
Q2

Q1

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Universidade do Minho: RepositoriUM
Contents lists available at ScienceDirect
Information Systems

Information Systems ∎ (∎∎∎∎) ∎∎∎–∎∎∎
http://d
0306-43

n Corr
espacial
León, 24

E-m
javier.al
toliveira
j.ordiere
manuel

Pleas
curv
journal homepage: www.elsevier.com/locate/infosys
Information system for image classification based
on frequency curve proximity

L. Sánchez a, Javier Alfonso-Cendón a,n, Tiago Oliveira b,
Joaquín B. Ordieres-Meré c, Manuel Castejón Limas a, Paulo Novais b

a University of León, Leon, Spain
b University of Minho, Braga, Portugal
c Polytechnic University of Madrid, Madrid, Spain
a r t i c l e i n f o

Article history:
Received 8 June 2015
Received in revised form
29 August 2016
Accepted 31 August 2016

Keywords:
Information system
Similarity search
Frequent itemset mining
Metadata
Image classification
x.doi.org/10.1016/j.is.2016.08.001
79/& 2016 Elsevier Ltd. All rights reserved.

espondence to: Dpto. Ingenierías Mecánica,
, Escuela de Ingenierías Industrial e Informá
071 León, Spain.
ail addresses: lidia.sanchez@unileon.es (L. Sá
fonso@unileon.es (J. Alfonso-Cendón),
@di.uminho.pt (T. Oliveira),
s@upm.es (J.B. Ordieres-Meré),
.castejon@unileon.es (M.C. Limas), pjon@di.u

e cite this article as: L. Sánche
e proximity, Information Systems (2
a b s t r a c t

With the size digital collections are currently reaching, retrieving the best match of a
document from large collections by comparing hundreds of tags is a task that involves
considerable algorithm complexity, even more so if the number of tags in the collection is
not fixed. For these cases, similarity search appears to be the best retrieval method, but
there is a lack of techniques suited for these conditions. This work presents a combination
of machine learning algorithms put together to find the most similar object of a given one
in a set of pre-processed objects based only on their metadata tags. The algorithm
represents objects as character frequency curves and is capable of finding relationships
between objects without an apparent association. It can also be parallelized using
MapReduce strategies to perform the search. This method can be applied to a wide variety
of documents with metadata tags. The case-study used in this work to demonstrate the
similarity search technique is that of a collection of image objects in JavaScript Object
Notation (JSON) containing metadata tags.

& 2016 Elsevier Ltd. All rights reserved.
63

65

67

69

71

73
1. Introduction

Due to the current diversity and availability of image
capturing devices, such as digital cameras, digital scanners
and smartphones, and the use of the Internet to dis-
seminate content, the size of digital image collections is
continuously increasing. The predictions from a technical
report from the International Data Corporation [1] point
towards a growth of digital content from 130 exabytes to
75

77

79

81

Informática y Aero-
tica, Universidad de

nchez),

minho.pt (P. Novais).

z, et al., Information
016), http://dx.doi.org
40,000 exabytes, between 2005 and 2020. This implies a
heavy investment in Information Technology hardware,
software, services, telecommunications, and staff, in short,
of all the components that make up the infrastructure of
the digital universe. Most of this information is produced
by average consumers in their interaction with social
media, by sending camera phone images and videos
between devices and around the Internet, and so on [2].
While the information holding potential analytical value is
growing at an unbelievable rate, only a small fraction of
this information has been explored. The effective man-
agement of these collections has become a necessity for
both companies and the general public.

Classical database management systems (DBMSs) are
designed to handle data objects that have a pre-
established structure. Normally, this structure is acquired
by treating every feature of a data object as an indepen-
dent dimension, and then building representations in the
83

system for image classification based on frequency
/10.1016/j.is.2016.08.001i

https://core.ac.uk/display/154274713?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
www.sciencedirect.com/science/journal/03064379
www.elsevier.com/locate/infosys
http://dx.doi.org/10.1016/j.is.2016.08.001
http://dx.doi.org/10.1016/j.is.2016.08.001
http://dx.doi.org/10.1016/j.is.2016.08.001
mailto:lidia.sanchez@unileon.es
mailto:javier.alfonso@unileon.es
mailto:toliveira@di.uminho.pt
mailto:j.ordieres@upm.es
mailto:manuel.castejon@unileon.es
mailto:pjon@di.uminho.pt
http://dx.doi.org/10.1016/j.is.2016.08.001
http://dx.doi.org/10.1016/j.is.2016.08.001
http://dx.doi.org/10.1016/j.is.2016.08.001
http://dx.doi.org/10.1016/j.is.2016.08.001

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

113

115

117

119

121

123

L. Sánchez et al. / Information Systems ∎ (∎∎∎∎) ∎∎∎–∎∎∎2
form of records. These records are then stored according to
a certain database model which can be relational, object-
oriented, object-relational, hierarchical, etc. However,
these models require that the data objects have a fixed,
and typically reduced, number of features because queries
are usually performed by exact matching, partial matching,
and joining applied to some of the features. Yet, there are
applications that demand the use of data with a simplified
structure, and, thus, less organized and precise [3]. The
problem with this type of data is that it is nearly impos-
sible to order it and it is not meaningful to perform
equality comparisons on it. For these cases, proximity, or
similarity, is a more suitable search criterion. Similarity
search is a central component to content-based retrieval in
multimedia database systems. It is a general term that
includes a wide range of techniques whose main goal is
normally one of the following [4,5]: (1) to find objects
whose feature values fall within a range of distance, using
a defined metric, from a query object (range queries);
(2) to find a certain number of objects whose features are
the closest to an object query (nearest neighbor queries);
and (3) to find pairs of objects within the same set which
are similar to each other.

As such, efficient search and retrieval mechanisms are a
basic need in systems that deal with these collections in a
wide variety of domain applications. Photography, fashion,
crime prevention, architecture, publishing, journalism and
academic research itself are only a few examples of
domains where image search systems are necessary.
However, going through large collections of documents is
a hazardous task and involves the use of expensive com-
putational resources. There is a clear need for an object
search method that is quick, lightweight, and easy to apply
to large item collections.

Metadata is normally referred to as data about data. It
provides additional information that supplements the
content of images. As such, it has become a powerful
mechanism to search through the content of image
libraries and other digital media such as audio and video
[6]. Using metadata is considered advantageous because it
is still impractical, namely in the field of digital photo-
graphy, to organize and query images based on millions of
image pixels. Considering this, it is preferable to use
metadata properties describing what the picture repre-
sents and details (where, when and how) of its capture.

The premise of this work is that the structural and
descriptive metadata of an image can provide useful cues,
independent of the captured scene content, for image
retrieval and matching. To test this hypothesis, one
developed an algorithm that constructs characteristic
curves of image objects by analyzing all the metadata tags
in a document. Using these curves, the algorithm can
perform fast searches in the document database and
retrieve a list of images sorted by proximity to a given one.
The advantage of the algorithm lies in being possible to
group similar objects in order to determine if different
objects have the same origin. This kind of relationship may
be a great advantage in order to know more about the
history of an image, to know if it has been modified or
tampered with. The setting used to test the algorithm
includes a collection of JavaScript Object Notation (JSON)
Please cite this article as: L. Sánchez, et al., Information
curve proximity, Information Systems (2016), http://dx.doi.org
objects containing the metadata tags of images in multiple
formats. JSON is an emerging data transfer format and it is
used as an access method in many NoSQL database [7],
which are an example of the systems that house the
simplified and less structured data mentioned earlier.
NoSQL provides horizontal scaling and, thus, in particular
conditions enables a faster retrieval. The computation can
be divided in concurrent tasks across distributed
machines. To achieve this, these systems have to relax
some of the characteristics of traditional DBMSs, one of
which is data structure. At the same time, this is also a
desirable feature for certain data types, such as images,
which come in multiple formats, each one of them with
different tags. The algorithm was implemented using Go
[8], a programming language developed by Google that
provides more facilities for the implementation of con-
currency and parallelism in order to get the most out of
multicore and networked machines.

