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Hosobe

Abstract One of the main challenges in distributed clinical decision support sys-
tems is to ensure that the flow of information is kept. The failure of one or more
components should not bring down an entire system. Moreover, it should not impair
any decision processes that are taking place in a functioning component. This work
describes a decision module that is capable of managing states of incomplete in-
formation which result from the failure of communication between components or
delays in making the information available. The framework is also capable of gen-
erating scenarios for situations in which there are information gaps. The proposal is
described through an example about colon cancer staging.

1 Introduction

Computer-Interpretable Guidelines (CIGs) encode medical knowledge and process
knowledge in step-by-step algorithms which, in CIG systems, are interpreted by
execution engines [10]. They are machine-readable versions of Clinical Practice
Guidelines (CPGs) CIG systems are a kind of distributed decision support system
that draw information from other information systems, scattered across organiza-
tions. This information may be provided by: a human agent, such as a physician
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or a nurse, interacting with the system; or extracted from other clinical information
systems. However, if there is no knowledge about the state of a patient, it becomes
impossible to respond with actions to medical events. This might be due to de-
lays in medical tests or failures in the communication. One of the major issues in
these careflow management systems is the occurrence of exceptions or deviations
of what is established in the protocols, of which incomplete information is a case.
This calls forth the need for higher functions in clinical decision support systems
that go beyond the display of information and inference. This work focuses on the
development of a Speculative Module for CIG systems that allows them to cope
with incomplete information. The decision process treated in the module follows
a structure based on a logical framework of Speculative Computation [5], which
uses default constraints to advance the computation of decisions. As such, the main
contributions of this work are the following: i) a decision module for CIG systems
capable of coping with missing information; ii) a default generation method for clin-
ical decision criteria; and iii) a procedure for the generation of clinical scenarios.

2 Related Work

Existing CIG models are mainly task-network models, which means that they orga-
nize clinical procedures in networks of mutually dependent tasks. Models such as
GLIF3 [2], PROforma [3], and SAGE [13] follow this representation paradigm, al-
though with different foci. While GLIF3 is more focused on the procedural logic of
CPGs, PROForma is focused on the argumentation of clinical decisions, and SAGE
on the contextual elements of unfolding clinical processes. Yet, the execution en-
gines for these CIG languages only provide straightforward reasoning and do not
provide mechanisms to deal with uncertainty [10]. These mechanisms would allow
health care professionals to devise scenarios, to anticipate the specific needs of pa-
tients, and to mobilize resources beforehand for the clinical tasks ahead . There are
techniques derived from probability theory, such as Bayesian Probabilities [7], Cer-
tainty Factors [11], Dempster-Shafer Theory [6], and Fuzzy Sets [12], which pro-
vide a way to deal with different types of uncertainty and have been used to some
extent in the medical domain. However, incomplete information, which is the object
of study in this work, deviates from the type of process uncertainty treated by these
techniques. In the setting presented herein, the process is established by the proce-
dural logic of CPGs, and a decision module with a logic programming component
and a machine learning component is employed to serve as an interface between
guideline procedural knowledge and a data-driven default generation method.

