm, rkt: Colour,
rct_pressure: nonneg_real,
SV1_state_open: boolean,
... #]

The colours of the indicators are linked to states of the un-
derlying reactor (modelled in the second layer). The model
also specifies that the user can perform open/close actions on
valves, change the level of control rods, and change the rate of
the pumps by interacting with controls on the user interface.
All these actions are defined in terms of actions specified in
the second layer of the model.

click_close_SV1(st: state): state =
COND st’SV1_state_open -> st WITH
[r :=
close_valve(st‘process_state,sv1)],

ELSE -> st
ENDCOND

The fourth layer describes constraints on the action offered
by the user interface based on the goals and activities that
the user achieves or carries out [2]. For example, the ac-
tion OpenSV1 which opens a particular valve in the reactor
will be appropriate in certain circumstances and for partic-
ular purposes. The information required by the operator to
judge those circumstances should be visible to the operator.
This information includes water levels and pressures for the
relevant tank. To enable specification of these constraints an
understanding of the supported activities is required. The ef-
fect of this layer of specification is to further constrain the
behaviours of the user interface model to intended or plausi-
ble behaviours. The purpose of this constraint is to consider
whether plausible behaviours are excluded or whether addi-
tional behaviours would be allowed by the specification that
could indicate user confusions.

Actions may be specified at the level of user activity in this
layer. For example, consider the user activity recover in con-
trast to the autonomous action that causes recovery. This ac-
tion would specify constraints. For example, it would spec-
ify that “increasing pressure” using the relevant action in the
third layer would occur only if other actions had already been
completed and the displayed tank, valve and pump parame-
ters specified in the second layer were displayed (in the third
layer) indicating particular values.

Further activities include for example “monitor recovery”.
This would be expressed as an action that describes the con-

straints on the operator when monitoring an autonomous re-
covery. The specification of the action would include the in-
formation resources that would be required in the monitoring
process at different stages of the recovery and would specify
the conditions in which any user actions would take place.

Model of the Air Traffic Controller Radar Screen
“The AMAN (Arrival MANager) tool is a software plan-
ning tool suggesting to the air traffic controller an arrival
sequence of aircraft and providing support in establish-
ing the optimal aircraft approach routes. Its main aims
are to assist the controller to optimize the runway ca-
pacity (sequence) and/or to regulate/manage (meter) the
flow of aircraft entering the airspace . . . ’

In this case the first layer defines constants such as known
constraints for flight (e.g., aircraft performance model param-
eters and constraints) and runways (e.g., maximum capacity).

The second layer captures the logic of the arrival manager
planning software for suggesting arrival sequence and opti-
mal approach routes. State attributes would specify dynamic
parameters of the system, like flight plan, radar data, and
weather information. An action tick specifies how the sug-
gested arrival sequence and optimal approaches are updated
by the system on the basis of the actual values of flight plans,
radar data, etc. Further actions specify the logic for updating
dynamic parameters of the system. These will include: a tra-
jectory predictor algorithm, a sequencer module, a weather
data source, etc. Additional actions can be introduced for
modelling more complex scenarios in which pilots can re-
quest emergency landing.

It is worth noting that each action is a self-contained descrip-
tion of how the system state changes when a given event oc-
curs. Because of this, although adding new actions to the
model makes the overall behaviour of the model more com-
plex, it does not necessarily increase the complexity of the
model. The same applies for the complexity of the analysis:
if a new action does not affect the value of state variables rel-
evant to the analysis of a property, then the complexity of the
analysis of that property remains unchanged with and without
the new action. This is true of theorem proving. With model
checking this analysis is less straightforward.

The third layer describes what information is presented on
the screens to the plan controller and executive controller.
The model of the arrival manager display will therefore in-
clude a specification of the arrival timeline, time-management
information, aircraft callsign, and wake turbulence category.
The model of the radar screen display will include which air-
craft labels are visible, their positions on the screen, and their
speed vectors.

The fourth layer is based on the task descriptions provided
in the use case. The task representations provide the display
context required to constrain the actions. In this case actions
will be activity actions, actions that are permitted by the states
of the display but do not themselves change the display. They
specify the assumptions about when the operators’ actions are
permitted.

4

Issues
Models of the type outlined have been developed for other in-
teractive systems using both a model checking approach and
a theorem proving approach [9, 7, 8, 1]. The advantage of
model checking is that it is possible to explore, more readily,
reachability properties as well as potential non-determinisms.
The disadvantage is that the size of model is seriously limited.
While it is possible to explore the essential details of the con-
trol of the nuclear plant using a model checking approach,
this is not possible of the ATC system. Aspects such as the
trajectory predictor algorithm mean the second layer of the
model would be too complex. Making it abstract enough to
make analysis feasible, would restrict what could be asked of
the model, in terms of relevant properties to prove, making
the analysis less relevant.