The paper is organized as follows. Section two provides
related work in the fields of similarity search, itemset
mining, and image metadata. Section three is considered a
materials and methods section which has a description of
the technique and search strategy, of how the frequency
curves for the documents are constructed, and of how to
perform a search query using the developed algorithm. In
this section, there are also results that demonstrate their
effectiveness. Section three features a discussion where
the main strengths and limitations of the approach are
highlighted. Finally, in section five conclusions are drawn
about the main contributions of the work.
2. Related work

This section provides information on the three main
topics of this work: similarity search, frequent itemset
mining (FIM), and image metadata. Given the vastness of
the work developed in similarity search, only the aspects
and approaches that bear a resemblance or can offer a
good counterpoint to the approach followed herein will be
mentioned. Central to this work is also discovering which
features from a given set in an object collection are the
most important for conducting similarity search queries,
thus the inclusion of FIM in the topics of interest. The
section ends with a description of what metadata is, its
purposes and its issues.

2.1. Similarity search

Similarity search has established itself as one of the
fundamental paradigms in modern applications. This is an
important task when trying to find patterns in applica-
tions, involving the exploration of data such as images,
videos, time series, text documents, and so forth.

In essence, it consists in a problem of finding, within a
set of objects, those which are more similar to a given
query object. Normally, data collections are treated as
metric objects, which brings significant advantages
because many data classes and information-seeking stra-
tegies conform to the metric view. There are four funda-
mental aspects of similarity search: the distance measure,
system for image classification based on frequency
/10.1016/j.is.2016.08.001i

http://dx.doi.org/10.1016/j.is.2016.08.001
http://dx.doi.org/10.1016/j.is.2016.08.001
http://dx.doi.org/10.1016/j.is.2016.08.001

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

113

115

117

119

121

123

L. Sánchez et al. / Information Systems ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 3
the type of query, the partition principle, and the index
structure [9].

The similarity is usually assessed by a distance function,
meaning that low values of distance correspond to high
degrees of similarity. The obvious advantage of this is that
the results can be ordered according to their estimated
relevance. A nice abstraction for nearness or proximity is
the metric space, also called distance space [10,11]. It
corresponds to the mapping of an object to a set of values
in a distance measure, within a certain domain. A special
case of the metric space is the coordinate space, in which
the objects are represented as vectors. There are works
that exploit different types of distance measures, namely
the Minkowski distances, the quadratic form distance, the
edit distance, the Jaccard's coefficient, and the Hausdorff
distance [9]. Minkowski distances [12] describe a family of
distance functions, referred to as Lp metrics, that depend
on a parameter p. They are defined for n-dimensional
vectors of real numbers as follows in Eq. (1).

Lp x1;…; xnð Þ; y1;…; yn
� �� �¼

ffi
Xn
i ¼ 1

jxi�yijp
p

vuut ð1Þ

Minkowski distances are appropriate when the objects
in a collection are represented as vectors. Two of the most
studied distance functions are the Manhattan distance (L1)
and the Euclidean distance (L2) [9].

As mentioned earlier, there are three types of similarity
search queries. However, this work focuses on one in
particular, the nearest neighbor queries (kNN(q)). A kNN(q)
query retrieves the k nearest neighbors of the object q. To
achieve this and search the metric space, one can follow
different strategies, which are mirrored in the partition
principle used in the search space. Partitioning divides the
search space into sub-groups so that only some of these
groups are searched when a query is given. Partition
principles can be roughly divided into: ball partitioning,
generalized hyperplane partitioning [13] and excluded
middle partitioning [14]. In ball partitioning, an object is
selected from the collection to be used as a pivot, then,
using a certain distance value to the other objects, a
spherical cut is made, dividing the search space into two
subsets. In hyperplane partitioning (also called clustering-
based partitioning), the space is partitioned into two sets
of disjoint clusters where each one is represented by a
cluster center. As for excluded middle partitioning, it is an
extension of ball partitioning, but instead of splitting the
space into two subsets, it splits the space into three sub-
sets. In this case, when an object query is near the parti-
tioning threshold, it implies accessing both ball-
partitioned subsets.

The search strategy depends highly on how the data is
partitioned. The most basic of strategies, yet not always
inefficient, is to scan the data sequentially. However,
depending on the available resources and the size of the
search space, it may result in the computation of a sig-
nificant number of distance measures and ranking algo-
rithms that are computationally expensive. What most
approaches do is to focus on the construction of search/
index structures for performing similarity search over
complex structures.
Please cite this article as: L. Sánchez, et al., Information
curve proximity, Information Systems (2016), http://dx.doi.org
There are tree-like index structures that use ball par-
titioning to get subregions of space, each containing
objects stored in a small number of disk blocks. Given an
object as a query, the object is first placed in a sub-region
of the tree, then a nearest-neighbor query is performed to
get the regions where the closest objects may reside.
Examples of tree-like index structures include the
Burkhard-Keller Tree [15], the Vantage Point Tree [16], the
Multi-way Vantage Point Tree [17], the Excluded Middle
Vantage Point Forest [14], and other variations. The com-
mon disadvantage to these structures lies in the perfor-
mance bottleneck when trying to locate the sub-region of
the object query, because the tree structure may be too big
to fit in main memory, which implies having part of it on
disk and performing numerous input/output operations.
Also, the number of neighboring sub-regions can grow
exponentially with respect to the dimensionality, resulting
in another performance bottleneck [18,19].

The Bisector Tree [20] was the first index structure to
implement generalized hyperplane partitioning. It recur-
sively partitions each cluster into two clusters, based on
two pivots chosen initially at random. The covering radii,
which are the maximum distances between the pivots and
any object in their subtrees, are used to prune the bran-
ches. The Voronoi Tree [21] is an improved version of this
structure which uses two or three pivots in each internal
node. The Generalized Hyperplane Tree [13] follows the
same principle, but with a different criteria for pruning.
Instead it uses the hyperplane between pivots to decide
which subtrees to visit. The difficulty with these methods
lies in achieving balanced clusters that can efficiently cut
down search costs.

To answer the dynamic nature of real databases, the
M-Tree [22] was developed as a structure for efficient
secondary memory storage, supporting dynamic insertions
and deletions of objects. Unlike other structures, the
M-Tree is built bottom-up and maintains the same size in
all sub-trees, because the tree is balanced. The M-Tree is
very popular and there are numerous extensions of this
pattern such as the Multi-Way Insertion Algorithm [23]
and the Slim Tree [24], just to name a few.

The performance of kNN(q) search algorithms is usually
dictated by two criteria: the number of distance compu-
tations and the input/output costs for processing nearest
neighbor queries on distance data [9].

