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Abstract. In this work a 5-year survival prediction model was devel-
oped for colon cancer using machine learning methods. The model was
based on the SEER dataset which, after preprocessing, consisted of 38,592
records of colon cancer patients. A total of 6 features were obtained from
the feature selection phase. They were used to develop a prediction model
based on a Stacking classification scheme. This model was compared with
another one using the same classification scheme, but with 18 features
indicated by an expert physician. Results show that the performance
of the model using fewer features is close to that of the model using
more, which indicates that the first may be a good compromise between
usability and performance.

1 Introduction

Colorectal cancer or bowel cancer is a pathology that affects the lower portion
of the gastrointestinal tract. It develops in the cells lining the colon and rectum
when they suffer mutations causing their uncontrollable growth [22]. They be-
gin to invade healthy tissues, yielding malignant tumors and may also spread to
other parts of the body by entering the bloodstream or the lymphatic system.
This is the most common cancer of the digestive system and the third most
frequent worldwide with an incidence of 9.7%, and the fourth most lethal with
a mortality rate of 6.41% [9]. Risk factors for the development of colon cancer
include age over 50 years old, a personal or family history of colorectal cancer, in-
herited gene mutations known to be associated with polyp development, among
others. About 70% of all colorectal cancers are colon cancers, and the remaining
30% are cases of rectal cancer [2]. Although colon and rectal cancers are con-
sidered to be very similar pathologies, the truth is they appear in anatomically
different regions, they may be associated with different genetic causes, and may
progress differently according to distinct molecular pathways and interactions,
thus requiring different treatments [25]. For this reason, the prognosis for pa-
tients with these pathologies may also differ significantly. The work disclosed
herein focuses solely on colon cancer which may develop in the cecum, ascending
colon, transverse colon, descending colon, and sigmoid.
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Surgical resection is the primary treatment modality for early stages of colon
cancer. The accurate prediction of survival is important for patients with cancer
so that they can make the most out of the rest of their lives. It is also impor-
tant to help clinicians to make the best decisions for patients and it is essential
for palliative care. The level of experience of a physician in estimating survival
might affect how prognosis is formulated, but even experienced oncologists find
it difficult to predict survivability. Therefore, the objectives of this work are the
following: i) to make an individualized prediction of the survivability of a colon
cancer patient in each year of the five years following treatment; ii) to deter-
mine the ideal number of features necessary for an accurate prediction; and iii)
to determine which features are the most important for survival prediction of
colon cancer patients. The number of features is important in order to make
the prediction model available in a clinical decision support application, which
is the end goal of the work. If a physician has to provide too many inputs, thus
making the task of using the application difficult and time-consuming, he may
lose interest and not use the tool at all. The prediction model was developed
using data from the Surveillance, Epidemiology, and End Results (SEER) pro-
gram [15], a large cancer registry in the United States, and arguably the most
complete cancer database in the world. The dataset includes records of patients
diagnosed with different types of cancer from 1973 to 2012, featuring a total of
8,689,771 cases. After the extraction of data of colon cancer patients in several
pre-processing steps, different machine learning strategies were applied in order
to produce a survival prediction model in the form of several classifiers.

This paper is structured as follows. Section 2 mentions and provides insight
into previous works in colon cancer survival prediction, with a particular focus
on the differences between those approaches and the one followed in this work.
Section 3 explains the prediction system under development with the specifica-
tion of the type of inputs it should receive and the outputs it should produce.
It also describes the steps and machine learning methods used to develop the
prediction model. The corresponding experimental results are disclosed and dis-
cussed in Section 4. Finally, Section 5 provides concluding remarks about the
work done so far and future work considerations.

2 Related Work

Most of the existing approaches for colon cancer survival prediction are based on
the SEER data. An example is the web-based calculator3 developed in [5] whose
underlying prediction model is the Nodes + Prognostic Factors (NAP), based on
the number of positive lymphatic nodes combined with other prognostic features.
The model has an underlying biological motivation, reflected in the use of the
probability of a cancerous cell invading healthy tissues to formulate equations
for cancer lethality, combined with other prognostic features estimated by means

3Application available at http://www.lifemath.net/cancer/coloncancer/

outcome/index.php.



of simulation of several statistical tests. The model requires inputs for 9 features
and provides a prediction of the mortality risk over the period of 15 years.

