
A System for the Management of Clinical Tasks
Throughout the Clinical Process with

Notification Features

António Silva1, Tiago Oliveira2, José Neves1, Ken Satoh2, Paulo Novais1

1 Algoritmi Centre/Department of Informatics, University of Minho, Braga, Portugal
asilva@algoritmi.uminho.pt

{pjon,jneves}@di.uminho.pt
2 National Institute of Informatics, Tokyo, Japan

{toliveira, ksatoh}@nii.ac.jp

Abstract. Computer-Interpretable Guidelines have been associated with
a higher integration of standard practices in the daily context of health
care institutions. The Clinical Decision Support Systems that deliver
these machine-interpretable recommendations usually follow a Q&A style
of communication, retrieving information from the user or a clinical
repository and performing reasoning upon it, based on the rules from
Clinical Practice Guidelines. However, these systems are limited in the
reach they are capable of achieving as they were initially conceived for
use in very specific moments of the clinical process, namely in physi-
cian appointments. The purpose of this work is thus to present a system
that, in addition to Q&A reasoning, is equipped with other functionali-
ties such as the scheduling and temporal management of clinical tasks,
the mapping of these tasks onto an agenda of activities to allow an easy
consultation by health care professionals, and notifications that let health
care professionals know of task enactment times and information collec-
tion times. In this way, the system ensures the delivery of procedures.
The main components of the system, which reflect a different perspec-
tive on the delivery of CIG advice that we call guideline as a service, are
disclosed, and they include a health care Personal Assistant Web Ap-
plication, a health care assistant mobile application, and the integration
with the private calendar services of the user.

1 Introduction

Computer-Interpretable Guidelines (CIGs) are machine-interpretable versions
of Clinical Practice Guidelines (CPGs). The latter are systematically developed
statements associated with the promotion of best medical practices and reduc-
tion of medical error [?]. The aim of these documents is to provide clinical advice
for specific circumstances and to support health care professionals in their de-
cisions [?]. Their formalisation as CIGs in Clinical Decision Support Systems
(CDSSs) brings forth the development of a new range of operations that can be
performed with the knowledge they enclose. Such include automated reasoning

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/154274725?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


for the generation of recommendations, consistency checking within the same
CIG and across different CIGs, and merging CIG knowledge with contextual
information such as patient and physician preferences or available health care
resources, to name a few [?]. The point of these operations is to tailor care in
order to generate better outcomes and avoid adverse events. Nonetheless, man-
aging patients is a challenging endeavour for health care professionals given that
they are typically responsible for numerous cases at the same time and each
case involves the enactment of several and complex procedures. Managing this
complexity is something that the current applications for CIG execution do not
contemplate in the functionalities they offer [?,?,?,?]. Current CIG-based sys-
tems do not provide mechanisms for integrating CIG recommendations in the
daily routine of health care institutions, which calls forth the need for such sys-
tems to assume a new style of communication that can further promote a positive
impact on the outcomes of care [?].

CIGs are considered to be the best approach to the concept of living guide-
lines, which captures statements for clinical decision support that are dynamic -
in the sense that they are capable of evolving and providing advice based on the
latest evidence - and interactive [?]. This interactive component is related to the
ability to cover tasks such as patient tracking, patient follow-up, scheduling of
procedures, and the monitoring of procedure constraints, and, at the same time,
autonomously inform health care professionals about important aspects of these
procedures in the most diverse situations.

Following the identified need for different ways in which to deliver CIG-based
advice, the work herein proposes a different perspective regarding this matter. Its
main contribution is a system that allows different implementations of CIGs. We
show how these implementations can be differently oriented through a Personal
Assistant Web Application and a health care assistant mobile app. The principle
behind the system and the presented implementations is that the constraints
supported my a CIG model and placed on clinical tasks can be used to enhance
CIG-based CDSSss. The system is based on the CompGuide ontology for CIGs
[?], which treats CPGs as sets of various clinical tasks organised in a work flow.
The present paper represents an extension of the work in [?].