2.2. Frequent itemset mining

FIM techniques can be used in a wide variety of appli-
cations, including association rule mining, indexing, clas-
sification, and clustering. They are a form of unsupervised
learning used to extract information from databases based
on events that occur frequently, as a way to capture
meaning beyond that of individual features. FIM techni-
ques are more suitable for poorly understood problem
domains. Formally, the problem is defined as follows [25].
Let I be a set of items o1, o2,…,od. A subset of I is called an
itemset. A transaction dataset is a collection of itemsets,
D¼{t1,…,tn}, in which ti D I. For any itemset α, the
transactions that contain α are written as Dα¼{ti|αDti and
tiAD}. In a transaction dataset D, an itemset α is frequent if
system for image classification based on frequency
/10.1016/j.is.2016.08.001i

http://dx.doi.org/10.1016/j.is.2016.08.001
http://dx.doi.org/10.1016/j.is.2016.08.001
http://dx.doi.org/10.1016/j.is.2016.08.001

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

113

115

117

119

121

123

L. Sánchez et al. / Information Systems ∎ (∎∎∎∎) ∎∎∎–∎∎∎4
|Dα|/|D|Zσ, where |Dα|/|D| is the support of α in D, repre-
sented as σ(α), and σ is the minimum support threshold,
0rσr1. All frequent itemsets share the Apriori property,
which states that any subset of a frequent itemset is fre-
quent. Since the number of features in big datasets is high,
it is beneficial and computationally less expensive to mine
frequent itemsets than to check for the effect of combi-
nations between all the features.

Arguably, the most influencing works in this field are
those of [26,27], and [28]. The first one describes the well-
known Apriori algorithm, which focuses on the problem of
discovering association rules between items in a large
database of sale transactions. Apriori [26] counts items by
making passes over the transaction dataset D, thus finding
the most frequent items. Afterwards, it generates candi-
date itemsets by combining the frequent items. The first
group of candidate itemsets have length 2 and their sup-
port is calculated with another pass over D. The process
repeats itself for itemsets with increasing cardinality until
k-length itemsets are found. The main advantage of the
algorithm is providing a performance gain by significantly
reducing the search space. There are a lot of other algo-
rithms proposed after the introduction of Apriori, they
resulted from the optimization of certain steps within the
structure of the algorithm. Performance is majorly dictated
by the support counting procedure, so research has
focused mainly on that aspect, which resulted in algo-
rithms such as AprioriTid, AprioriHybrid, Direct Hashing
and Pruning (DHP), and so forth. All these algorithms are
assessed in [29], a fairly comprehensive survey. To sooth
the high input/output overhead of scanning large data-
bases with Apriori, new FIM implementations were
developed, many of which are based on parallel algorithms
derived from Apriori [30]. An alternative is the Eclat
algorithm [27]. It performs parallel mining of association
rules by traversing a prefix tree in a depth-first manner in
order to find frequent patterns. If a path in a prefix for an
itemset in the tree is infrequent, it concludes that all of its
subtrees are also infrequent and they are immediately
pruned. On the other hand, if an itemset is frequent, it is
treated as a prefix and extended to form new itemsets.
Eclat uses a vertical database format for the faster com-
putation of supports. Another depth-first algorithm is FP-
growth [28]. It uses a combination of the vertical and
horizontal database layout to store the database in main
memory. This layout is a frequent pattern tree (FP-Tree)
structure, which is an extended prefix tree for storing
condensed information about frequent patterns. The gain
in efficiency for this algorithm is achieved by compressing
a database (the transactions supporting an itemset) into
the mentioned FP-tree, avoiding costly database scans. The
overall objective is to store the most frequent patterns
closer to the root, since they are the ones which are most
likely to be shared, thus obtaining a compact structure
which is computationally cheaper to traverse. There is a
vast number of variations of these algorithms and equally
vast performance studies about which is the best FIM
algorithm, but the main conclusion to draw from them is
that the choice of which algorithm to use is mainly
determined by implementation, data set, and parameter
settings [31].
Please cite this article as: L. Sánchez, et al., Information
curve proximity, Information Systems (2016), http://dx.doi.org
FIM has been mostly applied in tasks of association rule
mining and classification. There are works in which FIM is
applied to the extraction of high level features to capture
more discriminative information. In [32] the objective is
finding the most suitable patterns for image classification
from a set of features in a bag-of-visual-words model,
which also corresponds to a histogram representation.
After finding the most relevant patterns, the images are
represented in the form of frequent local histograms. Then,
making use of a standard histogram intersection kernel,
supervised learning is performed in order to derive classes
for the posterior classification of new images. There are
two central concepts to this work which are also applic-
able to similarity search: discriminative power and pattern
frequency. These issues are discussed in more detail in [33],
which discusses the choice of the best value for the
minimum support threshold. While being frequent, the
itemsets also have to contain enough different values to
allow for distinctions between objects. The authors
achieved this by building a connection between pattern
frequency and discriminative measures such as informa-
tion gain and Fisher's score.

2.3. Image metadata

As pointed out earlier, with the low cost of technology
capable of producing and disseminating digital images, the
amount of digital content being produced is rapidly
increasing. Storage capacity has accompanied this devel-
opment and, now, there is practically no limit to the
amount of digital images one is able to keep. When there is
no information about the content of images, the only way
to search through them is through metadata [6].

According to the National Information Standards
Association (NISO), “metadata is structured information that
describes, explains, locates, or otherwise makes it easier to
retrieve or manage an information resource” [34]. Cameras
capture device metadata while taking pictures. Then,
operating systems and other software tools use this
metadata to build catalogs and provide effective searching
functionalities. Moreover, users can add their own meta-
data to images to improve these functionalities. However,
the existence of different metadata standards leads to
interoperability issues when dealing with different soft-
ware tools. Even though most metadata properties are
unique, there are a number of them that are specific of
certain standards and may overlap across other standards
[6].

Digital images come in a variety of file formats. Formats
such as JPEG, PNG, TIFF and PSD, just to name a few, have
distinct rules on how metadata is stored within a file. They
may follow different format standards for metadata con-
tainers such as the Exchangeable Image File Format (EXIF),
the Adobe (Extensible Metadata Platform) XMP, the
International Press Telecommunications Council (IPTC),
among others [35]. These standards define ta for recording
a wide variety of information such as when and how the
images were created, digital camera specifications, and
other technical information (e.g. lighting conditions). Dif-
ferent applications and devices have chosen to follow
different policies regarding metadata storage, which
system for image classification based on frequency
/10.1016/j.is.2016.08.001i

http://dx.doi.org/10.1016/j.is.2016.08.001
http://dx.doi.org/10.1016/j.is.2016.08.001
http://dx.doi.org/10.1016/j.is.2016.08.001

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

Table 1
Structure of the dictionary containing the metadata tags for the calcu-
lation of uniqueness grades.

tags¼{
“FlashFiring”: [
10000,
set(“Fires”)],
“ImageHash”: [
10000,
set(“aa91…fd1”,“ab12…91a”, …, “9aaf…e21”)]
…
“ColorTempFlash”:[
9783,
set(20,22,15,…,18,70)]
}

L. Sánchez et al. / Information Systems ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 5
causes a great variability in the metadata tags an image
may have.

