
CompGuide: Acquisition and Editing of
Computer-Interpretable Guidelines

Filipe Gonçalves1, Tiago Oliveira2, José Neves2, and Paulo Novais2

Algoritmi Research Centre/Department of Informatics, University of Minho
Braga, Portugal

1pg25309@alunos.uminho.pt, 2{toliveira,jneves,pjon}@di.uminho.pt

Abstract. The formalization of Clinical Practice Guidelines (CPGs) as
Computer-Interpretable Guidelines (CIGs) has the potential to positively
influence the behaviour of health practitioners by being available at the
point and time of care. Existing tools for acquiring and editing CIGs for
automatic interpretation present limitations in their ease of use and the
support they offer to a CIG encoder. Besides characterizing these limita-
tions and identifying improvements to include in future tools, this work
describes the CompGuide Editor, a Protégé tool for the management of
CIGs that guides a user throughout the several steps of CIG encoding,
without requiring the user to have programming knowledge, and through
the use of interfaces that are simple and intuitive.

1 Introduction

The deployment of Clinical Practice Guidelines (CPGs) in Clinical Decision
Support Systems (CDSSs) for daily use has several obstacles, namely the devel-
opment of systems that are able to provide the level of interaction with the user
required for the task, handling data entry points and the multiple control struc-
tures in CPGs, and the development of interfaces for conveying recommenda-
tions in an efficient way [5,13]. These issues have been tackled in previous works
through a system that promotes a better integration of CPG recommendations
in the daily life of health care professionals by producing an agenda contain-
ing clinical recommendations, allowing the execution of CIGs [7,11]. However,
even before considering the operationalization of CPGs, there is the issue of
knowledge acquisition. Transforming CPGs into computer algorithms from their
text versions is a difficult task. These versions were not originally designed to
be interpretable by computers and, in some cases, contain complex and intri-
cate instructions, involving several parameters, that are difficult to translate
into efficient algorithms [4]. This led to the development of different Computer-
Interpretable Guideline (CIG) models and tools by different research groups,
covering a wide range of clinical situations [6,13]. A model (here used as a syn-
onym for language) aims to provide a structure for the correct formalization of a
narrative CPG as a CIG that would be the basis of a CDSS, but by itself it is not
sufficient, it is still necessary to guide CIG design, according to a selected model,
in order to ensure a correct syntax and disposition of knowledge elements. While

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/154274726?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


it is true that there are several tools for helping users to create effective CIGs,
they have not, to the extent of our knowledge, progressed beyond the level of
academic research projects. Furthermore, they reveal limitations in guiding the
user throughout the CIG acquisition process, the intelligibility of their interface,
the visualization of guideline knowledge elements and attached information, and
the sharing of CIGs.

The present work discloses a CIG editing tool, the CompGuide Editor. The
underlying model for CIGs used is the CompGuide ontology [9], which is based
on Web Ontology Language (OWL). The CompGuide ontology presents a for-
malisation of guidelines as linked lists of tasks, thus following the Task Network
Model (TNM), representing CPGs as workflows. The CompGuide Editor per-
forms the role of managing the creation and editing of CIGs as a user-friendly
tool to represent clinical guidelines in a specific model, able to address the limi-
tations of the existing applications.

The present paper is organized as follows. Section 2 provides related work
on CIG creation and editing tools. Their most prominent aspects and main
deficiencies are exposed in this section. Section 3 explains the steps taken in the
creation of the CompGuide Editor tool. Finally, section 4 presents conclusions
about the work developed so far and future work considerations.

2 Computer-Interpretable Guideline Acquisition and
Editing

As already mentioned, there are several tools that support the acquisition and
editing, either manually or semi-automatically, of CIG knowledge elements, tax-
onomies, and other organization levels of these machine-readable formats.

2.1 Features for Tool Assessment

This section is dedicated to defining features for the comparison of CIG acqui-
sition and editing tools. The comparative features were selected as a means to
analyse and evaluate CIG platforms, based on user experience [3]. They consist
of the following:

– Graphical Guidelines View: a graphical representation (tree, node-link,
network diagrams) of parts of or a full CIG workflow. The arrangement of the
representations within a drawing helps the user to understand the workflow,
identify relevant points of the guideline, and manipulate knowledge elements;

– Organization: this feature is related with how easy the tool is to under-
stand, determined by its structure and the way in which its functionalities
are made available, whether they are placed correctly, under the right menu;