Another SEER-based approach is the one followed in [6], also made available
in the form of a web application 4. The prediction model has 5 input features,
derived through a Cox regression analysis to evaluate simultaneous effects of
multiple variables on survival. This resulted in adjusted survival functions strat-
ified by 5 features. The conditional survival probabilities for a period of 10 years
produced by the model are calculated on the basis of the adjusted survival func-
tions for the features, controlled for the influence of other covariates in the final
model.

A similar approach was followed in [23], in which a survival prediction model
for a period of 5 years was developed based on multi-variable regression, with
Cox proportional hazards modelling, using 7 prognostic features 5. All the fea-
tures were chosen a priori, on the basis of their well established independent
association with overall survival and their availability in the SEER data.

In [21] an artificial neural network model and a regression-based model were
developed to predict patient survival status 5 years after treatment. The models
have 12 input features and were based on data from the National Cancer Data
Base (NCDB), a cancer registry in the United Kingdom. This work had a strong
machine learning component and is among the first to apply methods from this
field of computer science to colon cancer survival prediction. Another example is
the work in [1], in which a 5-year survival prediction model was developed using
ensemble machine learning with supervised classification. The number of selected
features for prediction in this work was 13 and the resulting model achieved an
overall high performance in terms of precision, accuracy, and receiver operating
characteristic (ROC).

The work developed herein distances itself from the works in [5, 6, 23] by
treating survival prediction as a classification problem and applying varied ma-
chine learning methods to obtain a model capable of individualized survival
prediction. In this regard, it is influenced by the methodology followed in [1],
whose work will serve as a reference for direct comparison. At the same time,
this work aims to produce 5-year survival predictions using fewer features than
the existing approaches, which may be the deciding factor for the adoption of a
clinical decision support application.

3 Development of the Prediction Model

The survival prediction system for colon cancer should be able to accept a num-
ber of inputs for selected prediction features and, for each of the 5 years following
treatment, produce an output stating whether the patient in question will sur-
vive that year or not, along with a confidence value for the prediction. The
development of a prediction model capable of this required several phases, from

4Application available at http://www3.mdanderson.org/coloncalculator.
5Application available at http://nomograms.mskcc.org/Colorectal/

OverallSurvivalProbability.aspx



the preprocessing of SEER data to the selection of the best model. All of them
are depicted in the workflow of Figure 1 and each one is described in the ensuing
sections.

The software chosen to develop the prediction model was RapidMiner6, an
open source data mining software. It is important to clarify that, given that
survival prediction was handled as a classification problem, five classification
models for each year were developed. Theses models were posteriorly combined,
in a programmatic manner, into a model capable of providing a prediction for
each year with a single interaction.

Fig. 1. Workflow for the development of the prediction model.

3.1 Preprocessing, Split Dataset, and Balancing Data

In order to load the data provided by SEER to RapidMiner, the data in raw
format had to be converted into csv format, through a developed script. The
colorectal cancer data from SEER contained 515,791 records and consisted of
146 attributes, some of them only applicable to a limited period within the time
of data collection. The data was reduced to 38,592 records after the preprocessing
phase and selecting the colon cancer patients.