3 Setting for Clinical Decision Support

3.1 Clinical Example

The clinical situation used as an example to demonstrate the Speculative Module
is that of colon cancer staging and selection of adjuvant therapy. In most cases of
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colon cancer, surgery, or more specifically a colectomy, is performed. After surgery,
it is necessary to assess the patient based on the most recent findings, which typi-
cally occurs in a group appointment of physicians. A decision is made based on the
TNM staging system for the classification of malignant tumors, which consists of
three criteria: T (tumor), which stands for the degree of tumor invasion into the wall
of the colon; N (nodes), the number of metastases in regional lymph nodes; and M
(metastasis) represents the detection of distant metastases in other organs such as the
liver or the lungs. In Figure 1, the clinical situation described above is represented
according to the CompGuide model [9] for CPGs. It is an ontology defined in Ontol-
ogy Web Language (OWL) following the task-network model. In Figure 1 first there
is a Question task which aims to obtain the values for the T, N and M parameters.
This is a data entry point in the guideline for the retrieval of patient information.
This Question task is linked to five other tasks through the hasAlternativeTask prop-
erty, which means that these tasks should be executed alternatively to one another,
according to the validation of specific trigger conditions, also represented in Figure
1. The tasks are of the Action type for they recommend the execution of specific
clinical procedures by health care professionals. Depending on the stage of the can-
cer, it is necessary to decide the best adjuvant therapy, which involves choosing
between different observation and chemotherapy schemes. There are cases in which
it is difficult to accurately assess the degree of tumor invasion. Furthermore, to know
if there are metastases in regional lymph nodes, it is necessary to wait for a pathol-
ogy report which, in turn, depends on the completion of laboratory tests. The same
may happen with the evaluation of distant metastases. For these reasons, there may
be cases in which the values for T, N and M are unknown. The whole clinical sit-
uation was extracted from the Clinical Practice Guideline in Oncology for Colon
Cancer from the National Comprehensive Cancer Network [1]. The medical content
is greatly simplified for the sake of conveying the key features of the Speculative
Module.

Fig. 1 Clinical setting for the example regarding colon cancer represented according to the
CompGuide model.
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3.2 Structure of the CIG System

CIG systems have a similar architecture to that of the CompGuide system, repre-
sented in Figure 2. The main component is the CIG Engine. It is responsible for ex-
ecuting CIGs encoded in the Knowledge Base, containing situations like the one de-
scribed in Section 3.1, against patient information retrieved from distributed sources
such as other clinical information systems. The system keeps a local repository of
previous guideline executions, with patient information fed to the system in previ-
ous installments. The CIG Engine is responsible for providing the recommendations
about the next clinical task. When there is a decision point, a Speculative Module
is deployed to deal with cases of incomplete information. Another cause of incom-
plete information might be the failure of communication between the CIG system
and the information sources. The setting is the following: (1) the CIG Engine will
recommend the next task in the clinical careflow; (2) the transition from one task to
another is only possible if the first is connected to the latter through the hasAlter-
nativeTask property (just like in the example); (3) to move to one of the alternative
tasks, the trigger conditions of such task must be met; (4) the information necessary
to verify the trigger conditions will be acquired from an external information source,
the oncology information system (ois) in this case; and (6) the system has a Spec-
ulative Module which uses default values to continue the execution and generate
clinical scenarios in the event that there is no answer from the (ois).

Fig. 2 CompGuide system architecture with its main components: CIG Engine, Knowledge Base,
and Speculative Module.

4 Description of the Speculative Module

4.1 Generation of Defaults

The Generation of Defaults is a part of the Speculative Module and consists in a
procedure that seeks to acquire the most likely values for the decision parameters,
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taking into account possible dependence relationships between them. Bayesian Net-
works (BNs), for their set of characteristics [15, 14], provide an ideal support for a
default generation model. The Generation of Defaults is depicted in Figure 2, inside
the Speculative Module. It comprises five sequential stages. The first is the identifi-
cation of askable atoms, in which the clinical parameters for the decision are identi-
fied and isolated. Next, the module retrieves relevant data about previous guideline
executions regarding the isolated parameters from the local repository. In the fol-
lowing stage, six different BN learning algorithms are used in cross-validation. The
purpose is to select the one with the lowest log likelihood loss (logl), which is a mea-
sure of the entropy exported by a model in order to keep its own entropy low [4]. So,
low values are synonymous with a good fit between the model and the data. After
the best performing algorithm is selected, a BN is generated. The last stage con-
sists in a Maximum a Posteriori (MAP) estimation, which is a query to the BN that
provides the most likely values for the parameters, given the evidence, along with a
probability value [8]. It is possible to perform a MAP query with no evidence, which
provides the most likely configuration for all the parameters in the network. Figure 3
shows the results of the procedure when applied to data of 515 patients who received
treatment for colon cancer at the Hospital of Braga, Portugal. In Figure 3 (a), it is
possible to see that the algorithm that produces the lowest logl is the iamb. Figure
3 (b) also shows the structures learned from the different algorithms. In the chosen
structure (the one learned with the iamb) it was only possible to establish a depen-
dence relationship between T and N. This is particularly useful for it indicates to the
CIG Engine that tumor invasion and local lymph nodes metastases might be corre-
lated, but distant metastases are not dependent on the other two parameters. After
performing the MAP estimation on the network, the values obtained for T, N, and M
were respectively T = t3,N = n2, and M = m1, with T,N,MMAP ≈ 0.4395. These
values are used as initial defaults in Speculative Computation. MAP queries will be
performed as information from the sources arrive in order to adjust the remaining
default values. The Generation of Defaults was developed using the bnlearn pack-
age for R and the inflib Java library for inference in BNs from the SamIam project.