There are a few works of more elaborate search using
image metadata. Yee et al. [36] propose an interface that
makes use of hierarchical faceted metadata that allows a
user to visually search for images, and, while searching,
the interface displays dynamically generated query pre-
views. Korenblum et al. [37] developed a system for
managing biomedical image metadata. The type of meta-
data used in this work is semantic, meaning that it is
mostly composed of textual annotations about image
content. The system receives inputs in the form of
standard-based metadata files through a Web service, then
it parses and stores the metadata in a relational database.
When querying the system, the search engine searches for
metadata tags similar to the ones introduced, and, when it
finds close matches, it automatically renders 2D regions of
interest stored as metadata. The system is available
through a Web Application. Zhang et al. [38] developed a
vertical image search engine based on location metadata,
optimized for the retrieval and ranking of images from
locations specified by user queries. All these works are
good examples of how metadata can be used to improve
querying capabilities. However, concerning this literature
review, it seems that there are no significant works using
this kind of metadata for similarity search, as most of the
existing work focuses mainly on content-based image
retrieval.

Depending on the objectives of the query, the algo-
rithm presented herein may be useful if one wants to trace
back the origin of an image or check if the image docu-
ment being submitted as a query is the modified version of
an existing image. Given the wide variety of metadata tags,
it is very difficult to discover those which are the most
important in computing similarities. There is also the issue
with the different number of metadata tags each image
may have, which makes the similarity search even more
difficult.
101

103

105

107

109

111

113

115

117

119

121

123
3. Material and methods

The algorithm for classification and retrieval consists of
a sequence of procedures. The first of which is to build a
dictionary of metadata tags in a document collection and
to assign uniqueness grades to those tags. After this, the
algorithm constructs tag groups that include the most
frequent tags in the image collection used as sample. Once
the groups are retrieved, the next step is to build the
characteristic curves for the objects in the collection. These
curves will be used to calculate the distance of an object in
the collection to an object in a search query. The following
subsections represent and explain the different procedures
performed by the algorithm.

3.1. Uniqueness grade for metadata tags

Not all the metadata tags have the same relevance
when comparing image objects. For instance, in an image,
the metadata tags FlashFiring and FlashFunction are worse
indicators in determining how similar an image is to a
Please cite this article as: L. Sánchez, et al., Information
curve proximity, Information Systems (2016), http://dx.doi.org
given one than tags such as DigitalCreationDate or Time-
Sent. Assessing the relevance of metadata tags is no easy
task because image objects may have a variable number of
them, depending on the device used to capture images or
the format they are in. So, to ensure that a tag can be used
in image similarity search, it has to appear in the images
being compared and, at the same time, to feature a wide
variety of values over the collection to prevent the over-
fitting of search results. In order to determine the most
relevant tags for the task, an unsupervised learning algo-
rithm was developed. It assigns a score to all the metadata
tags of the images in the collection in which the search
will be conducted. The score is a value between 0 and 1,
where 0 is the lowest value in the uniqueness scale,
meaning that the tag should not be considered at all, and
1 is the highest possible value, indicating that the tag is a
perfect candidate.

In a first stage, the algorithm creates a dictionary con-
taining the name of the metadata tag as a key and, as a
value for each key, an array with the number of times this
metadata tag was used, along with all the different values
for it. Table 1 shows a small example of this dictionary
according to the already mentioned structure. The
uniqueness grade of a tag is obtained by counting the
number of different values a tag has and calculating the
quotient of this number and the total number of occur-
rences of the tag. This procedure is done for each tag, using
the information in the dictionary. Eq. (2) describes how
this calculation is made. uniquenessGrade(tag) is the
uniqueness grade for the tag, differentOccurrences(tag) are
the number of different values found in the collection for
tag, and totalOccurrences(tag) is the number of times the
tag appears as a field in the collection.

uniquessGrade tagð Þ ¼ dif f erentOccurrencesðtagÞ
totalOcurrencesðtagÞ ð2Þ

The algorithm assigns to each tag its percentage of
unique values. As an example, for the tag FlashFiring in
Table 1 the uniqueness grade will be 1/10,000E0. There-
fore, the tag will not have a real impact in the character-
istic curve of the image. On the other hand, if there is a
unique hash for each document the grade will be 10,000/
10,000¼1, which means that this tag will be really
important in order to determine if an image is the one
being searched. A tag such as ColorTempFlash, which only
has a limited set of values (in this case 945 different
system for image classification based on frequency
/10.1016/j.is.2016.08.001i

http://dx.doi.org/10.1016/j.is.2016.08.001
http://dx.doi.org/10.1016/j.is.2016.08.001
http://dx.doi.org/10.1016/j.is.2016.08.001

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

113

115

117

119

121

123

L. Sánchez et al. / Information Systems ∎ (∎∎∎∎) ∎∎∎–∎∎∎6
values) and for which some images may have the same
value, the uniqueness grade will be 945/9783¼0.0945.
This type of tag can help to determine if an image is similar
to a given one, but not an exact match. This is a measure of
pattern frequency. After applying this regularization to a
sizable set of documents, like the collection used in this
work, this information is stored in order to be used in the
next stages of the algorithm.

3.2. Retrieval of relevant tag groups

In order to obtain a robust classification and determine
how accurate the result of a search avoiding false positives
is, it is necessary to generate a frequency curve for each
group of tags that represent the metadata tags used in
image retrieval. The frequency curve gathers information
from all the tags belonging to a group in a single plot. As it
will be discussed further in the paper, the curve denotes
the average frequency of characters and the uniqueness of
the tags used to build it. After the procedures in the pre-
vious section, it is now necessary to isolate groups con-
taining the most common tags in the collection. Only then
will it be possible to know which metadata tags should be
used in the search. The best groups are those which con-
tain the combinations of most frequent tags. In con-
secutive steps tags are added to the trie one at a time.

The Apriori algorithm is widely used in this type of
problem and has been the object of intense study, which
resulted in a great variety of implementations for the sake
of improving its efficiency. This algorithm, or family of
algorithms, use the Apriori property to reduce the search
space. For its simplicity, speed and ease of understanding,
this was also the approach followed to construct the
groups with the most common tags. The variant of the
algorithm chosen for the task was the Depth First Imple-
mentation [39]. In another work by [40] it is shown that
this variant outperforms the FP-growth implementation in
retail databases. Given the sample collection, this algo-
rithm builds a trie in memory containing all the frequent
groups of tags. Every path from the root of the trie
downwards corresponds to a unique frequent group of
tags. It requires four parameters as input: the minimum
frequency in the collection to consider that a tag should be
included in a group (groupMinFreq), which is to say the
support of the tag, expressed as the ratio between the
frequency of a tag in the items of a collection and the total
number of items in the collection; the length of the groups
in terms of number of tags (groupLength); and the mini-
mum uniqueness grade of a tag for it to be included in a
group (groupMinUniqueness). Since this is a depth first
implementation, once a tag is selected by these criteria, it
is combined with other existing tags to form groups with
increasing cardinality. The groups to be kept have to obey
the groupMinFreq restriction, meaning that the ratio
between their occurrence as a group in the collection and
the total number of items has to be higher or equal to this
value too. The process unfolds until groups with the size of
groupLength are retrieved, which will later be used for
similarity search.

Additionally, the algorithm searches for the most
important tags in the collection. So, in addition to the
Please cite this article as: L. Sánchez, et al., Information
curve proximity, Information Systems (2016), http://dx.doi.org
groups of size groupLength retrieved in the previous steps,
groups containing only one tag are retrieved by selecting
tags that have a minimum frequency higher or equal to
tagMinFreq and a minimum uniqueness value higher or
equal to TagMinUniqueness. Typically, the values of tag-
MinFreq and tagMinUniqueness should be higher than their
counterparts, groupMinFreq and groupMinUniqueness,
because the objective in this stage is to add to the set of
already retrieved groups, the tags with most discriminat-
ing power out of the collection and assign them an
importance in similarity search that is on pair with the
other groups. To ensure that the system is able to deal with
a query containing any tag, the last group added to the set
of relevant groups contains all the different tags in the
collection.