During the Preprocessing phase, it was defined that the period of interest
would be from 2004 onwards in order to minimize the occurrence of missing
data due to the applicability of the attributes. Additionally, empty attributes,
attributes that are not applicable to this type of cancer (e.g., the human epider-
mal growth factor receptor 2 result is an indicator used in breast cancer only[24])
and attributes that are not directly related with the vital status of the patient
were removed (e.g. the number identifying the registry of the patient). Only the
adult patients (age greater than or equal to 18 years old) were selected for fur-
ther processing and the missing values were replaced with the unknown code.
Patients who had a survival time inferior to 60 months (5 years), the maximum
period for which the model under development is supposed to predict survival,
and those who passed away of causes other than colon cancer were sampled out
from the training set as their inclusion was considered to be unsuited to the
problem at hand. The numeric attributes were converted to nominal (e.g. sex)
and the binary classes (survived and not survived) were derived for the target
labels 1-, 2-, 3-, 4- and 5-year survival. Finally, based on existing attributes, new

6Software available at https://rapidminer.com/.



ones, such as the number of regional lymph negative nodes, the ratio of positive
nodes over the total examined nodes and also the relapse of the patients for colon
cancer, were calculated. After the Preprocessing, the attributes were reduced to
61, including the new attributes and the target labels.

In the Split Dataset phase, the data was divided into five sub-datasets, split
by target label, according to the corresponding survival year. Table 1 shows the
class distribution in each sub-dataset.

Table 1. Class distribution for each target label in the sub-datasets.

Target Labels
1 Year 2 Year 3 Year 4 Year 5 Year

Not Survived 24.51% 32.60% 36.96% 39.35% 41.07%
Survived 75.49% 67.40% 63.04% 60.65% 58.93%

As observed in Table 1 the classes are not equally represented. Several studies
[7, 14] show how important the problem of using imbalanced datasets is, from
both the algorithmic and performance perspectives. An overview of classification
algorithms for the resolution of this kind of problem [11] concluded that hybrid
sampling techniques, i.e., combining over-sampling of the minority class with
under-sampling of the majority class, can perform better than just oversampling
or undersampling. As such, in the Balancing Data phase, hybrid sampling, as
described in [11], was applied in order to generate balanced sub-datasets with
38,592 records each.

3.2 Feature Selection

The Feature Selection phase was crucial to determine the most influential fea-
tures on the survival of colon cancer patients. In order to accomplish this the
Optimize Selection operator [19] of RapidMiner was used. It implements a deter-
ministic and optimized selection process with decision trees and forward selec-
tion. The process was applied to each sub-dataset for the target label. Only the
features in common to all the sub-datasets were selected and used to construct
the prediction models. Table 2 shows the selected features and their meaning.

The 6 selected features were compared with a set of 18 features (shown in
Table 3) indicated by a specialist physician on colorectal cancer. These two sets
of features were mapped to attributes in the sub-datasets and later used to
generate and evaluate the prediction models.

3.3 Modeling and Evaluation

The classification strategies used in the Modeling phase consisted mostly of
ensemble methods. The classification schemes applied were meta-classifiers. This
type of classifier is used to boost basic classifiers and improve their performance.



Table 2. Attributes selected in the Feature Selection process.

Attribute Description

Age recode
with < 1 year olds

Age groupings based on age at diagnosis (single-year
ages) of patients (< 1 year, 1-4 years, 5-9 years, ...,
85+ years)

CS Site-Specific Factor 1
The interpretation of the highest Carcinoembryonic
Antigen (CEA)7 test results

CS Site-Specific Factor 2 The clinical assessment of regional lymph nodes
Derived AJCC Stage Group The grouping of the TNM information combined

Primary Site
Identification of the site in which the primary tumor
originated

Regional Nodes Examined
The total number of regional lymph nodes that were
removed and examined by the pathologist

Table 3. Attributes selected by a specialist physician on colorectal cancer.

Attribute Description

Age at Diagnosis The age of the patient at diagnosis
CS Extension Extension of the tumor
CS Site-Specific Factor 8 The perineural Invasion
CS Tumor Size The size of the tumor
Derived AJCC T, N and M The AJCC T, N and M stage (6th ed.)
Grade Grading and differentiation codes

Histologic Type
The microscopic composition of cells and/or
tissue for a specific primary

Laterality
The side of a paired organ or side of the body
on which the reportable tumor originated

Primary Site *
Race Recode (White, Black, Other) Race recode based on the race variables
Regional Nodes Examined *

Regional Nodes Positive
The exact number of regional lymph nodes
examined by the pathologist that were found to
contain metastases

Regional Nodes Negative
(Regional nodes examined - Regional nodes
positive)

Regional Nodes Ratio
(Regional nodes negative over Regional nodes
examined)

Relapse The relapse of the patients for colon cancer
Sex The sex of the patient at diagnosis

* Described in Table 2.