– Simplicity: this feature conveys the ease of access to the functionalities of
the tool. Complexity leads to confusion in the use of the tool, leading many
users to abandon it;



– Automation: when creating or editing new instances, the user should only
implement the most relevant knowledge elements, with the rest being auto-
matically completed by the platform;

– Drag-and-Drop: the ability to drag-and-drop instances in the Graphical
Guideline View and filter the workflow of the CIG with the help of graphical
type links;

– Web/Local Repository: the possibility to save or load CIGs either locally
or in a cloud repository;

2.2 Assessment of Existing Tools

The first tool to be analysed was the Protégé Desktop, an open source ontol-
ogy development and knowledge acquisition environment developed by Stanford
Medical Informatics [8]. It provides a platform which can be extended with
graphical widgets for tables, diagrams, and animation components. The tool is
used to author guidelines in various models, including the Guideline Interchange
Format (GLIF) [12] and PRODIGY [14].

The SAGE Workbench is a complete, self-contained environment that uses
the Shareable Active Guideline Environment (SAGE) model [1]. The SAGE
Workbench provides a knowledge authoring tool based on Protégé. The user
interface for the SAGE Workbench is organized as a number of tabs for: the
navigation of frames that are directly and indirectly referenced from a selected
instance in a tree structure, expression of integrity constraints about a knowl-
edge base in Protégé axiom language, search of terms in a medical terminology
service, and so forth. The Tallis tool is a relatively recent (when compared to
other tools) Java implementation of PROforma-based authoring and execution
developed by the Cancer Research UK [17]. Tallis is based on a later version
of the PROforma model [16]. It is, in fact, a suite of tools in which the main
component is a desktop graphical editor for authoring guidelines. Workflows are
displayed in Tallis both in a network view and in a tree view. GEM Cutter is
a simple XML editor that facilitates the markup of CPG texts, and therefore
supports the conversion of a guideline document into the GEM format and pub-
lication in a cross-platform manner [15]. The main window of the tool comprises
three panels, a menu bar, and a button bar. The CPG text is loaded into the
leftmost panel. The middle panel contains an expandable tree view of the GEM
hierarchy. The rightmost panel shows information regarding the knowledge ele-
ment selected at the time. Finally, Asbru View is a graphical user interface for
viewing, creating and modifying Asbru plans. It is based on different views of
different aspects of the plans [18]. There is a topological view to observe the
relationships between the different plans and a temporal view that shows the
temporal constraints of plans. Table 1 shows a comparison between these tools,
by using the comparative features explained earlier. Important to say that this
comparison does not include plug-ins that can be applied to these platforms in
order to add new features. We can conclude that some features are absent from
the existing tools and should be developed in the CompGuide Editor tool to



improve the user experience. Although all the tools possess the basic require-
ment of allowing the instantiation and editing of CIG elements, they are mainly
focused on the proper functioning of the tool and less on the appearance or ease
of management.

Most tools (the exception is GEM Cutter) present some form of graphical
view of the workflow. Whether it is through a network structure or a tree struc-
ture, it is possible to have a general view of the instances that build a CIG and
then focus on particular elements. Although the analysed tools are clearly well
organized, they lack simplicity. Taking Protégé Desktop and SAGE Workbench
as examples, despite their having many useful features available, the amount of
menus they display is significant, which makes the user lose a lot of time try-
ing to understand the different functionalities. As such, simplicity is a feature
that should be prioritized. As for the drag-and-drop feature, it is absent from
existing tools, but an important element in modern applications, enabling the
management of a CIG visual layout. One of the features that new tools should
present is the ability to automatically fill in data that is not so important, al-
lowing the user to focus only on the data relevant to the instance he is currently
creating, leaving the less important details to be handled by the system. This
feature includes the automatic creation and filling of mandatory data fields for
an instance, such as the date of creation of a CPG or its version, the relation-
ships expressing the connection of a clinical task to a subsequent task, and so
forth. This kind of automation is not present in none of the analysed CIG tools.
Another important feature is the ability to import or export CIGs stored locally
or in a cloud. We must give relevance to this feature, as most of the information
is currently held in clouds, giving the possibility to the user to access all this
data anywhere, any time, and share it with other members of a CIG development
team. Only Protégé Desktop and SAGE Workbench show this feature.

Table 1. Comparison of tools for the acquisition and editing of CIGs. The x shows
that the tool possesses the feature.

