
Ana Silva et al ADCAIJ Author Submission Guidelines

Treating Colon Cancer Survivability
Prediction as a Classification Problem

Ana Silva, Tiago Oliveira, José Neves, and Paulo Novais
Algoritmi Centre/Department of Informatics, University of Minho, Braga, Portugal
a55865@alunos.uminho.pt, {toliveira,jneves,pjon}@di.uminho.pt

KEYWORD ABSTRACT

colon cancer;
prediction; machine
learning

This work presents a survivability predictionmodel for colon cancer developed
with machine learning techniques. Survivability was viewed as a classification
task where it was necessary to determine if a patient would survive each of
the five years following treatment. The model was based on the SEER dataset
which, after preprocessing, consisted of 38,592 records of colon cancer patients.
Six features were extracted from a feature selection process in order to construct
the model. This model was compared with another one with 18 features
indicated by a physician. The results show that the performance of the six-
feature model is close to that of the model using 18 features, which indicates
that the first may be a good compromise between usability and performance.

1. Introduction
Colorectal cancer is one of the most common types of cancer of the digestive system. It is the third most common
cancer overall with an incidence rate of 9.7% and the fourth most deadly with a mortality rate of 6.41% (Ferlay
et al., 2012). This is a pathology that affects the walls of the colon and rectum and consists in the abnormal
growth of the cells lining these portions of the digestive tract (Vachani and Prechtel-Dunphy, 2015). The term
colorectal is used to represent two different pathologies, colon cancer and rectal cancer. Although these two
pathologies have aspects in common, they are different diseases and are characterized by different dynamics
and molecular pathways (Yamauchi et al., 2012). Colorectal cancer affects mostly the elderly and among its risk
factors are smoking, inherited gene mutations, and personal family history of colorectal cancer. Most colorectal
cancers develop in the colon, which consists of the cecum, ascending colon, tansverse colon, descending colon,
and sigmoid. This work will focus on this colorectal cancer variant.

In terms of treatment, surgical resection is the preferred choice when it comes to colon cancer. As it is
an aggressive treatment, most of the times followed by chemotherapy, it is often unclear whether patients will
be able to endure it or not. Therefore, estimating the survivability of colon cancer patients is an important
clinical decision making element for health care professionals, one that may help them to decide if a patient will
need palliative care or to inform patients more accurately. However, it is not an easy task and even seasoned
oncologists have trouble in making such predictions. As such, the objectives of this work are:

• To develop an individualized survivability prediction model for colon cancer patients in years 1, 2, 3, 4,
and 5 after treatment;

• To determine the ideal number of features to make a prediction and to operationalize the prediction model
in an application;

• To determine which features are important for colon cancer survivability prediction;
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The starting point was the the Surveillance, Epidemiology, and End Results (SEER) program (National
Cancer Institute, 2015), a large cancer registry from theUnited States (US)with data from 1973 to 2012, featuring
a total of 8,689,771 cancer cases. After the extraction of data of colon cancer patients in several pre-processing
steps, different machine learning strategies were applied in order to produce a survival prediction model in the
form of several classifiers.

The structure of this paper is as follows. Section 2 introduces previous works in colon cancer survivability
prediction. Section 3 explains the prediction system under development with the specification of the type of
inputs it should receive and the outputs it should produce. It also describes the steps and machine learning
methods used to develop the prediction model. The corresponding experimental results are disclosed and
discussed in Section 4. Finally, Section 5 provides concluding remarks about the work done so far and future
work considerations.

2. Related Work
Most of the existing approaches for colon cancer survivability prediction are based on the SEER data. An
example is the web-based calculator1 developed in (Bush and Michaelson, 2009) whose underlying prediction
model is the Nodes + Prognostic Factors (NAP), based on the number of positive lymphatic nodes combined
with other prognostic features. The model has an underlying biological motivation, reflected in the use of the
probability of a cancerous cell invading healthy tissues to formulate equations for cancer lethality, combined
with other prognostic features estimated by means of simulation of several statistical tests. The model requires
inputs for 9 features and provides a prediction of the mortality risk over the period of 15 years.

Another SEER-based approach is the one followed in (Chang et al., 2009), also made available in the form
of a web application 2. The prediction model has 5 input features, derived through a Cox regression analysis to
evaluate simultaneous effects of multiple variables on survivability. This resulted in adjusted survival functions
stratified by 5 features. The conditional survival probabilities for a period of 10 years produced by the model are
calculated on the basis of the adjusted survival functions for the features, controlled for the influence of other
covariates in the final model.