In sum, the process of extracting relevant groups from
the object collection produces a set that contains groups of
length groupLength obtained from the depth first imple-
mentation of Apriori, one tag groups representing the
most important tags in the collection, and a group con-
taining all possible tags. The parameters groupMinFreq,
groupLength, groupMinUniqueness, tagMinFreq, and TagMi-
nUniqueness are fully configurable, which allows the user
to specify these values and tune the similarity search
algorithm according to the desired performance.

3.3. Representative curves for tag groups

The objective of this stage is to obtain a representation
of the items in the collection that can be used to compare
them to another item used as a query. As stated above the
metric space is one of such representations. This repre-
sentation has to be numerical in order to support arith-
metic operations. Moreover, the values must represent a
distance. As such, each group of an item is represented by
two vectors: distVector and freqVector.

For an item and for each of its groups, the algorithm
retrieves the values of every tag of the group. Every value
is processed as a string. The string is analyzed in order to
determine the characters it contains. For each character
found, its weight on the string is calculated according to
Eq. (3), where weight (c,n) is the weight of character c
within n positions from it in the string, asciiValue(c) is the
ASCII decimal value for character c and asciiValue(ci) is the
ASCII decimal value of the character at position i starting
from character c. With this the weight is sensible to the
position of the character. If one takes the strings “star” and
“arts” as examples, their characters will have different
weights according to the position they are at for n¼3.
When comparing these strings to another one like “the
star is bright”, the weights of the characters in “star” will
be closer in value than the characters in “arts”, although
they are the same, thus indicating that “star” is less distant
from the query string. This way, it is possible to get better
similarity results when comparing strings and substrings.
If the characters are at different relative positions their
distance increases.

weight c;nð Þ ¼

Pn
i ¼ 1

asciiValueðcÞ=asciiValueðciÞ

n
ð3Þ
system for image classification based on frequency
/10.1016/j.is.2016.08.001i

http://dx.doi.org/10.1016/j.is.2016.08.001
http://dx.doi.org/10.1016/j.is.2016.08.001
http://dx.doi.org/10.1016/j.is.2016.08.001

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

L. Sánchez et al. / Information Systems ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 7
The distance value for a character c used in a group
with m tags is obtained through Eq. (4). The multiplication
by the uniqueness grade of tagj aims at increasing the
value of the distance measure when the character occurs
in an important tag. The distVector is obtained by calcu-
lating dist for each occurring character.

dist c;n;mð Þ ¼
Xm
j ¼ 1

weight c;nð Þ

�uniqueness GradeðtagjÞ ð4Þ

As for freqVector it is a frequency curve representing the
average frequency of occurrence of each character in a
group of tags of the image document. As it happens in the
calculation of distVector, the strings for each tag in a group
are calculated in order to determine the average frequency
of their characters according to Eq. (5), where avgFreq(c,
str) is the average frequency of character c in string str,
occurrences(c) is the total number of occurrences of the
character in the string, and length(str) is the total number
of characters For instance, if the value of a tag is “aaeefs”,
the frequency for the character a and e is 1/3, and for the
characters f and s is 1/6. By multiplying the frequencies of
each character by the uniqueness grade of the tag, and
calculating the average of these values for all the char-
acters across all tags of a group in an image, it is possible to
plot a characteristic frequency curve per group. The cal-
culation of the frequency values (freq(c,str,m)) for groups
of m elements that will appear in freqVector is displayed in
93

95

97

99

101

103

105

107

109

111

113

115

117

119

121

123

distance a; b; groupð Þ ¼
��distVector a; groupð Þ�distVector b; groupð Þ

��þ��f reqVector a; groupð Þ� f reqVector b; groupð Þ
��

number Dist
ð7Þ
Eq. (6).

avgFreq c; strð Þ ¼ accurencesðcÞ
lengthðstrÞ ð5Þ

f req c; str;mð Þ ¼
Xm
j ¼ 1

avgFreqðc; strÞ

�uniqueness GradeðtagjÞ ð6Þ

The retrieved curves will represent a document. Using
this method, two curves per group of tags will be calcu-
lated. To retain is that these curves will be used to find the
most similar image document to a given one inside a set of
documents, even if the image was modified.

The option believed to be the best to store all the curves
was a MapReduce SQL like system, such as Hive [41]. Hive
is an open source data warehouse solution built on top of
Hadoop. It supports queries expressed in a SQL-like
declarative language, which are compiled into map-
reduce jobs that are executed using Hadoop. Hive and
Hadoop are extensively used in Facebook for data proces-
sing. Hive provides a more powerful interface to Hadoop,
facilitating the design of jobs and their implementation. In
order to store all the curves for all the documents, a table
is defined with a column to identify the document,
another column to identify the group of the curve, and a
Please cite this article as: L. Sánchez, et al., Information
curve proximity, Information Systems (2016), http://dx.doi.org
column for the ASCII code of each character to be con-
sidered, as follows: image_id|group_id|32|33|34|…|124|125.

3.4. Search query

When an object is submitted as a search query, it goes
through the same operations as the objects in the collec-
tion, which means calculating distVector and freqVector
according to the equations described above. This is due to
the need to reduce the object to the same form as the
documents in the collection.

With the storage schema defined in the previous sec-
tion, it is easy to build a SQL query to obtain a list of items
sorted by proximity to a given one. Here, the concept of
distance is defined as the sum of the differences between
the distVectors and freqVectors of the search object and an
object present in the collection. As such, the SQL query
uses Eq. 7 to compare each object and each group in the
collection with the search query. The element distance(a,b,
group) stands for the distance between object a and object
b, given group. As for distVector(a,group) and distVector(b,
group), they are the distVectors of objects a and b respec-
tively, for a certain group of tags. The same with freqVector
(a,group) and freqVector(b,group). numberDist is the total
number of distances calculated for each vector difference,
which represents the number of characters present in both
distVector and freqVector. This distance measure is a mod-
ified version of the Manhattan distance.
By doing this query for all the items inside each group
of tags, and getting the k best matches, it is possible to mix
all the results and obtain the average distance for all the
curves, and the number of groups where the document
was found within the first k matches. Computing the dis-
tance in each group of tags in parallel, it is basically a
distribution of groups to be computed in parallel and a
subsequent collect, obtaining the desired distance value. In
addition to this, the distance between the object a and the
object b, c or d can be carried out concurrently. After
completing the search, it is possible to show a table sorted
by average distance, and the number of groups used to
calculate this distance. It is also possible with the reduce
function, to obtain the average distances computed in
parallel and merge them to obtain the minimum one.The
search result can be sorted by the number of groups where
the document was found within k matches, and the aver-
age distance to the given image. As such, the resulting list
of documents includes the best possible matches.