Section 2 describes related work regarding systems for CIG execution, fea-
turing a description of their means of operation. In Section 3, we present the
CompGuide ontology and respective main features that led to the implemen-
tations described in the following section. Section 4 provides details about the
CompGuide architecture for the deployment of CIGs and how its services are
used as a basis for the Personal Assistant Web Application and the health care
assistant mobile application developed to accompany health care professionals.
Section 5 describes the functionalities supporting care with examples of CIG
execution. Finally, Section 6 presents the conclusions drawn so far with the de-
velopment of the health care assistant and future directions for the work.



2 Existing Systems for CIG Execution

Based on the classification of CDSSs presented in [?] - tools for information
management, tools for patient-specific advice, and tools for focusing attention -
and the analysis of current CIG execution approaches [?], it is possible to observe
that the most significant examples fall under the category of tools for patient-
specific advice. This is the case of CIG execution engines such as the GLIF3,
Guideline Execution Engine (GLEE) [?], the Spock Engine [?], and the GLARE
Execution Engine [?], which were specifically developed for the application of
guidelines to patients in health care settings.

GLEE [?] is based on the third version of the Guideline Interchange For-
mat (GLIF3) [?], which, in turn, was designed to support guideline modelling
as a flowchart of structured steps that represented clinical actions and decisions.
The architecture of GLEE provides three layers of abstraction, namely data,
business logic and user interface. The data layer contains an electronic medical
record with patient data, a guideline repository, and a clinical event monitor
that allows the execution of CIGs driven by clinical events. The business logic
layer contains an execution engine consisting of a server and many clients that
interact with users. The bottom interface layer contains the applications respon-
sible for exchanging information with the upper layers. The execution engine
records every clinical parameter from a patient during the execution of a CIG,
suggesting actions to be performed. In addition, the user can control the process
by confirming or deciding different transitions between actions.

The Spock Engine [?] was developed to enable the execution of CIGs in the
Asbru model [?]. It incorporates an inference engine that can retrieve data from
the patients electronic medical record. It is a modular client-server application
that consists of a set of classes to store guidelines, a parser to interpret their
content and a synchronizer that establishes the communication with external
systems. This execution engine stores different data structures such as state
transitions, a queue of scheduled awaiting tasks, and the list of recommendations
already issued. This strict control of tasks stems from the expressiveness of the
Asbru temporal model, which provides various temporal patterns for the control
of recommendation steps.

The GLARE Execution Engine was also developed based on a CIG model
focused on temporal constraints, the Guideline Acquisition, Representation and
Execution (GLARE) [?]. CIGs in GLARE follow a proprietary graph-based
structure, where a clinical action is represented by a node. It is possible to define
atomic actions like queries to obtain information, work actions that represent
medical procedures, decision actions with sets of conditions, and conclusions
that describe the output of a decision. Similarly to the other systems, GLARE
also defines three abstraction layers. In this case they are called system, xml,
and dbms. The system layer contains an execution interface tied to an execution
engine that interprets and updates XML files representing instances of patients
and guideline executions in the xml layer. These are intermediate structures used
to exchange data with the dbms layer and the system layer in a structured way.



All these systems use structures and well-defined languages that can be read
and analysed by a program. Furthermore, they also feature a guideline reposi-
tory, a run-time engine for the CIG knowledge, and an electronic medical record.
Furthermore, they may, as in the case of the GLARE Execution Engine, support
modules that describe the context, mainly in terms of available resources, of the
health care institution where CIG deployment is taking place. Their objective is
to run CIG instructions against data from patients and produce tailored recom-
mendations, according to the observed state. In these systems, the role of the
execution engine is straightforward, in the sense that it is merely concerned with
following the constraints of the clinical work flow, comparing items of the pa-
tient state with conditions stated in rules dictating whether a recommendation
should be provided or not. Most applications for CIG execution, including the
above-given examples, exist in the form of client-server applications, with the
intelligence engine placed on the client side. Furthermore, these applications are
mostly available as desktop applications, which is an obstacle to their potential
for reaching health care professionals and their ease of deployment.