Theorem proving allows analysis of larger models but prop-
erties may be more difficult to formulate and prove. In par-
ticular, while model checking allows simple formulations of
reachability properties, these are difficult to specify using a
theorem proving approach.

There is a tradeoff to be made between the effort needed to
develop a model amenable for verification and the effort need
to carry out the proofs. Typically a theorem proving based ap-
proach will gain advantage in the former, because of more ex-
pressive languages, and model checking in the latter, because
of more automated analysis. In all cases, how to identify and
express the properties of interest is also an issue.

PROPERTY TEMPLATES
The analysis approach uses property templates as heuristics
to generate properties that are tailored to the device. Tailor-
ing the heuristics leads to insight about the device design as
well as producing properties that will, if true of the design,
lead to an interface being more predictable and easy to use.
The heuristics that will be considered in more detail and were
described in [3] are: completeness, consistency, feedback, re-

versibility and visibilty.

The heuristics have the following characteristics:

completeness captures the notion that it should be possible
to reach any other state (more likely mode) in one (or a
few) steps. A typical example of this property is that the
design has some “home” state and a single action is suffi-
cient to reach that home state regardless of what state the
device is currently in. The first use case would suggest a
completeness property which ensures that critical actions
can always be taken in one step. The user interface never
“modes the operator in” so that responding to a critical sit-
uation requires a complex interaction.

consistency requires that an action will always change the
state of the device in a consistent way. Consistency is also
concerned that similar actions have similar effects. These
properties can be expressed in a number of ways and re-
quire some invention to be assured that a property is of
the appropriate form. Examples of consistency properties
for the Nuclear Control interface are: control rods can al-
ways be stopped; switches for valves on the user interface
can always be used to change the valve states. A number

of consistency properties are like these based on actions.
However there are also properties that specify that a value
can only change as a result of a certain type of action, or if
the state is in a particular mode. An example is: all steam
valves can be closed only when all feed water valves are
closed, and the water level in the reactor is stable. An ex-
ample of a property that related to sets of actions is that all
actions that use a slider will involve similar effects.

feedback requires that an action that has an effect on the state
of the system has also an effect that can be perceived by
the user. For the Nuclear Control interface, an example
feedback property will check that the water level indicators
of the user interface correctly report changes to the actual
value of the corresponding state variable of the reactor. For
the Air Traffic Controller interface, an example feedback
property will stipulate that all actions that have an effect
on the system state will be signposted on the user interface
(e.g. whether or not the speed vectors take into account
changes in heading is a feedback issue).

reversibility ensures that an action can always be reversed.
It is important that certain actions can be reversed. There
will be constraints that limit this reversibility. For example
it may be the case that an action such as opening a valve
can be reversed within a specific time interval only in cer-
tain circumstances to prevent an inadvertent and extremely
costly action.

visibility specifies that a state attribute in the second layer
of the model is always “mirrored” by an appropriate state
attribute in the third layer model. An example of such a
property is that the tank level is always represented by the
tank graphic in the interface or that the ATM display al-
ways correctly represents the states of the aircraft that are
on approach.

For each heuristics a template is provided to express proper-
ties relevant for the heuristics. In its more general form these
properties are expressed over a state machine. Hence, in its
simplest form, the fact that action ac causes a perceivable ef-
fect (captuted by effectpercv) is expressed by

8
s2State

• effectpercv(s, ac(s))

For the model checking case, CTL (Computational Tree
Logic) and LTL (Linar Time Logic) (see [4] for an introduc-
tion) templates are provided by the IVY tool [7]. For PVS,
translation of the templates is relatively straightforward, re-
sorting to induction over the reachable states of the model.

The instances of the properties generated from the templates
are usually described in terms of concepts of the third layer
model. The significance of the fourth layer is that it constrains
the paths for which the properties are true. The fourth layer
of the specification identifies sets of plausible behaviours and
in many cases the properties to be considered are required to
be true only for these behaviours. For example it may be ap-
propriate to require that any action that may occur in a path
constrained by information resources will have visible feed-
back.

5

DISCUSSION AND CONCLUSIONS
Two approaches to specification and proof are possible with
the considered examples: model checking and theorem prov-
ing. Model checking is the more intuitive of the two ap-
proaches. The language adopted Modal Action Logic with
interactors (MAL) [3] expresses state transition behaviour in
a way that is more acceptable to non-experts. The problem
with model checking is that state explosion can compromise
the tractability of the model so that properties to be proved are
not feasible. Model checking, hence, is more convenient for
analysing high level behaviour, for example when checking
the modal behaviour of the user interface. Theorem proving,
while being more complex to apply, provides more expressive
power. This makes it more suitable when verifying properties
requiring a high level of details, such as those related to a
number entry system, because the domain of numbers is rel-
atively large.