The underlying idea is that, if the object to be searched
is in the database, the distance between said object and
the query object will be shorter when compared to any
other object in the collection, even if the object was
modified. If another image similar to the one used as a
query exists in the collection, like, for instance, in the case
of a picture took in the same location, on the same date, or
system for image classification based on frequency
/10.1016/j.is.2016.08.001i

http://dx.doi.org/10.1016/j.is.2016.08.001
http://dx.doi.org/10.1016/j.is.2016.08.001
http://dx.doi.org/10.1016/j.is.2016.08.001

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

L. Sánchez et al. / Information Systems ∎ (∎∎∎∎) ∎∎∎–∎∎∎8
with the same camera, the curve for these similar images
will be closer than the rest of the images in the database.
Thanks to that, it is possible to discover some useful
relationships between groups of objects.

The system in which the algorithm is implemented has
a web interface like the one shown in Fig. 1. In it, it is
possible to specify the object for the query and the k clo-
sest results one wants to retrieve. The figure also demon-
strates that it is possible to query with only a few meta-
data tags. In the example, one used a few metadata tags of
an image in the collection with “id”¼“0”. The top result is
the image from which those tags were extracted.
Fig. 1. The web interface for similarity search. It has an insertion poin

Please cite this article as: L. Sánchez, et al., Information
curve proximity, Information Systems (2016), http://dx.doi.org
3.5. Search parallelization

The algorithm was implemented following a MapRe-
duce model [42] which is suitable for the processing and
generation of large datasets. In it, users specify a map
function that processes a key/value pair to generate a set of
intermediate key/value pairs, and a reduce function that
merges all the intermediate values associated with the
same intermediate key. Map invocations are distributed
across multiple machines (or cores) by automatically par-
titioning the data in splits of equal size. The input splits
can be processed in parallel by different machines.
77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

113

115

117

119

121

123t for the object query and another for the k results to retrieve.

system for image classification based on frequency
/10.1016/j.is.2016.08.001i

http://dx.doi.org/10.1016/j.is.2016.08.001
http://dx.doi.org/10.1016/j.is.2016.08.001
http://dx.doi.org/10.1016/j.is.2016.08.001

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

113

115

117

119

121

Fig. 2. Diagram of the information flow as defined by the similarity search algorithm.

L. Sánchez et al. / Information Systems ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 9
The main advantage of following this model is that pro-
grams are automatically parallelized and executed on a
large cluster of machines. In [43] MacCreade et al. analyze
the scalabity and efficiency of MapReduce, pointing out
that multiple reduce tasks should be employed in order to
obtain high parallelism and efficiency. In that work, a
study of how the MapReduce indexing scales is presented,
computing the same experiments for different corpus size
and comparing the results. As in [43], here the textual
terms are avoided and just considered distances and fre-
quencies, so the scalability and efficiency is assured.
Moreover, it is possible to fully channel the processing
power of multicore machines to a given task or set of tasks.
As stated above, the algorithmwas developed using Go [8].
This programming language provides diverse concurrency
patterns. These patterns are based on Go routines, which
are independently executing functions, launched by Go
statements. Each function has its own call stack. They are
computationally cheaper than threads, and a running
thread may have several Go routines. The communication
between the main function and the boring functions is
ensured by channels. This ensures that the code is able to
handle multiple inputs and outputs and achieve synchro-
nization between the running jobs.

The stages described above are parallelized according
to this functional style. The whole process can be divided
into two parts: Pre-processing and Search Query. These
stages are depicted in Fig. 2. The main function in Pre-
Please cite this article as: L. Sánchez, et al., Information
curve proximity, Information Systems (2016), http://dx.doi.org
processing starts by calculating the uniqueness grades for
all the tags in the collection. Afterwards, the best groups of
tags for similarity search are extracted. Based on this
information, the main function parallelizes the calculation
of distVector and freqVector by splitting the image collec-
tion in equally-sized parts and distributing them by the
processors (or cores) in the network. Each calculates the
vectors for its slice of the data and sends the results back
to the main function through a communication channel. In
turn, the main function merges the outputs into a com-
bined result. In Search Query, the main function has as the
objective of retrieving the k items from the collection
closest to the query object. To do that, first distVector and
freqVector are calculated for the query object, then the
main function parallelizes the calculation of the distances
between this object and the items in the collection. The
results are merged by the main function which presents
the k closest matches.

The algorithm was tested on a collection consisting of
86,228 JSON metadata image records. The test was per-
formed in a machine with an Intels Core™ i3-2130 Pro-
cessor (3M Cache, 3.40 GHz) with two cores and two
threads per core. The input parameters for the algorithm
were the ones specified in Table 2. The process of calcu-
lating the vectors for the items in the collection takes
2 min and 57 s, and it uses 100% of the cores in the
machine. The query time with a random JSON object is
placed between 5 and 6 s.
123

system for image classification based on frequency
/10.1016/j.is.2016.08.001i

http://dx.doi.org/10.1016/j.is.2016.08.001
http://dx.doi.org/10.1016/j.is.2016.08.001
http://dx.doi.org/10.1016/j.is.2016.08.001

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

L. Sánchez et al. / Information Systems ∎ (∎∎∎∎) ∎∎∎–∎∎∎10
4. Discussion and results

4.1. Strengths of the approach

Given that this system looks for proximities in fre-
quencies of characters rather than a perfect match, it
becomes easier to detect proximities between items. For
instance, a metadata tag of an image such as “create-
dDate”, which contains the value “2013-10-01 11:12:32”,
and the same tag in another image took in the same ses-
sion, have obviously a similar date value. In a case such as
this, the system will detect the proximity between both
items, and will be able to detect a relationship between
77

79

81

83

85

87

89

91

93

95

97

Fig. 3. (a) Unmodified image and (b) version of th

Table 2
Parameters for the similarity search algorithm.

groupMinFreq 0.2
groupLength 7
groupMinUniqueness 0.5
tagMinFreq 0.8
tagMinUniqueness 0.8
n 4

Table 3
Parameters for the similarity search algorithm.

hash ¼ ‘’

for cell in image_cells:
pixel_xor ¼ 0
for pixel in cell:

for color in pixel:
pixel_xor ^¼ color

hash þ¼ pixel_xor
hash ¼ base64(hash)

Please cite this article as: L. Sánchez, et al., Information
curve proximity, Information Systems (2016), http://dx.doi.org
them. This behavior may be useful in security in order to
create a graph based on relationship between sex pre-
dators, terrorists, and so forth. Even when querying with
incomplete information, using just a portion of the JSON
object, the algorithm is able to find documents that bear a
close resemblance to the query.

The approach followed herein does not have any parallel in
the current state of the art, and its main point is to take
advantage of existing frameworks and resources for paralle-
lization in order to build a similarity search system that does
not require a complex processing of a document collection. In
fact, using this approach removes the need to perform text
mining operations or to have complex indexing schemes to
save computational resources. Indeed, it becomes unnecessary
to resort to partitioning strategies and index structures such
as the Burkhard-Keller Tree, the Vantage Point Tree, the
Bisector Tree, or other variations mentioned in the related
work section. By avoiding this, it is also possible to avoid the
performance bottlenecks that are usually associated with
these structures. Adding new elements to the search collec-
tion also becomes quite simple since it is only necessary to
add a record to the Hive database. It is not necessary to update
a search structure in the process. Moreover, by using character
frequencies, this search method can be applied to different
domains, without the need for further alterations. As such, it
can be easily applied to metadata of other types of document.
Another advantage is that it is not necessary to know
beforehand which metadata tags describe and image, nor
their number. In truth, the items of the collectionmay differ in
the number of tags that describe them.