Fig. 3 (a) Results from 5-fold cross-validation of six structure learning algorithms; (b) Bayesian
Network structures for the TNM parameters learned with the different algorithms.
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4.2 Speculative Computation

The Speculative Computation part of the Speculative Module is based on a logic
programming framework with constraint processing.

4.2.1 Formalization of the Clinical Example According to the Framework

A Framework for Speculative Computation in clinical decision support systems
which features disjunctive constraint processing is a tuple 〈Σ ,E ,∆ ,P〉. This formu-
lation is based on the work presented in [5]. Σ is a finite set of constants. An element
in Σ is a system component identifier, an information source with which the CIG
system communicates. E is a set of predicates called external predicates, represent-
ing the decision criteria, i.e., the clinical parameters in the trigger conditions. When
Q is an atom with an external predicate and S is the identifier of a remote informa-
tion source, Q@S is called an askable atom. ∆ is the default answer set, consisting
of set of default rules, obtained from the Generation of Defaults, called default rules
with respect to Q@S, of the following form: Q@S←C ‖, where Q@S is an askable
atom and C is a set of constraints called default constraints for Q@S. As for P ,
it is a constraint logic program of the form: H ←C ‖ B1,B2, . . . ,Bn., where H is a
positive ordinary literal called a head of rule R; C is a set of constraints; and each
B1,B2, . . . ,Bn is an ordinary literal, or an askable literal. The situation described in
Section 3.1 regarding the staging of colon cancer can be represented according to
the framework. The predicate nt(a,b) indicates that b is the task that follows a and
is used in the initial query in order to know what procedure should be performed
next. alt(a,b) indicates that b is an alternative task linked to a. tcv(b) means that
the trigger conditions for task b are validated. The complete representation is:

• Σ = {ois}
• E = {t,n,m}
• ∆ is the following set of rules: t(T )@ois← T ∈{t3} ‖ . n(N)@ois←N ∈{n2} ‖ . m(M)@ois←M ∈{m1} ‖ .
• P is the following set of rules:

nt(X ,F)←‖ alt(X ,F), tcv(F).rule 1

tcv(F)← F ∈ {action1},T ∈ {tis, t0} ‖ t(T )@ois.rule 2

tcv(F)← F ∈ {action1},T ∈ {t1, t2},N ∈ {n0},M ∈ {m0} ‖ t(T )@ois,n(N)@ois,m(M)@ois.rule 3

tcv(F)← F ∈ {action2},T ∈ {t3},N ∈ {n0},M ∈ {m0} ‖ t(T )@ois,n(N)@ois,m(M)@ois.rule 4

tcv(F)← F ∈ {action3},T ∈ {t4},N ∈ {n0},M ∈ {m0} ‖ t(T )@ois,n(N)@ois,m(M)@ois.rule 5

tcv(F)← F ∈ {action4},T ∈ {t1, t2, t3, t4},N ∈ {n1,n2},M ∈ {m0} ‖ t(T )@ois,n(N)@ois,m(M)@ois.rule 6

tcv(F)← F ∈ {action5},T ∈ {t1, t2, t3, t4},N ∈ {n0,n1,n2},M ∈ {m1} ‖ t(T )@ois,n(N)@ois,m(M)@ois.rule 7

alt(question1,F)← F ∈ {action1} ‖. alt(question1,F)← F ∈ {action2} ‖.
alt(question1,F)← F ∈ {action3} ‖. alt(question1,F)← F ∈ {action4} ‖.
alt(question1,F)← F ∈ {action5} ‖.