All the possible combinations of the classifiers were explored, according to the
algorithms and type of attributes allowed. The tested meta-classifiers were:

– Bagging [4]: Also called bootstrap aggregating. It splits the data into m dif-
ferent training sets on which m classifiers are trained. The final prediction
results from the equal voting of each generated model on the correct re-
sult. Bagging is used to improve stability and classification accuracy, reduce
variance and avoid overfitting.

– AdaBoost [10]: This meta-classifier calls a new weak classifier at each iter-
ation. A weight distribution which indicates the weight of examples in the
classification is updated. It focuses on the examples that have been mis-
classified so far in order to adjust subsequent classifiers and reduce relative
error.

– Bayesian Boosting [17]: A new classification model is produced at each
iteration and the training set is reweighed so that previously discovered pat-
terns are sampled out. The inner classifier is sequentially applied and the
resulting models are later combined into a single model. The boosting op-
eration is conducted based on probability estimates. It is particularly useful
for discovering hidden groups in the data.

– Stacking [8]: This meta-classifier is used to combine base classifiers of dif-
ferent types. Each base classifier generates a model using the training set,
then a meta-learner integrates the independently learned base classifier mod-
els into a high level classifier by re-learning a meta-level training set. This
meta-level training set is obtained by using the predictions of base classifiers
in the validation dataset as attribute values and the true class as the target.

– Voting [12]: Each inner classifier of the meta-classifier receives the train-
ing set and generates a classification model. The prediction of an unknown
example results from the majority voting of the derived classification models.

Since survival prediction is being handled as a classification problem, a group
of basic classifiers were selected to be used in ensembles with the above-described
meta-classifiers. The group includes some of the most widely used learners [18]
available in RapidMiner, namely the k-NN (Lazy Modeling), the Naive Bayes
(Bayesian Modeling), the Decision Tree (Tree Induction), and the Random Forest
(Tree Induction).

A total of fourteen classification schemes were explored for each set of at-
tributes (6 and 18 attributes) for 1, 2, 3, 4, and 5 survival years. The learning
combinations of meta-classifiers with basic classifiers are as follows. The Stacking
model used k-NN, Decision Tree, and Random Forest classifiers as base learn-
ers, and a Naive Bayes classifier as a Stacking model learner. The Voting model
used k-NN, Decision Tree and Random Forest as base learners. The other mod-
els were used in combination with each basic classifier. For evaluation purposes,
10-fold cross-validation [20] was used to assess the prediction performance of the
generated prediction models and avoid overfitting.



4 Experimental Results and Discussion

Each classification scheme was evaluated using the prediction accuracy and the
area under the ROC curve (AUC) for 1, 2, 3, 4, and 5 years. The accuracy is the
percentage of correct responses among the examined cases [3]. The AUC can be
interpreted as the percentage of randomly drawn data pairs of individuals that
have been accurately classified in the two populations [13], and it is commonly
used as a measure of quality for classification models [3]. Tables 4 and 5 present
all the results obtained for prediction accuracy and AUC respectively. The av-
erage performances in terms of accuracy and AUC of the learning schemes for
the 5 years are shown in Figures 2 and Figure 3 respectively.

Table 4. Survivability Percentage Accuracy.