The idea of enhancing CDSSs with additional features that allow them to
achieve a higher level of integration of clinical recommendations in clinical prac-
tice comes from the ever-increasing role of Ambient Assisted Living (AAL) in
enabling new information and communication services which transparently sup-
port people in their everyday lives [?,?]. In fact, a similar idea has been explored
in [?], where a personal memory assistant, capable of intelligent scheduling and
deployed over a platform, called iGenda. The assistant acts as the support for a
centralised manager system that can manage several services and is responsible
for the scheduling of multiple agendas, taking into account the availability of
resources or the health conditions of the users. Although different, the work pro-
posed herein can be related to this project and others such as the Collaborative
Memory Aids [?] and Hermes [?], but with the focus placed on the health care
professional.

3 CompGuide Ontology for Clinical Practice Guidelines

The CIG model used in this work is the CompGuide ontology [?]. It provides
representation primitives for clinical recommendations based on Web Ontology
Language (OWL) by following a task network model in which each recommen-
dation assumes the form of a task. In order to reflect this, a set of key OWL
classes were defined as subclasses of ClinicalTask. They include the folllowing:

– Action: a task that should be performed by a health care professional such
as an observation, procedure, exam, or treatment application;

– Question: a task to get information about the clinical parameters that build
the state of the patient;

– Decision: a task that encodes a decision regarding the state of a patient,
featuring various options and respective conditions;

– Plan: a composed task containing instances of the other tasks defined to
achieve a specific goal.



In CompGuide there are object properties that connect instances of the
classes as mentioned above in order to define the relative order between tasks. In
this regard, it is possible to define: sequential tasks, parallel tasks which should
be executed simultaneously, and alternative tasks from which one is automati-
cally selected for execution. In this sense, a guideline in CompGuide resembles
a linked list of recommendations.

Additionally, it is possible to define different types of conditions that con-
strain task execution, including trigger conditions to select one amongst alter-
native tasks, pre-conditions which must be verified before executing a task, con-
ditions for options in Decision tasks, and expected outcomes for clinical tasks.
The Condition class allows the representation of these conditions with specific
properties for clinical parameters and their values.

The classes that enable the representation of temporal restrictions are all
subclasses of TemporalElement [?]. The relationship between these temporal
classes and the classes in ClinicalTask are shown in Figure 1, along with the
properties used to connect them. One of the subclasses of TemporalElement is
TemporalUnit which represents the different units in which a temporal constraint
may be expressed. It is an enumerated class consisting of the instances second,
minute, hour, day, week, month, and year. The main classes that enable the
definition of temporal restrictions about the execution of tasks are:

– Duration: definition of how long Actions and Plans should last.
– WaitingTime: definition of a delay in the start of a clinical task.
– Periodicity : definition of the frequency of a clinical task.
– CyclePartPeriodicity : a nested temporal pattern for the definition of a peri-

odicity within a periodicity.

Temporal reasoning about the state of a patient is enabled by the Temporal-
Restriction class, whose instances can be associated with a Condition through
the hasTemporalRestriction property. With the hasTemporalOperator property
a TemporalOperator is specified for the restriction. TemporalOperator consists of
two instances, within the last and within the following. The operator within the-
last is used when one aims to express that a condition about the patient state

must have held true at least once, within a period of time just before execution
time. It is used in trigger conditions, pre-conditions and conditions of rules in
Decision instances. This operator is interpreted by checking if, in the state of the
patient, there is a record regarding the parameter in the condition, registered
within the specified time frame, whose value validates the condition. As for the
within the following operator, it expresses a condition about the future, in which
one aims to observe the effect a clinical task has after being applied to a patient.
Such conditions are used in task outcomes. Within the context of a CPG for the
diagnosis and treatment of colon cancer, an example of a temporal restriction
would be an Action that advised chemotherapy with an outcome stating that
the tumour should become operable within six months. In this case, there is a
condition with a temporal restriction featuring a within the following operator.