Feature/Platform
Protégé
Desktop

SAGE
Workbench

Tallis
GEM

Cutter
Asbru View

Graphical Guidelines
View

x x x x

Organization x x x x x

Simplicity x x x

Automation

Drag-and-Drop

Local Repository x x x x x

Web Repository x x



3 The CompGuide Editor Tool

The CompGuide Editor was developed as a Protégé Desktop plug-in given the
need to create software capable of implementing all the features offered by this
application, more specifically the functionality of managing the data of an ontol-
ogy through the use of a graphical interface, along with the development of new
features capable of solving the limitations in existing projects. Another advan-
tage that came from using Protégé was the ability to implement extra features
from other plug-ins in a simple way. Since OWL is one of the ontology languages
supported by Protégé and, at the same time, the underlying language of the
CompGuide ontology, using this application as the basis for the editor was the
logical decision to make.

3.1 Characteristics of the CompGuide Ontology

In the CompGuide model all the knowledge elements of CPGs are represented
as different tasks[9]. The classes that enable this are Plan, Action, Question and
Decision. These different classes of tasks, along with the classes used to encode
conditions regarding the state of a patient, enclose the domain knowledge of a
CPG. The procedural knowledge is defined by the connections that exist between
the individuals of these classes. In order to connect individuals belonging to the
classes of tasks there is a set of object properties that establish the relative order
between them. Time is a crucial dimension in the representation of clinical pro-
cedures. The temporal constraints in CompGuide are used to express a variety of
elements that need to be controlled in order to ensure the correct application of
recommendations and the proper management of patients. CompGuide provides
constructors to express durations, periodicities, and waiting times of tasks. Fur-
thermore, it is also possible to define temporal constraints for conditions about
the state of a patient [11]. A distinctive feature of CompGuide, when compared
to other CIG models is that it does not require any proficiency in a program-
ming language in order to define constraints. Instead, all is done with the basic
elements of an ontology: classes, instances, and properties. It was demonstrated
that this CIG ontology was able to provide sufficiently expressive constructors
for CPGs from different medical specialities and categories [10].

3.2 Development of the Plug-in and Main Features

Due to compatibility issues and the available support, the CompGuide Editor
was developed for Protégé 4, using various Java APIs such as OWL extension
APIs, the Protégé OWL API, the Protégé API, and the Jena API.

The main challenge in the development of the editor is the little knowledge
users may have about the terms of the underlying CompGuide ontology used in
the functionalities, which implies longer learning curves in becoming acquainted
with the concepts and learning how to create ontology-enabled representations.
To tackle this challenge the CompGuide Editor implements a set of wizards,
namely the Create Wizard, the Edit Wizard, and the Delete Wizard. These



are software assistants that guide de user step-by-step in the task they want to
perform with a sequence of dialogue boxes. Figure 1 shows one of these boxes
for the Create Wizard, regarding the creation of a Plan. Given the richness of
knowledge elements in the CompGuide ontology, the wizards are essential in
order to guarantee that the user has access to all the needed constructs. This
is an improvement with regards to existing tools, where such a set-up feature
is not available. The wizards guarantee the intended simplicity for the editor as
they insure that the user has an easy access to the functionalities he needs for
the task he is carrying out. Other existing Protégé-based tools, namely Protégé
Desktop and the SAGE Workbench, possess complex functionalities, but do not
provide easy access to them.

Fig. 1. CompGuide Editor Create Plan Wizard.

Figure 2 shows the main interface of the CompGuide Editor, which is viewed
as a tab in Protégé. The interface consists of two main views. The OntoGraf
view provides a 2D dynamic graphical representation of the ontology, while the
CGuide Wizard options view (bottom view) has the set of features to manage
the CIG plus the options to download/upload the CompGuide ontology file. In
addition to the graphical view of the CIG, it is possible to see CIG elements in
a list, organized by the class to which they belong, through the Individuals by
Type view. The number shown in front of the the name of the class represents
the number of individuals that exist in that OWL class. When accessing the CIG



management features, a new window will appear, in which a simple and intuitive
step-by-step procedure will start. In order to complete this process, the user must
follow the instructions of the corresponding wizard and insert all the required
data. In the end, the CompGuide Editor tool will automatically insert all changes
in the ontology. Figure 1 shows one of the steps in the creation of an instance
in the CPG, in this case the definition of a temporal constraint, a duration, for
a Plan. The wizards handle all the data structures and automatically fill in the
names of instances, dates, versions and the connections between instances. For
instance, a CPG instance is always associated with an instance of Scope, which
specifies the range of the CPG. When the CPG instance is created, the skeleton
for the Scope instance is immediately and automatically generated.