A similar approach was followed in (Weiser et al., 2011), in which a survival prediction model for a period
of 5 years was developed based on multi-variable regression, with Cox proportional hazards modelling, using 7
prognostic features 3. All the features were chosen a priori, on the basis of their well established independent
association with overall survival and their availability in the SEER data.

In (Snow et al., 2001) an artificial neural network model and a regression-based model were developed to
predict patient survival status 5 years after treatment. The models have 12 input features and were based on
data from the National Cancer Data Base (NCDB), a cancer registry in the United Kingdom. This work had a
strong machine learning component and is among the first to apply methods from this field of computer science
to colon cancer survival prediction. Another example is the work in (Al-Bahrani et al., 2013), in which a 5-year
survival prediction model was developed using ensemble machine learning with supervised classification. The
number of selected features for prediction in this work was 13 and the resulting model achieved an overall high
performance in terms of precision, accuracy, and receiver operating characteristic (ROC).

The work developed herein distances itself from the works in (Bush and Michaelson, 2009; Chang et al.,
2009; Weiser et al., 2011) by treating survival prediction as a classification problem and applying varied machine
learning methods to obtain a model capable of individualized survival prediction. In this regard, it is influenced
by the methodology followed in (Al-Bahrani et al., 2013), whose work will serve as a reference for direct

1Application available at http://www.lifemath.net/cancer/coloncancer/outcome/index.php.
2Application available at http://www3.mdanderson.org/coloncalculator.
3Application available at http://nomograms.mskcc.org/Colorectal/OverallSurvivalProbability.aspx
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Figure 1: Workflow for the development of the prediction model.

comparison. At the same time, this work aims to produce 5-year survival predictions using fewer features
than the existing approaches, which may be the deciding factor for the adoption of a clinical decision support
application.

3. Development of the Prediction Model
The colon cancer survival prediction system should have the ability to accept a determined number of inputs for
selected prediction features and produce an output stating whether the patient will survive each of the five years
following treatment, along with a confidence value for the prediction. The survival prediction was handled as
a classification problem, so that five classification models for each year were developed. In order to provide
a prediction for each year with a single interaction, the models were posteriorly combined, in a programmatic
manner.

The development of these prediction models involved several phases, from the preprocessing of SEER data
to the selection of the best model. All of them are depicted in the workflow of Figure 1 and each one is described
in the ensuing sections.

The RapidMiner software4 was chosen to develop the prediction model. It has a workflow-based interface
that offers an intuitive application programming interface (API).

3.1 Preprocessing, Split Dataset, and Balancing Data
In order to load the data provided by SEER to RapidMiner, the data in raw format had to be converted into csv
format, through a developed script. The data of colorectal cancer from SEER contained 515,791 records and
146 attributes, with only some of them being applicable to a limited period within the time of data collection.
After the preprocessing phase and selecting the colon cancer patients, the data was reduced to 38,592 records.

In order to minimize the occurrence of missing data due to the applicability of the attributes, during the
Preprocessing phase was defined a period of interest, from 2004 onwards. Additionally, attributes that are not
applicable to this type of cancer (e.g., the human epidermal growth factor receptor 2 result is an indicator used
in breast cancer only(Wolff et al., 2007)), empty attributes, and attributes that are not directly related with the
vital status of the patient were removed (e.g. the number identifying the registry of the patient). Only patients
with age greater than or equal to 18 years old were selected for further processing – because of colon cancer
is not common in young people –, and the missing values were replaced with the unknown code. Patients who
were alive at the end of the data collection whose survival time had not yet reached 60 months (five years), the
maximum period for which the model under development is supposed to predict survivability, and those who
passed away of causes unrelated to the cancer were sampled out from the training set as their inclusion was
considered to be unsuited to the problem at hand. The numeric attributes were converted to nominal (e.g. sex)
and the binary classes (survived and not survived) were derived for the target labels 1-, 2-, 3-, 4- and 5-year

4Software available at https://rapidminer.com/.
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Table 1: Class distribution for each target label in the sub-datasets.

Target Labels
1 Year 2 Year 3 Year 4 Year 5 Year

Not Survived 24.51% 32.60% 36.96% 39.35% 41.07%
Survived 75.49% 67.40% 63.04% 60.65% 58.93%

Table 2: Attributes selected in the Feature Selection process.