The details of the CompGuide model are further provided in [?], along with
an assessment of the expressiveness of the model compared to other approaches



Fig. 1: Representation of the CompGuide ontology with clinical tasks and respective
temporal elements.

that revealed that it enables the representation of more temporal patterns. The
interpretation of the work flow of tasks, their clinical constraints, and their tem-
poral constraints demands an execution engine capable of analysing these three
aspects and crossing them with patient information. However, these instructions
may become too intricate for a clear understanding, which demands ways of de-
livering CIGs that also help to manage the complexity of these recommendations
during their enactment.

4 CompGuide Architecture for CIG Execution

The CompGuide system follows a service-oriented architecture that aims to pro-
vide recommendations to support medical decision-making. As shown in Figure
2, it consists of a Core Server that is the central component of the architec-
ture and was developed as a RESTful web service application. The usage of web
services as the means to access the Core Server offers consistent performance
to access the web resources, better scalability and modifiability, providing the
possibility of improving selected services without compromising others. This ar-
chitectural style grants greater flexibility when integrating CIG execution func-
tionalities in third party applications [?]. Given the architecture style used for
the system and the concept of a centralised CIG management system that allows
different implementations, the distribution of CompGuide follows a software as
a service (Saas) model.

The Core Server has four modules: the Authentication Agent, the Guide-
line Handler, the Database Handler and the Guideline Execution Engine. The



Authentication Agent is the component responsible for the authentication and
authorization of the different types of users of the system, namely administra-
tors and health care professional, such as physicians or nurses. The Guideline
Handler is responsible for managing the access to recommendations of CIGs
in the Guideline Repository, keeping different CIGs represented according to
the CompGuide ontology, organised by authorship and by date. This compo-
nent consists of a collection of OWL files. In order to use a CPG for execution,
the Guideline Handler accesses the selected CIG in the Guideline Repository
and pulls the corresponding care flow, delivering it to the Guideline Execution
Engine. This module uses information about the patient state provided by the
Database Handler as well as temporal constraints on the execution of the clinical
tasks and temporal constraints on the state of a patient given by the Guideline
Handler to fill in the data entry points of the care flow and produce recom-
mendations. Thus, the Guideline Execution Engine interprets all the scheduling
constraints on the tasks and produces enactment times. The applications imple-
mented to interact with the health care professionals are then responsible for
verifying starting and ending. These mechanisms to follow the execution of pro-
cedures over time and to check the execution of tasks are absent from most CIG
frameworks [?], but they are essential to have a decision support that is truly
capable of following up on guideline deployment.

The Core Server, as mentioned before, provides these features as RESTful
web services implemented in Java, using the RESTEasy API over a WildFly Ap-
plication Server. The Personal Assistant Web Application, which uses the web
services available in the Core Server, was developed as a web application fol-
lowing the Model-View-Control(MVC) paradigm using Java Server Faces (JSF).
The Health Care Assistant Mobile Application is an android application devel-
oped in Java, which also uses the same web services. The purpose of the Core
Server is to make available CIG services that anyone can integrate into their own
applications, with a special focus on AAL applications. Following the parallel
with Saas, this form of delivering CIGs can be considered to be guideline as a
service.

Fig. 2: Architecture of CompGuide system



4.1 CompGuide RESTful Web Services

The CompGuide web services provide a set of features that allows accessing the
Guideline Repository as well as saving, removing and updating information in
the Database. Their description is as follows.

The Guideline Service handles the logic of the execution of a guideline, task
to task, obtaining codified tasks in the ontology, providing them as recommen-
dations. The Get Tasks Service provides a list of tasks that must be executed
at a given moment. In order to get the next task to be executed, the user must
perform a request to the Next Task Service.

The Guidelines Service has only one web service that provides the list of ex-
isting guidelines in the data base. Additionally, the Guideline Execution Service
represents the execution of a guideline initiated by a physician and associated
with a patient, so this web service provides information about the execution of a
guideline. To add a new execution, the user must perform a request to the Add
Guideline Execution Service. Regarding the Guideline Execution Active Service,
this web service provides a list of the active executions of guidelines for a specific
user.