Accuracy
1 Year 2 Year 3 Year 4 Year 5 Year Average

Ensemble Model 18 attributes 6 attributes 18 attributes 6 attributes 18 attributes 6 attributes 18 attributes 6 attributes 18 attributes 6 attributes 18 attributes 6 attributes

Stacking 98.28% 96.15% 97.63% 96.78% 98.02% 97.12% 98.02% 97.26% 97.83% 96.81% 97.96% 96.82%
Voting 97.96% 95.87% 97.41% 96.49% 98.11% 96.57% 98.15% 97.03% 98.09% 96.62% 97.94% 96.52%
Bayesian Boosting
with Decision Tree

97.83% 96.33% 97.53% 96.76% 97.81% 96.95% 97.84% 96.98% 97.85% 96.72% 97.77% 96.75%

AdaBoost
with Decision Tree

97.83% 96.35% 96.89% 96.78% 97.81% 96.95% 97.84% 97.02% 97.85% 96.74% 97.64% 96.77%

Bagging
with Decision Tree

96.88% 95.17% 96.92% 95.97% 97.04% 96.05% 97.1% 96.08% 97.08% 95.76% 97.004% 95.806%

Bayesian Boosting
with Random Forest

83.18% 86.79% 84.29% 88.13% 84.4% 88.46% 84.97% 89.16% 85.11% 88.32% 84.39% 88.172%

AdaBoost
with Random Forest

82.12% 87.3% 83.64% 87.28% 84.78% 88.95% 83.04% 89.53% 84.17% 88.67% 83.55% 88.346%

Bagging
with Random Forest

84.71% 88.81% 84.89% 90.22% 85.81% 90.97% 86.33% 91.15% 85.87% 90.53% 85.52% 90.34%

Bayesian Boosting
with Naive Bayes

81.95% 82.19% 83.94% 83.94% 83.23% 84.55% 84.08% 85.02% 83.13% 84.99% 83.27% 84.14%

AdaBoost
with Naive Bayes

82.38% 82.08% 83.04% 83.95% 83.41% 84.57% 83.6% 85.11% 83.72% 84.96% 83.23% 84.13%

Bagging
with Naive Bayes

80.84% 82.14% 80.18% 83.97% 80.58% 84.5% 80.02% 84.95% 80.05% 84.96% 80.33% 84.10%

Bayesian Boosting
with K-NN

97.69% 94.51% 97.58% 94.73% 97.26% 94.78% 97.28% 94.63% 97.19% 94.6% 97.4% 94.65%

AdaBoost
with K-NN

97.69% 94.51% 97.58% 94.73% 97.26% 94.78% 97.28% 94.63% 97.19% 94.6% 97.4% 94.65%

Bagging
with K-NN

97.69% 94.47% 97.5% 94.77% 97.17% 94.76% 97.3% 94.66% 97.13% 94.54% 97.36% 94.64%

From the observation of the figures and the tables, it is obvious that almost all
the classification methods demonstrated high performances, particularly the ones
using decision trees. Out of those, the Stacking models showed a slightly better
average performance both in terms of accuracy (Figure 2) and AUC (Figure 3).

Comparing the results of the 6-attribute stacking models with those of the
18-attribute models, it is possible to say that the differences are not significant.
With an average of 96.82% for accuracy and 0.989 for AUC, the 6-attribute
stacking models had prediction accuracies for years 1 to 5 of 96.15%, 96.78%,
97.12%, 97.26% and 96.81% (as seen in Table 4), and AUCs of 0.984, 0.987, 0.990,
0.991 and 0.991 (as seen in Table 5). The 18-attribute models had an average
accuracy of 97.96%, with values for years 1 to 5 of 98.28%, 97.63%, 98.02%,
98.02% and 97.83%. The average AUC was 0.993, and the remaining values
were 0.991, 0.993, 0.994, 0.994 and 0.994, for years 1 to 5. It should be noted
that, in addition to the close performances, the difference between the number of
attributes used is important. The results show that it is possible to build a model
with less than half of the features indicated by the expert physician. Regarding



Table 5. Survivability AUC.