To employ the strengths of the two approaches simple rules
have been used to translate from the MAL model to the PVS
model that is used for theorem proving. Actions are mod-
elled as state transformations, and permissions that are used
in MAL to specify when an action is permitted are described
as predicates. The details of the specification carefully re-
flects its MAL equivalent. This enables us to move between
the notations and verification tools, choosing the more appro-
priate tool for the verification goals at hand.

One aspect that has not been discussed herein is the analysis
and interpretation of verification results. The possibility of
animating the formal models to create prototypes of the mod-
elled interfaces, and the possibilities these prototypes raise
in terms of discussing the results of verification with stake-
holders has been discussed in [10]. Such prototypes can be
used either to replay traces produced by a model checker or
interactively to both discuss the findings of the verification or
help identify relevant features of the system that should be
addressed by formal analysis.

ACKNOWLEDGMENTS
José Creissac Campos and Michael Harrison were funded by
project ref. NORTE-07-0124-FEDER-000062, co-financed
by the North Portugal Regional Operational Programme
(ON.2 O Novo Norte), under the National Strategic Ref-
erence Framework (NSRF), through the European Regional
Development Fund (ERDF), and by national funds, through
the Portuguese foundation for science and technology (FCT).
Paul Curzon, Michael Harrison and Paolo Masci were funded
by the CHI+MED project: Multidisciplinary Computer Hu-
man Interaction Research for the design and safe use of in-
teractive medical devices project, UK EPSRC Grant Number
EP/G059063/1.

REFERENCES
1. Campos, J., Sousa, M., Alves, M. C. B., and Harrison,

M. Formal verification of a space system’s user interface
with the ivy workbench. IEEE Transactions of Human

Machine Systems (2015). In Press.

2. Campos, J. C., Doherty, G., and Harrison, M. D.
Analysing interactive devices based on information
resource constraints. International Journal of

Human-Computer Studies 72 (2014), 284–297.

3. Campos, J. C., and Harrison, M. D. Systematic analysis
of control panel interfaces using formal tools. In
Interactive systems: Design, Specification and

Verification, DSVIS ’08, N. Graham and P. Palanque,
Eds., no. 5136 in Springer Lecture Notes in Computer
Science, Springer-Verlag (2008), 72–85.

4. Clarke, E. M., Grumberg, O., and Peled, D. A. Model

Checking. MIT Press, 1999.

5. Duke, D. J., and Harrison, M. D. Abstract interaction
objects. Computer Graphics Forum 12, 3 (1993), 25–36.

6. Gow, J., Thimbleby, H., and Cairns, P. Automatic
critiques of interface modes. In Proceedings 12th

International Workshop on the Design, Specification and

Verification of Interactive Systems, S. Gilroy and
M. Harrison, Eds., no. 3941 in Springer Lecture Notes in
Computer Science, Springer-Verlag (2006), 201–212.

7. Harrison, M., Campos, J., and Masci, P. Reusing models
and properties in the analysis of similar interactive
devices. Innovations in Systems and Software

Engineering 11, 2 (June 2015), 95–111.

8. Harrison, M. D., Masci, P., Campos, J., and Curzon, P.
Demonstrating that medical devices satisfy user related
safety requirements. In Proceedings of Fourth

Symposium on Foundations of Health Information

Engineering and Systems (FHIES) & Sixth Software

Engineering in Healthcare (SEHC) Workshop,
Springer-Verlag (2014). accepted.

9. Masci, P., Huang, H., Curzon, P., and Harrison, M. D.
Using PVS to investigate incidents through the lens of
distributed cognition. In NASA Formal Methods,
A. Goodloe and S. Person, Eds., vol. 7226 of Lecture

Notes in Computer Science. Springer Berlin Heidelberg,
2012, 273–278.

10. Masci, P., Oladimeji, P., Curzon, P., and Thimbleby, H.
PVSio-web 2.0: Joining PVS to Human-Computer
Interaction. In 27th International Conference on

Computer Aided Verification (CAV2015), Springer
(2015). Tool and application examples available at
http://www.pvsioweb.org.

11. Shankar, N., Owre, S., Rushby, J. M., and
Stringer-Calvert, D. PVS System Guide, PVS Language
Reference, PVS Prover Guide, PVS Prelude Library,
Abstract Datatypes in PVS, and Theory Interpretations
in PVS. Computer Science Laboratory, SRI
International, Menlo Park, CA, 1999. Available at
http://pvs.csl.sri.com/documentation.shtml.

6