It is also possible to retrieve and alter patient information through the Patient
Service, which allows to add, remove, update and retrieve patient information.

Finally, the Task Service and User Service follow the same structure of the
previous services, allowing the access and manipulation of information about
these respective entities in the Database.

4.2 Personal Assistant Web Application

The Personal Assistant Web Application is an application that highlights the
role of CPGs as patient management and following tools. Based on the informa-
tion provided by the Execution Engine, it can keep track of clinical tasks that
should be carried out by the health care professional. By using information and
communication systems, it is possible to provide CIGs with dynamism, presence,
and interactivity that may bring them closer to the concept of living guidelines.
It enables the management of information about CPGs, health care profession-
als that are users in the system, and patients to which CPGs are applied. As
such, one can create, edit and delete all this information, according to the type
of authorization in the system.

In order to facilitate the visualisation of the clinical tasks, for the health
care professionals, the application provides two forms of displaying these rec-
ommendations. The first is a timeline in which all the clinical tasks are shown
over a chronogram. A timeline of activities has the ability to compress multiple
tasks into a single continuity without compromising the succession, and the easy
understanding of clinical procedures. The benefits from such a representation
include the capacity to sequence events and reduce the potential for overbur-
dening the health care professional. Additionally, by visualising all of the pieces
of a guideline treatment, care providers can make more focused, effective deci-
sions about resources and timetables. This view is shown in Figure 3. In it, it



is possible to observe clinical tasks for the management of colon cancer, namely
sequential workup actions to ascertain the state of the patient.

Fig. 3: Timeline view of clinical procedures in the CompGuide Personal Assistant Web
Application.

The other available view is a calendar in which the health care professional
can visualise the tasks according to the temporal granularity he sees fit, namely
week, day, and month. While with the timeline it is easier to detect the starting
and ending points of tasks, with the calendar view it is easier to grasp the
temporal constraints that bind clinical tasks such as durations, waiting times
and periodicities. Figure 4 shows the same tasks as in the timeline, but displayed
over a week, where it is possible to verify, for instance, for how long a clinical
task should be applied. The purpose of the calendar view is to avoid overlooking
tasks and dismissing them as that may have an adverse impact on the evolution
of the patient.



Fig. 4: Calendar view of clinical procedures in the CompGuide Personal Assistant Web
Application.

In order to ensure the execution of tasks at the designated time, it was neces-
sary to implement a notification system and a message box. These elements are
both shown in Figure 5. The message box features messages such as indications
about the tasks that should be performed or should have already been performed,
offering the possibility to mark them as executed. As for the notification system,
it is used to periodically alert the user about task enactment times and steps
to collect information about the patient, such as the outcomes of clinical tasks,
according to their respective temporal restrictions. The notifications are shown
as a pop-up message.



Fig. 5: Message box and notification in the CompGuide Personal Assistant Web Appli-
cation.

4.3 Health Care Assistant Mobile Application

In order to improve patient monitoring to increase the efficiency when treating
the patients and the preparation for the appointments by the health care pro-
fessionals, we developed a mobile solution. The mobile application allows the
physicians or nurses to consult and monitor the progress of patients as well as
the clinical recommendations wherever they need to.

The application uses the CompGuide web services to request all the patient
data and clinical tasks, whereby the recommendations are displayed in a calendar
of clinical procedures that was implemented using the Custom Calendar library
[?]. The clinical tasks are the same that can be seen in the web application,
since these two assistants, the web and mobile application, use the centralised
RESTful web service developed in the Core Server. The fact that all the data
is centralised in only one component makes allows a better tracking of the user
actions, greater control over his decisions and get constant supply of clinical
recommendations.

The calendar widget provides the view and methods necessary to display
a calendar and schedule events. With this calendar, it is possible to navigate
through the months and by clicking on a particular date, all the events for that
day are shown below in the calendar, as depicted in Figure 6.

Its main objectives are to provide timely clinical recommendations and inte-
grate them in the clinical practice of the health care professional. As future work,
a push notification feature can be implemented in order to inform the users of



when they should execute clinical tasks, when they should start them and when
they should finish them.