This method for classification and search on images can
be combined with hash generation methods based on the
content of the items. It is possible to analyze the different
elements in the content of a document. For instance, in the
case of a text document, one can store a hash with the
99

101

103

105

107

109

111

113

115

117

119

121

123e same image modified in six of its 48 cells.

system for image classification based on frequency
/10.1016/j.is.2016.08.001i

http://dx.doi.org/10.1016/j.is.2016.08.001
http://dx.doi.org/10.1016/j.is.2016.08.001
http://dx.doi.org/10.1016/j.is.2016.08.001

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

113

115

L. Sánchez et al. / Information Systems ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 11
frequencies for each character dividing the document in
shards. In doing so, if a part of the content is modified, one
can still get a hash closest to the original one. For an image
object, in order to obtain the most similar hash even if the
image was modified, one may split the image in cells and
perform a “xor” operation for all the color values in each
pixel for each cell according to the code in Table 3.

Considering two images such as the ones shown in Fig. 3,
in which (a) is the original image and (b) is a version of it
modified in six of the forty-eight cells of the grid. Then, if the
hash of the original is: “adc6888dd489ff0514f1102ad48bd90-
badc6888dd489”. For the retouched image one gets a hash
like “adc6888dd489ff0514f1102eaa1c990badc6888dd489”.
The algorithm will be able to detect the proximity between
two images even if the images were modified, thanks to the
similarity of the hashes.

4.2. Limitations of the approach

The characteristic curves produced by the algorithm
result from merging distance and frequency values of
different tags belonging to a group into a concise repre-
sentation. When doing this, it becomes possible to perform
approximate similarity search, but, at the same time, it
becomes nearly impossible to get distances to the object
query of value 0. The top result will, at most, have a value
very close, which means that it is very difficult to deter-
mine, with absolute certainty, if an image is an exact
match. However, this aspect is compensated by the ability
of the algorithm to find relationships between items. This
is a trade-off that, depending on the application, may
produce results that fall short of the objective. The algo-
rithm may produce false positives if the items in the col-
lection do not have enough information to classify them. If
the items do not have enough tags to cross information, an
item may be retrieved just because of the value of one tag.
If that tag does not have a high uniqueness grade, which
depends mostly on the initial parameterization of the
algorithm.

Another problem is the complexity. This method needs
a full scan of the documents stored in the database in
order to determine the distance to the object query. As
such, algorithmic complexity is O(n*m) where n is the
number of documents stored on the database and m is the
number of curves per document. This computational
complexity is higher than that of the approaches men-
tioned in Section 2.1 [9]. However, the algorithm was
specifically developed having parallelization in mind. The
comparisons between documents is fairly fast, but in case
of a really big database (more than a billion of documents,
for instance), it may become difficult to handle. When
there is a need for heavy usage of this system, Hive pro-
vides a good solution for the search process.
117

119

121

123
5. Conclusions and future work

The great deployment of computational resources
experienced in recent years, calls forth the need for solu-
tions which fully exploit the computational power of the
available technology. The central concepts to this are
Please cite this article as: L. Sánchez, et al., Information
curve proximity, Information Systems (2016), http://dx.doi.org
scalability, performance, and customization. These are the
features that a similarity search framework should pro-
vide. To achieve this, newly developed search mechanisms
should be general-purpose and highly extensible. Similar-
ity between objects is very subjective, thus very difficult to
express by a unique rigorous function.

In light of this, the major contributions of this work are
the following. Firstly, it provides a similarity search algo-
rithm that can be applied to images, independently of
their content. It is solely based on metadata and it is also
able to deal with heterogeneous collections in terms of the
number and variety of tags that their items have. The
algorithm provides a method for extracting the most
relevant metadata tag groups from collections containing
image objects in different formats and was designed to be
implemented with a MapReduce strategy. Another major
contribution is the representation of items in the metric
space using the frequencies of characters in tag values. The
algorithm is capable of performing kNN(q) queries by
approximation to these frequency curves and is ideal for
establishing origin relationships between objects. Fur-
thermore, this strategy can be generalized to other types of
documents besides images.

As future work, it is important to tackle the issues of
false positive retrieval and computational complexity.
Solutions may lie in testing other types of representations
for the objects in combination with the frequency curves
and including more elaborate data structures in order to
increase performance and reduce complexity.
Acknowledgments

This work has been done in the context of the project
“ASASEC (Advisory System Against Sexual Exploitation of
Children)” (HOME/2010/ISEC/AG/043) supported by the
European Union with the program “Prevention and fight
against crime”.
References

[1] J. Gantz, D. Reinsel, The Digital Universe in 2020: Big Data, Bigger
Digital Shadows, and Biggest Growth in the Far East, International
Data Corporation, 2012.

[2] G. Ritzer, N. Jurgenson, Production, consumption, prosumption: the
nature of capitalism in the age of the digital 'prosumer', J. Consum.
Cult. 10 (2010) 13–36.

[3] R. Cattell, Scalable SQL and NoSQL data stores, SIGMOD Rec. 39
(2011) 12–27.

[4] C. Bohm, S. Berchtold, D.A. Keim, Searching in high-dimensional
spaces: index structures for improving the performance of multi-
media databases, ACM Comput. Surv. 33 (2001) 322–373.

[5] M. Patella, P. Ciaccia, Approximate similarity search: a multi-faceted
problem, J. Discret. Algorithms 7 (2009) 36–48.

[6] J. Tesic, Metadata practices for consumer photos, Multimed., IEEE 12
(2005) 86–92.

[7] J. Pokorny, NoSQL databases: a step to database scalability in web
environment, Int. J. Web Inf. Syst. 9 (2013) 69–82.

[8] Doxsey, C., 2012. An Introduction to Programming in Go.
[9] P. Zezula, G. Amato, V. Dohnal, M. Batko, Similarity Search: The

Metric Space Approach, Springer, 2006.
[10] E. Chavez, G. Navarro, R. Baeza-Yates, J. Marroquin, Searching in

metric spaces, ACM Comput. Surv. 33 (2001) 273–321.
system for image classification based on frequency
/10.1016/j.is.2016.08.001i

http://dx.doi.org/10.1016/j.is.2016.08.001
http://dx.doi.org/10.1016/j.is.2016.08.001
http://dx.doi.org/10.1016/j.is.2016.08.001

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61
63

65

67

69

71

73

75

77

79

81

83

85

87

L. Sánchez et al. / Information Systems ∎ (∎∎∎∎) ∎∎∎–∎∎∎12
[11] G.R. Hjaltason, H. Samet, Index-driven similarity search in metric
spaces (Survey Article), ACM Trans. Database Syst. 28 (2003)
517–580.

[12] J.B. Kruskal, Multidimensional scaling by optimizing goodness of fit
to a nonmetric hypothesis, Psychometrika 29 (1964) 1–27.

[13] J. Uhlmann, Implementing metric trees to satisfy general proximity/
similarity queries, in: Proceedings of the Command Control Sym-
posium, Washington, DC, 1991.

[14] P.N. Yianilos, Excluded middle vantage point forests for nearest
neighbor search, in: DIMACS Implementation Challenge, ALENEX'99,
Citeseer, 1999.

[15] W.A. Burkhard, R.M. Keller, Some approaches to best-match file
searching, Commun. ACM 16 (1973) 230–236.

[16] P.N. Yianilos, Data structures and algorithms for nearest neighbor
search in general metric spaces, in: Proceedings of the fourth annual
ACM-SIAM Symposium on Discrete algorithms, Society for Industrial
and Applied Mathematics, 1993, pp. 311–321.