Fig. 2. CompGuide Editor main interface.

The OntoGraf view also allows the user, through the drag-and-drop feature,
to manipulate the graphical representation of a CPG, such as the one shown
in Figure 3. These changes include the disposition of the nodes representing
instances and the selective expansion of nodes in order to view their object and
data properties. It is also possible to glance at a the information of a node by
placing the mouse on top of it, as seen in Figure 3.

The interactions of users with this tool are represented in Figure 4. While
health care professionals are responsible for the creation, modification or deletion
of clinical steps or aspects in a CIG file, the administrator (or admin) has the
responsibility to maintain the latest CIG version in the Git repository, which
can be downloaded and used by the health care professional in the CompGuide
Editor. Once the user finishes editing the file, he may upload it to a file repository



Fig. 3. Graph containing instances of a Plan for the management of colon cancer.

for the admin to check. If the file is considered to be valid, it is placed in the
Git repository for further use in the editor.

3.3 Assessment remarks

In order to verify the usability of the CompGuide Editor, a CPG of the Na-
tional Comprehensive Cancer Network (NCCN) for Colon Cancer [2] was fully
represented in the CompGuide ontology. The CPG is used for the diagnosis
and management of colon cancer and, thus, contains numerous clinical tasks
with complex relationships. The process of representing the guideline resulted in
anowl file with 680 instances, out of which 223 were task instances. The graph
of Figure 3 shows the initial portion of the CPG with its main Plan and corre-
sponding first task. Since this is a lengthy CPG, the CompGuide facilitated its
acquisition by providing information step-by-step on which fields are required
for the definition of each task and associated constraints. This was particularly
useful in the definition of the procedural logic of the CPG, the sequence of clin-
ical tasks, and splitting points in he CPG workflow, where it is necessary to
choose one from multiple alternative tasks. The graphical view was particularly
useful in the visualization of this later aspect, allowing a rapid comprehension
of the CPG workflow by selectively expanding and shrinking parts of the graph.
These were the aspects in which CompGuide proved to be more useful.

Fig. 4. Actors in the CIG acquisition and editing system involving the CompGuide
Editor.



4 Conclusions and Future Work

There are several languages and tools helping final users and system developers
in creating good and effective CIGs, such as Protégé Desktop, SAGE Workbench,
Tallis, GEM Cutter, Asbru View, among others. Yet most of these platforms lack
some important features, leaving place for improvements. The features identi-
fied as lacking were simplicity, automation, drag-and-drop functionalities in the
graphical views, and CIG sharing functionalities. By studying these tools, a
plug-in for Protégé Desktop application was developed, with the capacity to
manage and share CIGs formalized in the CompGuide ontology. Besides the ba-
sic features, also present in the above-mentioned tools, the idealized CompGuide
Editor provides a set of functionalities that make it more complete then its ex-
isting counterparts. The simplicity feature is provided by the set of wizards
implemented in the tool, which guide de user step-by-step, easing the under-
standing of functions and knowledge elements. These assistants also carry the
task of managing data that is less important from the viewpoint of the user, but
vital to internal consistency of the CPG. The graphical view in the tool confers
a greater freedom in the manipulation and visualization of knowledge elements.
The cloud repository and the workflow involving the download and upload of
CIG files ensures that the CPGs can be shared among interested parties. This
work focuses on the requirements of tools for the acquisition and editing of CIGs.
One of the core characteristics of the proposed tool, the CompGuide Editor, is
that it does not require programming skills for the definition of CIG elements.

Although the tool disclosed herein possesses a set of desirable features that
makes it, at least from a theoretical analysis, an improvement over existing tools
of the same type, it is necessary to conduct a usability study to determine if that
is in fact the case. As such, this is the next step regarding the development of
the CompGuide Editor. The tentative procedure to make this assessment is to
select a tool from the set of reviewed tools and propose the representation of the
same CPG to a sample of subjects, with that tool and the one presented herein.
After the representation the assessment can be made through questionnaires.

Acknowledgements

This work has been supported by COMPETE: POCI-01-0145-FEDER-0070 43 and FCT – Fundação
para a Ciência e Tecnologia within the Project Scope UID/CEC/ 00319/2013. The work of Tiago
Oliveira is supported by a FCT grant with the reference SFRH/BD/85291/ 2012.