Fig. 6: Calendar view of clinical procedures in the mobile application.



4.4 Integration with Google Calendar

The Google calendar API was developed to allow the integration of applications
with Google calendar and its features. The managing of events and the push
notifications are the most interesting features, the user can use to monitor and
supervise the clinical tasks to take control of all patient parameters and clinical
process. With this API, it is possible to manage the information regarding the
clinical recommendations as well as oversee and follow-up these tasks anytime
and anywhere with only a mobile device. Thus, both health care assistants can
sync the calendar present in CompGuide with their Google calendar account.
The Google calendar provides a public RESTful API that allows the integration
with a variety of devices and services on the internet. This API lets the users
display, create and modify calendar events as well as work with many other
calendar-related objects, such as calendars or access controls [?]. Furthermore,
its Java API is native to the Android operating system, allowing a possible
integration in the future with the mobile application.

Regarding the integration of the API, firstly it was necessary the registra-
tion of the application in the Google console, and then the download of Google
credentials, to use in the application. After these credentials were integrated
into the project, it was possible to communicate with the API. This REST API
can be utilised by making explicit HTTP calls, but there are client libraries im-
plemented in various programming languages that make the API easier to use.
Thus, we used the Java client library, since the web and mobile assistants are
implemented in Java.

To export the clinical tasks, presented in the calendar view of the CompGuide
web assistant, it is necessary to click on the ”Export to Google Calendar” button.
This view is shown in Figure 4 a). After this action, the user will be redirected
to the Google consent screen, asking to authorise the CompGuide application
to request some user data. If the user approves, then Google gives a temporary
access token that allows the application to request user data. Therefore, the
CompGuide will attach the access token to the request, process all the clinical
tasks and its temporal constraints, in order to create the events into the Google
calendar of the user.

Through the Google calendar application, the users can see the clinical tasks
and their details by clicking on the task, as shown in Figure 7 b).



Fig. 7: Calendar view of clinical procedures in Google calendar.

5 Execution Examples

To test our temporal ontology, we used the NCCN Clinical Practice Guideline
for Colon Cancer [?]. Its representation resulted in an OWL file containing 223
task instances, of which: 190 were Action tasks, 21 were Question tasks, one
was a Decision task, and 11 were Plans. Out of the 223 tasks, a total of 95 had
temporal constraints. The representation of the NCCN guideline in the model
was carried out using Protégé, an ontology editor for OWL. 4.1. This CPG
includes procedures that unfold over different phases of treatment, from cancer
staging to follow-up, and presents a wide variety of temporal patterns. The most
abundant pattern was the Periodicity, mainly because of the rich description of
chemotherapy regimens made in this protocol.

As demonstrated in [?], the temporal ontology was able to represent effec-
tively all the temporal patterns in the CPG, with a special focus on Durations
and Periodicites, since they were the most frequent temporal aspects. Consider-
ing an example of a task in the form of a clinical Action from the CPG, which we
will refer to as Example 1 from now on, the use of a Duration constructor may
be derived from the following description ”perform neoadjuvant therapy for six
months”. In it, the Action consists in neoadjuvant therapy (a term used to refer
to chemotherapy or radiotherapy) before treatment with a Duration expressed
using an exact duration value of six and a temporal unit of month.



Regarding periodic tasks, most of them were also bounded by a Duration. The
constraints followed a structure similar to the one in the recommendation ”apply
medication for neoadjuvant therapy every two weeks for two-three months”,
which we will consider as Example 2. It is possible to identify the Action to
apply medication for neoadjuvant therapy, the periodicity value of two with a
temporal unit of week, a minimum duration value of two, a maximum duration
value of three, and the respective temporal unit of month. In this case, the
execution engine would recommend the execution of the task with the specified
frequency at least for two months and at most for three.