AUC
1 Year 2 Year 3 Year 4 Year 5 Year Average

Ensemble Model 18 attributes 6 attributes 18 attributes 6 attributes 18 attributes 6 attributes 18 attributes 6 attributes 18 attributes 6 attributes 18 attributes 6 attributes

Stacking 0.991 0.984 0.993 0.987 0.994 0.99 0.994 0.991 0.994 0.991 0.993 0.989
Voting 0.988 0.979 0.988 0.982 0.989 0.983 0.99 0.985 0.988 0.984 0.989 0.983
Bayesian Boosting
with Decision Tree

0.977 0.963 0.984 0.97 0.979 0.969 0.984 0.973 0.986 0.967 0.982 0.9684

AdaBoost
with Decision Tree

0.978 0.967 0.972 0.972 0.981 0.973 0.982 0.974 0.987 0.971 0.98 0.971

Bagging
with Decision Tree

0.981 0.977 0.971 0.97 0.974 0.969 0.976 0.972 0.978 0.965 0.976 0.971

Bayesian Boosting
with Random Forest

0.894 0.927 0.911 0.932 0.91 0.938 0.91 0.941 0.914 0.934 0.908 0.934

AdaBoost
with Random Forest

0.888 0.924 0.908 0.932 0.909 0.936 0.896 0.94 0.9 0.937 0.9 0.934

Bagging
with Random Forest

0.925 0.952 0.933 0.959 0.939 0.963 0.94 0.966 0.938 0.963 0.935 0.961

Bayesian Boosting
with Naive Bayes

0.896 0.888 0.9 0.9 0.916 0.912 0.916 0.917 0.912 0.913 0.908 0.906

AdaBoost
with Naive Bayes

0.901 0.89 0.907 0.902 0.917 0.912 0.914 0.918 0.915 0.914 0.911 0.907

Bagging
with Naive Bayes

0.872 0.887 0.885 0.906 0.896 0.92 0.9 0.926 0.898 0.923 0.89 0.912

Bayesian Boosting
with K-NN

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

AdaBoost
with K-NN

0.977 0.945 0.976 0.947 0.973 0.948 0.973 0.946 0.972 0.946 0.974 0.946

Bagging
with K-NN

0.98 0.948 0.979 0.954 0.977 0.953 0.977 0.954 0.977 0.952 0.978 0.952

Fig. 2. Average survivability percentage accuracy: comparison of the 18-attribute mod-
els with the 6-attribute models.



Fig. 3. Average survivability AUC: comparison of the 18-attribute models with the
6-attribute models.

the attributes obtained in the feature selection process, with the exception of
the site-specific factors, they were all connected with the features indicated by
the specialist physician.

Comparing this approach with others mentioned in Section 2, fewer features
were necessary to develop the prediction model. Moreover, in the approach fol-
lowed in [1], the closest to the one followed herein, the best model of colon cancer
survival prediction was based on a Voting classification scheme, with prediction
accuracies of 90.38%, 88.01%, and 85.13% and AUCs of 0.96, 0.95, and 0.92 for
years 1, 2 and 5. As such, the present work represents an improvement and was
able to achieve considerably better results.

5 Conclusions and Future Work

This work involved the use of different meta-classification schemes to construct
survival prediction models for colon cancer patients. The best model found uses
a Stacking classification scheme, combining k-NN, Decision Tree, and Random
Forest classifiers as base learners and a Naive Bayes classifier as a stacking model
learner.

The ideal number of features for colon cancer survival prediction was found
to be 6. The selected set includes: age, CS site-specific factor 1, CS site-specific
factor 2, derived AJCC stage group, primary site, and regional nodes examined.
Overall the developed model was able to present a good performance with fewer
features than most of the existing approaches.



As future work one intends to conduct a similar analysis for rectal cancer,
a pathology with similar characteristics to colon cancer. Additionally, a mobile
application to make the model available to the health care community is un-
der development. One intends to have this clinical decision support application
available in different platforms, ready to assist health care professionals in car-
rying out their duties at any time. In order to ensure that the model is able
to adapt and adjust, an on-line learning scheme is also being prepared. In this
way, it will be possible for users to dynamically feed new cases to the prediction
system and make it change in order to provide better survival predictions. This
type of model could also prove to be very useful when integrated in computer-
interpretable guideline systems, such as the one described in [16], as a way to
provide dynamic knowledge to rule-based decision support.
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