Attribute Description

Age recode
with < 1 year old

Age groupings based on age at diagnosis (single-year
ages) of patients (< 1 year, 1-4 years, 5-9 years, ...,
85+ years)

CS Site-Specific Factor 1 The interpretation of the highest Carcinoembryonic
Antigen (CEA)5 test results

CS Site-Specific Factor 2 The clinical assessment of regional lymph nodes
Derived AJCC Stage Group The grouping of the TNM information combined

Primary Site Identification of the site in which the primary tumor
originated

Regional Nodes Examined The total number of regional lymph nodes that were
removed and examined by the pathologist

survival. Finally, based on existing attributes new ones were calculated, such as the ratio of positive nodes over
the total examined nodes, the number of regional lymph negative nodes and the relapse of the patients for colon
cancer. The attributes were diminished to 61 after the Preprocessing, including the added attributes and the target
labels.

Data was split into five sub-datasets during the Split Dataset phase by target label, according to the survival
year. Table 1 shows the class distribution of each sub-dataset.

Observing Table 1 is seen that the classes are not equally represented. Several studies (Chawla, 2005; Leon
and Jalao, 2014) show how important the problem of using imbalanced datasets is, from both the algorithmic and
performance perspectives. An overview of classification algorithms for the resolution of this kind of problem
(Ganganwar, 2012) concluded that hybrid sampling techniques, i.e., combining over-sampling of the minority
class with under-sampling of the majority class, can perform better than just oversampling or undersampling.
As such, in the Balancing Data phase, hybrid sampling was applied in order to generate balanced sub-datasets,
as described in (Ganganwar, 2012). It resulted in five sub-datsets with 38,592 records each.

3.2 Feature Selection
The Feature Selection phase was an essential phase where the most influential features on the survival of colon
cancer patients were determined using the Optimize Selection operator (RapidMiner, 2016c) of RapidMiner.
It implements a deterministic and optimized selection process with decision trees and forward selection. The
process was applied to each sub-dataset for the target label. Only the selected features in common to all the sub-
datasets were used to construct the prediction models. Table 2 shows the selected features and their meaning.

The selected features, a total of 6, were compared with a set of 18 features (shown in Table 3) indicated by a
specialist physician on colon cancer. Several prediction models were constructed with these two sets of features,
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Table 3: Attributes selected by a specialist physician on colon cancer.

Attribute Description

Age at Diagnosis The age of the patient at diagnosis
CS Extension Extension of the tumor
CS Site-Specific Factor 8 The perineural Invasion
CS Tumor Size The size of the tumor
Derived AJCC T, N and M The AJCC T, N and M stage (6th ed.)
Grade Grading and differentiation codes

Histologic Type The microscopic composition of cells and/or
tissue for a specific primary

Laterality The side of a paired organ or side of the body
on which the reportable tumor originated

Primary Site *
Race Recode (White, Black, Other) Race recode based on the race variables
Regional Nodes Examined *

Regional Nodes Positive
The exact number of regional lymph nodes
examined by the pathologist that were found to
contain metastases

Regional Nodes Negative (Regional nodes examined - Regional nodes
positive)

Regional Nodes Ratio (Regional nodes negative over Regional nodes
examined)

Relapse The relapse of the patients for colon cancer
Sex The sex of the patient at diagnosis
* Described in Table 2.

mapping the attributes in the sub-datasets and later used to generate and evaluate the prediction models.

3.3 Modeling and Evaluation
The classification strategies used in the Modeling phase consisted of ensemble methods. The classification
schemes applied were meta-classifiers. This type of classifier is used to boost basic classifiers and improve their
performance. All the possible combinations of the classifiers were explored, according to the algorithms and
type of attributes allowed. The tested meta-classifiers were:

• Bagging (Breiman, 1996): Also called bootstrap aggregating. It splits the data intom different training sets
on which m classifiers are trained. The final prediction results from the equal voting of each generated
model on the correct result. Bagging is used to improve stability and classification accuracy, reduce
variance and avoid overfitting.