The Guideline Execution Engine from the CompGuide architecture is used to
produce inferences that ultimately result in recommendations of clinical tasks.
Once these recommendations are retrieved, their constraints (in this case, their
temporal constraints) are interpreted by the Personal Assistant Web Application
and mapped onto the different views mentioned earlier. With this, for Example
1, an event with a duration of 6 months is created, starting on the 18th of July
of 2017, as shown in Figure 8 a), and finishing on the 16th of January of 2018,
as can be seen in Figure 8 c). The corresponding result for the expression that
concerns Example 2 consists of a set of events that repeat every two weeks, so the
application will unfold the recommendation in multiple events and register them
in the timeline. Although the execution engine would recommend the execution
of the task with the frequency at least for two months and at most for three,
the Personal Assistant Web Application will display the maximum duration
(three months) because it is the upper bound of the task. Nonetheless, the task
controllers will notify the health care professional when the minimum duration
is achieved. As such, the result would be six new calendar events from the start
date of the task execution up to three months. The first and second events start
on the 18th of July and 1st of August, as shown in the Figure 9 a). The third
and fourth start on the 15th and 29th of August, as depicted in Figure 9 b).
Finally, the fifth and sixth events start on 12th and 26th of September, as shown
in Figure 9 c). Then, the user can consult on the timeline and calendar widgets
the scheduling of these events in order to execute the clinical task and manage
its completion. Whenever the users should execute the tasks or when they should
start them, the application provides notifications, as side messages, about the
different temporal constraints, thus alerting the user.



Fig. 8: Execution of a clinical task from Example 1, as can be seen in the Personal
Assistant Web Application. Figures a), b), and c) show different consecutive execution
times.

6 Conclusions and Future Work

The CompGuide system presented herein aims to increase the reach of CIGs
beyond the medical office. The purpose of the different implementations is to
ensure the timely enactment of clinical procedures over the course of patient
management, removing the possibility of inadvertently skipping steps that may
prove to be crucial later on for his recovery. In addition to decision support func-
tionalities, common to other CIG systems, the CompGuide system allows the
development of additional scheduling and alert features to assist the health care
professional in keeping track of their patients. Therefore, its main contribution
is a new method to integrate CPG advice in a clinical setting and make it easily
available. The Guideline Execution Engine included in the Core Server estab-
lishes the relative order of tasks to be executed and their execution times based
on the clinical information retrieved from the patient. This is the most complex
part of CIG deployment, given the complexity, the procedural and temporal
patterns of CPGs may show. Once these constraints are produced and delivered
through a distribution model, in the form of guideline as a service, it becomes
possible to develop reminder tools like the ones described herein. Here lies a de-
velopment that can close the gap between CPGs and practitioners and promote
the integration of evidence-based clinical advice in AAL monitoring systems.

This mapping of the clinical tasks onto a temporal execution line raises a
relevant question. The modus operandi of the Personal Assistant Web Appli-



Fig. 9: Execution of a clinical task from Example 2, as seen in the Personal Assistant
Web Application. Figures a), b), and c) show different consecutive execution times.

cation is to issue notifications and alerts in order to promote compliance from
the physician. However, if tasks are not executed at their appropriate times,
the tool only issues alerts and allows the physician to skip the task and move
to the next one. There are other methods to manage this situation, but all of
them have drawbacks. Re-scheduling the task may imply verifying if the state
of the patient allows the enactment of the procedure at a later time. Not per-
forming the task may be equally damaging to the patient. Such an issue will
be under consideration in future developments of the system. Additionally, we
recognise the need for an evaluation of the system and both the Personal As-
sistant Web Application and the health care assistant mobile app. Such can be
done by through an experiment in which a physician uses the system and its
two implementations to obtain advice about the patients he is responsible for.
In addition to usability assessments, with this experiment, it will be possible to
compare the recommendations provided by the system to those the health care
professional would usually issue. It is our intention to conduct this study and
obtain an assessment of the fitness of the system to CIG deployment.



Acknowledgements

This work has been supported by COMPETE: POCI-01-0145-FEDER-0070 43
and FCT Fundação para a Ciência e Tecnologia within the Project Scope
UID/CEC/ 00319/2013.