References

1. Beard, N., Campbell, J.R., Huff, S.M., Leon, M., Mansfield, J.G., Mays, E., Mc-
Clay, J.C., Mohr, D.N., Musen, M.A., O’Brien, D., et al.: Standards-based sharable
active guideline environment (sage). In: AMIA (2002)

2. Benson, A., Bekaii-Saab, T., Chan, E., Chen, Y.J., Choti, M., Cooper, H., En-
gstrom, P.: NCCN Clinical Practice Guideline in Oncology Colon Cancer. Tech.
rep., National Comprehensive Cancer Network (2013), http://www.nccn.org/

professionals/physician{_}gls/f{_}guidelines.asp

http://www.nccn.org/professionals/physician{_}gls/f{_}guidelines.asp
http://www.nccn.org/professionals/physician{_}gls/f{_}guidelines.asp


3. Bott, R.: Summary of the Guideline Workbenches Evaluation. Igarss 2014 (1), 1–5
(2014)

4. Chim, JCS and Cheung, NT and Fung, H and Wong, K.: Electronic clinical practice
guidelines: current status and future prospects in Hong Kong. Hong Kong Medical
Journal 9(4), 299—-301 (2003)

5. de Clercq, P.A., Blom, J.A., Korsten, H.H.M., Hasman, A.: Approaches for cre-
ating computer-interpretable guidelines that facilitate decision support. Artificial
intelligence in medicine 31(1), 1–27 (may 2004)

6. Isern, D., Moreno, A.: Computer-based execution of clinical guidelines: a review.
International journal of medical informatics 77(12), 787–808 (2008)

7. Novais, P., Costa, R., Carneiro, D., Neves, J.: Inter-organization cooperation for
ambient assisted living. JAISE 2(2), 179–195 (2010)

8. Noy, N.F., Crubézy, M., Fergerson, R.W., Knublauch, H., Tu, S.W., Vendetti,
J., Musen, M.A., et al.: Protege-2000: an open-source ontology-development and
knowledge-acquisition environment. In: AMIA Annu Symp Proc. vol. 953, p. 953
(2003)

9. Oliveira, T., Novais, P., Neves, J.: Development and implementation of clinical
guidelines: An artificial intelligence perspective. Artificial Intelligence Review pp.
999–1027 (2014)

10. Oliveira, T., Novais, P., Neves, J.: Assessing an Ontology for the Representation
of Clinical Protocols in Decision Support Systems. In: Bajo, J., Hernández, J.Z.,
Mathieu, P., Campbell, A., Fernández-Caballero, A., Moreno, M.N., Julián, V.,
Alonso-Betanzos, A., Jiménez-López, M.D., Botti, V. (eds.) Advances in Intelligent
Systems and Computing, vol. 372, pp. 47–54. Springer International Publishing
(2015)

11. Oliveira, T., Silva, A., Neves, J., Novais, P.: Decision Support Provided by a Tem-
porally Oriented Health Care Assistant. Journal of Medical Systems 41(1), 13
(2016)

12. Peleg, M., Boxwala, a.a., Ogunyemi, O., Zeng, Q., Tu, S., Lacson, R., Bernstam,
E., Ash, N., Mork, P., Ohno-Machado, L., Shortliffe, E.H., Greenes, R.a.: GLIF3:
the evolution of a guideline representation format. In: Proceedings / AMIA ... An-
nual Symposium. AMIA Symposium. pp. 645–649. American Medical Informatics
Association (2000)

13. Peleg, M.: Computer-interpretable clinical guidelines: A methodological review.
Journal of Biomedical Informatics 46(4), 744–763 (jun 2013)

14. Purves, I.N., Sugden, B., Booth, N., Sowerby, M.: The PRODIGY project–the
iterative development of the release one model. Proceedings / AMIA ... Annual
Symposium. AMIA Symposium pp. 359–63 (jan 1999)

15. Shiffman, R.N., Agrawal, A., Deshpande, A.M., Gershkovich, P.: An approach to
guideline implementation with gem. Studies in health technology and informatics
(1), 271–275 (2001)

16. Steele, R., Primer, F.J.T.P.: Introduction to proforma language and software with
worked examples. Tech. rep., Technical report. London, UK: Advanced Computa-
tion Laboratory, Cancer Research (2002)

17. Sutton, D.R., Fox, J.: The syntax and semantics of the proforma guideline modeling
language. Journal of the American Medical Informatics Association 10(5), 433–443
(2003)

18. Votruba, P.: Structured knowledge acquisition for asbru. na (2003)


	CompGuide: Acquisition and Editing of Computer-Interpretable Guidelines