• AdaBoost (Freund and Schapire, 1997): This meta-classifier calls a new weak classifier at each iteration.
A weight distribution which indicates the weight of examples in the classification is updated. It focuses
on the examples that have been misclassified so far in order to adjust subsequent classifiers and reduce
relative error.
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• Bayesian Boosting (RapidMiner, 2016a): A new classification model is produced at each iteration and
the training set is reweighed so that previously discovered patterns are sampled out. The inner classifier
is sequentially applied and the resulting models are later combined into a single model. The boosting
operation is conducted based on probability estimates. It is particularly useful for discovering hidden
groups in the data.

• Stacking (Džeroski and Ženko, 2004): This meta-classifier is used to combine base classifiers of different
types. Each base classifier generates a model using the training set, then a meta-learner integrates the
independently learned base classifier models into a high level classifier by re-learning ameta-level training
set. This meta-level training set is obtained by using the predictions of base classifiers in the validation
dataset as attribute values and the true class as the target.

• Voting (Kittler, 1998): Each inner classifier of the meta-classifier receives the training set and generates
a classification model. The prediction of an unknown example results from the majority voting of the
derived classification models.

Since survivavility prediction is being handled as a classification problem, a group of basic classifiers were
selected to be used in ensembles with the above-described meta-classifiers. The group includes some of the
most widely used learners (RapidMiner, 2016b) available in RapidMiner, namely:

• k-NN (Lazy Modeling) (Han et al., 2006): this algorithm is based on learning by analogy. The training
examples are described by n attributes and each of them represents a point in a n-dimensional space. The
test example is compared with them by searching the pattern space and it is classified according the k
training examples closest to it. The similarity is determined in terms of a distance metric, such as the
Euclidean distance.

• Naive Bayes (BayesianModeling) (Unnikrishnan et al., 2011): it is a simple probabilistic classifier, based
on the application of the Bayes theoremwith the strong (naive) assumption of independence between every
pair of features.

• DecisionTree (Tree Induction) (Radhakrishnan and Priyaa, 2015): the data is classified using a hierarchical
splitting mechanism (repeatedly splitting on the values of attributes), looking like an inverted tree with the
root at the top and growing downwards. Each node of the tree corresponds to one of the input attributes.
Normally, the recursion stops when all or most of the examples or instances have the same label value.

• Random Forest (Tree Induction) (Kotu and Deshpande, 2014): set of a specified number of random
trees is generated, working like the Decision Tree. However, it uses only a random subset of attributes for
each split. The resulting model is a voting model of all the random trees.

A total of fourteen classification schemes were explored for each set of attributes (6 and 18 attributes) for
1, 2, 3, 4, and 5 survival years. The learning combinations of meta-classifiers with basic classifiers are as
follows. The Stacking model used k-NN, Decision Tree, and Random Forest classifiers as base learners, and a
Naive Bayes classifier as a Stacking model learner. The Voting model used k-NN, Decision Tree and Random
Forest as base learners. The other models were used in combination with each basic classifier. For evaluation
purposes, 10-fold cross-validation (Refaeilzadeh et al., 2009) was used to assess the prediction performance of
the generated prediction models and avoid overfitting.
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Table 4: Survivability Percentage Accuracy.

Accuracy
1 Year 2 Year 3 Year 4 Year 5 Year Average

Ensemble Model 18 attributes 6 attributes 18 attributes 6 attributes 18 attributes 6 attributes 18 attributes 6 attributes 18 attributes 6 attributes 18 attributes 6 attributes

Stacking 98.28% 96.15% 97.63% 96.78% 98.02% 97.12% 98.02% 97.26% 97.83% 96.81% 97.96% 96.82%
Voting 97.96% 95.87% 97.41% 96.49% 98.11% 96.57% 98.15% 97.03% 98.09% 96.62% 97.94% 96.52%
Bayesian Boosting
with Decision Tree 97.83% 96.33% 97.53% 96.76% 97.81% 96.95% 97.84% 96.98% 97.85% 96.72% 97.77% 96.75%

AdaBoost
with Decision Tree 97.83% 96.35% 96.89% 96.78% 97.81% 96.95% 97.84% 97.02% 97.85% 96.74% 97.64% 96.77%

Bagging
with Decision Tree 96.88% 95.17% 96.92% 95.97% 97.04% 96.05% 97.1% 96.08% 97.08% 95.76% 97.004% 95.806%

Bayesian Boosting
with Random Forest 83.18% 86.79% 84.29% 88.13% 84.4% 88.46% 84.97% 89.16% 85.11% 88.32% 84.39% 88.172%