Speculative Computation starts with a top goal. The notion of goal is cen-
tral for it represents what is necessary to achieve in the computation, or, in other
words, it is the outcome of the decision. In the framework, a goal has the form of
← C ‖ B1, . . . ,Bn where C is a set of constraints and each of B1, . . . ,Bn is either
an askable atom or an atom that is unifiable with the head of a rule in P . Dur-
ing the computation the framework keeps a set of beliefs about the askable atoms,
i.e., the clinical parameters in the decision, in a current belief state (CBS). In the
beginning, the CBS assumes the default rules in ∆ and, afterwards, the top goal is
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reduced according to CBS and P . Goals and the product of their reduction are kept
in processes. They are structures that represent the different alternative computa-
tions in the framework. In this regard, there are two types of processes: active and
suspended. Active processes are those whose constraints C are contained in, and
therefore are consistent with, the CBS. They are regarded as the valid scenarios.
Processes that do not fulfill this condition are suspended. In order to keep track of
the different processes, active processes are kept in the active process set (APS),
whereas suspended processes are kept in the suspended process set (SPS).

4.2.2 Phases of Speculative Computation

Speculative Computation includes: the process reduction phase, the fact arrival
phase, and the default revision phase. Throughout these phases active processes are
represented according to the tuple 〈←C ‖ GS,UD〉, where C is a set of constraints,
GS contains the goals in the form of literals to be proved, and UD is the set of used
defaults. If an atom is reduced through a default, it is added to the UD of the pro-
cess. Suspended processes have a similar structure, they are represented by a tuple
〈SP,←C ‖ GS,UD〉, where SP is a set containing the atoms that were responsible
for suspending the process and whose constraints are not consistent with the CBS.

The first phase is process reduction, which is depicted in Figure 4 (a). The ini-
tial query to the system becomes the initial goal set in the first active process. The
process is further reduced according to its goals. If an atom in the goal set is unifi-
able with a rule in P then that atom is replaced in GS with the body of the rule,
and the constraints of the rule are added to the constraints of the process. This orig-
inates as many active processes as there are rules with which the atom in GS is
unifiable. This ensures that different execution traces are explored, keeping all pos-
sible scenarios open. But, if the atom in the goal is an askable atom Q@S, with and
attached constraint C, for which there is a default constraint Cd , the module verifies
the consistency of C∧Cd and C∧¬Cd . If C∧Cd is consistent, then a new active
process is created from the initial process with this constraint, and Q@S is added to
UD. If the same happens with C∧¬Cd , a suspended process is created as well, and
Q@S is added to SP. With this disjoint constraint processing, the objective is not
to exclude any possible scenario and keep active only the processes that are consis-
tent with the CBS. While this takes place, the real value of the atom is asked from
the information source. These procedures are applied to active processes until they
have an empty goal set, which means that there is nothing left to prove and they
are valid scenarios according to the default constraints. Fact arrival occurs when
a constraint Qr@S←Cr ‖ is returned from an information source S for a question
regarding an askable atom Qr@S. After a step of process reduction is finished, the
new constraint replaces the default in the CBS for the corresponding askable atom.
It is then necessary to revise the processes in APS and SPS that have Qr@S either
as a used default (in UD) or a suspended atom (in SP). The revision of constraints
occurs as shown in Figure 4 (b). Since the replies from the information sources are
facts and, thus, regarded as definitive, there are execution traces that are deleted
when they are inconsistent with the CBS. The objective with this phase is to remove
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scenarios that can no longer occur. The default revision phase consists in changing
all the processes according to the new default rules provided by the method for the
Generation of Defaults. The arrival of a new fact may change the remaining default
rules. As such, a new MAP estimation is done using the BN with the available facts
as evidence. For every changed default, default revision is performed. Processes in
APS and SPS are revised in order to determine if their constraints are consistent with
the new default constraint Qd@S←Cnewd ‖. According to the position of the atom
attached to the new default, i.e., if it is a suspended atom (in SP) or a used default
(in UD), the existing processes may generate new active and suspended processes,
but their execution trace is never erased, unlike what happens in the fact arrival
phase. The revision of processes takes place as shown in Figure 4 (c). This keeps
the scenarios coherent and increasingly aligned with the newly arrived facts. It is a
dynamic mechanism because it is triggered by changes in the default rules. These
changes, in turn, are caused by the arrival of facts from the information sources. The
treatment of processes in all of these three phases is implemented in Prolog.