[17] Bozkaya, T., Ozsoyoglu, M., 1997. Distance-based indexing for high-
dimensional metric spaces, Proceedings of the 1997 ACM SIGMOD
international conference on Management of data. ACM, Tucson,
Arizona, USA, pp. 357–368.

[18] S. Berchtold, C. Bohm, H.-P. Kriegal, The pyramid-technique: towards
breaking the curse of dimensionality, in: Proceedings of the 1998
ACM SIGMOD International Conference on Management of Data,
ACM, Seattle, Washington, USA, 1998, pp. 142�153.

[19] G.R. Hjaltason, H. Samet, Ranking in Spatial Databases, Advances in
Spatial Databases, Springer, 1995, 83–95.

[20] I. Kalantari, G. McDonald, A data structure and an algorithm for the
nearest point problem, IEEE Trans. SE-Software Engineering 9
(1983) 631–634.

[21] F. Dehne, H. Noltemeier, Voronoi trees and clustering problems, in:
G. Ferraté, T. Pavlidis, A. Sanfeliu, H. Bunke (Eds.), Syntactic and
Structural Pattern Recognition, Springer Berlin Heidelberg, 1988,
pp. 185–194.

[22] P. Ciaccia, M. Patella, P. Zezula, M-tree: an efficient access method
for similarity search in metric spaces, in: Proceedings of the 23rd
International Conference on Very Large Data Bases. Morgan Kauf-
mann Publishers Inc., 1997, pp. 426-435.

[23] T. Skopal, J. Pokorný, M. Krátký, V. Snášel, Revisiting M-tree building
principles, in: L. Kalinichenko, R. Manthey, B. Thalheim, U. Wloka
(Eds.), Advances in Databases and Information Systems, Springer
Berlin Heidelberg, 2003, pp. 148–162.

[24] J. Caetano Traina, A.J.M. Traina, B. Seeger, C. Faloutsos, Slim-Trees:
high performance metric trees minimizing overlap between nodes,
in: Proceedings of the 7th International Conference on Extending
Database Technology: Advances in Database Technology, Springer-
Verlag, 2000, pp. 51–65.

[25] R. Agrawal, T. Imieliński, A. Swami, Mining association rules between
sets of items in large databases, ACM SIGMOD Rec. (1993) 207–216.

[26] R. Agrawal, R. Srikant, R., Fast algorithms for mining association
rules, in: Proceedings of the 20th International Conference on Very
Large Data Bases, VLDB, 1994, pp. 487–499.

[27] M.J. Zaki, S. Parthasarathy, M. Ogihara, W. Li, Parallel algorithms for
discovery of association rules, Data Min. Knowl. Discov. 1 (1997)
343–373.
Please cite this article as: L. Sánchez, et al., Information
curve proximity, Information Systems (2016), http://dx.doi.org
[28] J. Han, J. Pei, Y. Yin, Mining frequent patterns without candidate
generation, SIGMOD Rec. 29 (2000) 1–12.

[29] J. Han, H. Cheng, D. Xin, X. Yan, Frequent pattern mining: current
status and future directions, Data Min. Knowl. Discov. 15 (2007)
55–86.

[30] R. Agrawal, J.C. Shafer, Parallel mining of association rules, IEEE
Trans. Knowl. Data Eng. 8 (1996) 962–969.

[31] K.P. Kumar, S. Arumugaperumal, An analytical study on frequent
itemset mining algorithms, in: R. Prasath, T. Kathirvalavakumar
(Eds.), Mining Intelligence and Knowledge Exploration, Springer
International Publishing, 2013, pp. 611–617.

[32] B. Fernando, E. Fromont, T. Tuytelaars, Effective use of frequent
itemset mining for image classification, in: A. Fitzgibbon,
S. Lazebnik, P. Perona, Y. Sato, C. Schmid (Eds.), Computer Vision–
ECCV 2012, Springer Berlin Heidelberg, 2012, pp. 214–227.

[33] H. Cheng, X. Yan, J. Han, C.-W. Hsu, Discriminative frequent pattern
analysis for effective classification, Data Engineering, in: Proceed-
ings of the IEEE 23rd International Conference on ICDE, 2007, pp.
716–725.

[34] NISO, Understanding metadata, Natl. Inf. Stand. Organ. (2004).
[35] MWG, Guidelines for hanging metadata, Metadata Work. Group

(2010).
[36] K.-P. Yee, K. Swearingen, K. Li, M. Hearst, Faceted metadata for image

search and browsing, in: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, ACM, Ft. Lauderdale, Florida,
USA, 2003, pp. 401–408.

[37] D. Korenblum, D. Rubin, S. Napel, C. Rodriguez, C. Beaulieu, Mana-
ging biomedical image metadata for search and retrieval of similar
images, J. Digit. Imag. 24 (2011) 739–748.

[38] L. Zhang, L. Chen, F. Jing, K. Deng, W.-Y. Ma, EnjoyPhoto: a vertical
image search engine for enjoying high-quality photos, in: Proceed-
ings of the 14th Annual ACM International Conference on Multi-
media, ACM, Santa Barbara, CA, USA, 2006, pp. 367–376.

[39] W. Kosters, W. Pijls, V. Popova, Complexity analysis of depth first
and FP-growth implementations of APRIORI, in: P. Perner,
A. Rosenfeld (Eds.), Machine Learning and Data Mining in Pattern
Recognition, Springer Berlin Heidelberg, 2003, pp. 284–292.

[40] W.A. Kosters, W. Pijls, Apriori, A Depth First Implementation, in:
Proceedings of the Workshop on Frequent Itemset Mining Imple-
mentations, 2003.

[41] D. Borthakur, J. Gray, J.S. Sarma, K. Muthukkaruppan, N. Spiegelberg,
H. Kuang, K. Ranganathan, D. Molkov, A. Menon, S. Rash, Apache
Hadoop goes realtime at Facebook, in: Proceedings of the 2011 ACM
SIGMOD International Conference on Management of data, ACM,
2011, pp. 1071-1080.

[42] J. Dean, S. Ghemawat, MapReduce: simplified data processing on
large clusters, Commun. ACM 51 (2008) 107–113.

[43] R. McCreadie, et al., MapReduce indexing strategies: studying scal-
ability and efficiency, Inf. Process. Manag. http://dx.doi.org/10.1016/
j.ipm.2010.12.003.
system for image classification based on frequency
/10.1016/j.is.2016.08.001i

http://dx.doi.org/10.1016/j.ipm.2010.12.003
http://dx.doi.org/10.1016/j.ipm.2010.12.003
http://dx.doi.org/10.1016/j.ipm.2010.12.003
http://dx.doi.org/10.1016/j.ipm.2010.12.003
http://dx.doi.org/10.1016/j.is.2016.08.001
http://dx.doi.org/10.1016/j.is.2016.08.001
http://dx.doi.org/10.1016/j.is.2016.08.001

	Information system for image classification based on frequency curve proximity
	Introduction
	Related work
	Similarity search
	Frequent itemset mining
	Image metadata

	Material and methods
	Uniqueness grade for metadata tags
	Retrieval of relevant tag groups
	Representative curves for tag groups
	Search query
	Search parallelization

	Discussion and results
	Strengths of the approach
	Limitations of the approach

	Conclusions and future work
	Acknowledgments
	References