AdaBoost
with Random Forest 82.12% 87.3% 83.64% 87.28% 84.78% 88.95% 83.04% 89.53% 84.17% 88.67% 83.55% 88.346%

Bagging
with Random Forest 84.71% 88.81% 84.89% 90.22% 85.81% 90.97% 86.33% 91.15% 85.87% 90.53% 85.52% 90.34%

Bayesian Boosting
with Naive Bayes 81.95% 82.19% 83.94% 83.94% 83.23% 84.55% 84.08% 85.02% 83.13% 84.99% 83.27% 84.14%

AdaBoost
with Naive Bayes 82.38% 82.08% 83.04% 83.95% 83.41% 84.57% 83.6% 85.11% 83.72% 84.96% 83.23% 84.13%

Bagging
with Naive Bayes 80.84% 82.14% 80.18% 83.97% 80.58% 84.5% 80.02% 84.95% 80.05% 84.96% 80.33% 84.10%

Bayesian Boosting
with K-NN 97.69% 94.51% 97.58% 94.73% 97.26% 94.78% 97.28% 94.63% 97.19% 94.6% 97.4% 94.65%

AdaBoost
with K-NN 97.69% 94.51% 97.58% 94.73% 97.26% 94.78% 97.28% 94.63% 97.19% 94.6% 97.4% 94.65%

Bagging
with K-NN 97.69% 94.47% 97.5% 94.77% 97.17% 94.76% 97.3% 94.66% 97.13% 94.54% 97.36% 94.64%

4. Experimental Results and Discussion
Each classification scheme was evaluated using the prediction accuracy and the area under the ROC curve
(AUC) for 1, 2, 3, 4, and 5 years. The accuracy is the percentage of correct responses among the examined cases
(Bradley, 1997). The AUC can be interpreted as the percentage of randomly drawn data pairs of individuals
that have been accurately classified in the two populations (Klepac et al., 2014), and it is commonly used as
a measure of quality for classification models (Bradley, 1997). Tables 4 and 5 present all the results obtained
for prediction accuracy and AUC respectively. The average performances in terms of accuracy and AUC of the
learning schemes for the 5 years are shown in Figures 2 and Figure 3 respectively.

From the observation of the figures and the tables, it is obvious that almost all the classification methods
demonstrated high performances, particularly the ones using decision trees. Out of those, the Stacking models
showed a slightly better average performance both in terms of accuracy (Figure 2) and AUC (Figure 3).

Comparing the results of the 6-attribute stacking models with those of the 18-attribute models, it is possible
to say that the differences are small. With an average of 96.82% for accuracy and 0.989 for AUC, the 6-attribute
stacking models had prediction accuracies for years 1 to 5 of 96.15%, 96.78%, 97.12%, 97.26% and 96.81%
(as seen in Table 4), and AUCs of 0.984, 0.987, 0.990, 0.991 and 0.991 (as seen in Table 5). The 18-attribute
models had an average accuracy of 97.96%, with values for years 1 to 5 of 98.28%, 97.63%, 98.02%, 98.02%
and 97.83%. The average AUC was 0.993, and the remaining values were 0.991, 0.993, 0.994, 0.994 and 0.994,
for years 1 to 5. The results show that it is possible to build a model with less than half of the features indicated
by the expert physician. Regarding the attributes obtained in the feature selection process, with the exception
of the site-specific factors, they were all connected with the features indicated by the specialist physician. It
should be noted that, in addition to the close performances, the difference between the number of attributes used
is important. To apply the attributes in a practical way (for instance, in a tool), the health care professional will
lose much time if he must introduce 18 attributes. This is a critical point, as it may lead to the rejection of the
tool.

Comparing this approach with others mentioned in Section 2, fewer features were necessary to develop
the prediction model. Moreover, in the approach followed in (Al-Bahrani et al., 2013), the closest to the one
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Table 5: Survivability AUC.