Fig. 4 Diagram of Speculative Computation. Each bifurcation represents two new processes with
the displayed constraints.

4.3 Example and Discussion

According to the situation described in Section 3.1 and the formalization in Section
4.2.1, the question to pose to the Speculative Module would be nt(question1,F),
which seeks to determine which task should follow Question1 in the management
of the patient. The initial CBS assumes the values in ∆ . Then, process reduction oc-
curs with the unification of the goals in the GS with the head of rules and facts
in P . This will happen through rules 1 and 2. By the time process reduction
reaches rules 3, 4, 5, 6, and 7, one will have five active processes representing
the five possible alternative tasks. At this point, it becomes necessary to reduce
askable atoms. For instance, if the system needs a value for the goal t(T )@ois,
since there is only a default constraint for that goal in the CBS, that constraint
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is used in process reduction, yielding active processes which are consistent with
the default and suspended processes which are not. As such, a process represent-
ing action5 is split into two processes, an active process using the default con-
straint t(T )@ois ← T ∈ {t3} ‖, and a suspended process using the negation of
the default constraint. Meanwhile, a question is sent to ois so as to know the real
value of t(T )@ois. The procedure is similar whenever an askable atom is found.
By continuing process reduction, it is possible to arrive at a state in which there
is a process with an empty goal set, achieved purely by relying on default con-
straints. As such, the process is a tentative scenario. By outputting constraints C
and used defaults UD, the system provides the task that will most likely follow
question1. In this case C = {F ∈ {action5},T ∈ {t3},N ∈ {n2},M ∈ {m1}} and
UD = {t(T )@ois,n(N)@ois,m(M)@ois}, which means that action5 should be the
next task, featuring a series of workup exams such as a colonoscopy, an abdomi-
nal/pelvic CT, and so forth. Based on this, the health care professional may start
preparations. There might be cases in which more than one process with an empty
goal set are produced. In such situations, both are presented as scenarios.

In fact arrival, answers from the ois trigger the revision of active and suspended
processes. Assuming that the fact (n(N)@ois← N ∈ {n0} ‖) arrives, it becomes
the new rule for n(N)@ois in the CBS, and all the processes consistent with this
and the remaining CBS become active, whereas the others are deleted. Additionally,
a new MAP estimation is submitted to the BN with the new fact as evidence. It
produces the result T,MMAP = argmaxT,M P(T,M | N = n0) ≈ 0.9126 with T = t1
and M = m1. The default value for t(T )@ois is the only one that changes. Through
default revision, t(T )@ois← T ∈ {t1} ‖ replaces the old default in the CBS and all
the processes are revised accordingly, but no execution trace is deleted. In the end
of these steps there is an active process representing the most likely scenario given
the configuration of the information, achieved through fact and default constraints.
Outputting constraints and used defaults would give C = {← F ∈ {action5},T ∈
{t1},N ∈ {n0},M ∈ {m1}} and UD = {t(T )@ois,m(M)@ois}. Curiously, the sce-
nario recommends the same task, but achieved through a different route. In this case,
the new default is included in the process and n(N)@ois in no longer in UD because
it is not a default anymore. As information arrives for the other askable atoms, these
procedures are repeated. The Speculative Module provides a filter for rule-based
clinical decision support systems, managing different information states.

5 Conclusions and Future Work

Speculative Computation provides tentative scenarios for the state of a patient and,
based on them, the most appropriate clinical task. Speculative Computation is used
as an interface to clinical algorithms, bringing to clinical decisions a set of mecha-
nisms to reduce and revise scenarios according to facts and newly derived defaults.
As such, they ensure a convergence of all the scenarios towards the real state of
the patient. This kind of mechanism does not have a parallel in other CIG systems.
The computation is dynamic in the sense that it accounts for changes in the original
beliefs. As future work, it is necessary to incorporate the probability provided by
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the MAP estimation into Speculative Computation so as to provide a measure of the
likelihood of the processes holding true.
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