AUC
1 Year 2 Year 3 Year 4 Year 5 Year Average

Ensemble Model 18 attributes 6 attributes 18 attributes 6 attributes 18 attributes 6 attributes 18 attributes 6 attributes 18 attributes 6 attributes 18 attributes 6 attributes

Stacking 0.991 0.984 0.993 0.987 0.994 0.99 0.994 0.991 0.994 0.991 0.993 0.989
Voting 0.988 0.979 0.988 0.982 0.989 0.983 0.99 0.985 0.988 0.984 0.989 0.983
Bayesian Boosting
with Decision Tree 0.977 0.963 0.984 0.97 0.979 0.969 0.984 0.973 0.986 0.967 0.982 0.9684

AdaBoost
with Decision Tree 0.978 0.967 0.972 0.972 0.981 0.973 0.982 0.974 0.987 0.971 0.98 0.971

Bagging
with Decision Tree 0.981 0.977 0.971 0.97 0.974 0.969 0.976 0.972 0.978 0.965 0.976 0.971

Bayesian Boosting
with Random Forest 0.894 0.927 0.911 0.932 0.91 0.938 0.91 0.941 0.914 0.934 0.908 0.934

AdaBoost
with Random Forest 0.888 0.924 0.908 0.932 0.909 0.936 0.896 0.94 0.9 0.937 0.9 0.934

Bagging
with Random Forest 0.925 0.952 0.933 0.959 0.939 0.963 0.94 0.966 0.938 0.963 0.935 0.961

Bayesian Boosting
with Naive Bayes 0.896 0.888 0.9 0.9 0.916 0.912 0.916 0.917 0.912 0.913 0.908 0.906

AdaBoost
with Naive Bayes 0.901 0.89 0.907 0.902 0.917 0.912 0.914 0.918 0.915 0.914 0.911 0.907

Bagging
with Naive Bayes 0.872 0.887 0.885 0.906 0.896 0.92 0.9 0.926 0.898 0.923 0.89 0.912

Bayesian Boosting
with K-NN 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

AdaBoost
with K-NN 0.977 0.945 0.976 0.947 0.973 0.948 0.973 0.946 0.972 0.946 0.974 0.946

Bagging
with K-NN 0.98 0.948 0.979 0.954 0.977 0.953 0.977 0.954 0.977 0.952 0.978 0.952

Figure 2: Average survivability percentage accuracy: comparison of the 18-attribute models with the 6-attribute
models.
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Figure 3: Average survivability AUC: comparison of the 18-attribute models with the 6-attribute models.

Advances in Distributed Compu ng and
Ar ficial Intelligence Journal
©Ediciones Universidad de Salamanca / cc by-nc-nd

9

ADCAIJ, Regular Issue ALTERAR Vol 3 n.3 (2015)
h p://adcaij.usal.es



Ana Silva et al ADCAIJ Author Submission Guidelines

followed herein, the best model of colon cancer survivability prediction was based on a Voting classification
scheme, with prediction accuracies of 90.38%, 88.01%, and 85.13% and AUCs of 0.96, 0.95, and 0.92 for years
1, 2 and 5. As such, the present work represents an improvement and was able to achieve considerably better
results.

5. Conclusions and Future Work
This work involved the use of different meta-classification schemes to construct survival prediction models for
colon cancer patients. The best model found uses a Stacking classification scheme, combining k-NN, Decision
Tree, and Random Forest classifiers as base learners and a Naive Bayes classifier as a stacking model learner.

The ideal number of features for colon cancer survivability prediction was found to be 6. The selected set
includes: age, CS site-specific factor 1, CS site-specific factor 2, derived AJCC stage group, primary site, and
regional nodes examined. Overall the developed model was able to present a good performance with fewer
features than most of the existing approaches.

As future work we intend to conduct a similar analysis for rectal cancer, a pathology with similar characteris-
tics to colon cancer. Additionally, a mobile application to make the model available to the health care community
is under development for different mobile platforms, ready to assist health care professionals in carrying out their
duties at any time. In order to ensure that the model is able to adapt and adjust, an on-line learning scheme is also
being prepared. In this way, it will be possible for users to dynamically feed new cases to the prediction system
and make it change in order to provide better survival predictions. This type of model could also prove to be very
useful when integrated in computer-interpretable guideline systems, such as the one described in (Carneiro et al.,
2008; Costa et al., 2011; Lima et al., 2011; Oliveira et al., 2013; Oliveira et al., 2014; Novais et al., 2016), as a
way to provide dynamic knowledge to rule-based decision support. Future work also includes the development
of conditional survivability models that allow the user to get a prediction knowing that the patient has already
survived a number of years after diagnosis and treatment. Additionally, we intend to conduct experiments to
assess how well the tool fulfils the needs of health care professionals and identify aspects to improve.
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