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Abstract—The role of assistive technologies is to help users with
diminished capabilities in the fulfillment of their everyday tasks.
One of such tasks is orientation. It is crucial for the autonomy
of an individual and, at the same time, it is one of the most
challenging tasks for an individual with cognitive disabilities.
Existing solutions that tackle this problem are mostly concerned
with guidance, tracking and the display of information. However,
there is a dimension that has not been the object of concern
in existing projects, the prediction of user actions. This work
presents a Speculative Module for an orientation system that
is used to alert the user for potential mistakes in his path,
anticipating possible shifts in the wrong direction in critical
points of the route. With this module, it becomes possible to
issue warnings to the user and increase his attention so as to
avoid a deviation from the correct path.

I. INTRODUCTION

The term cognitive disability is used to represent the condi-
tion of an individual who has difficulties in one or more types
of mental tasks, when compared to ordinary people, according
to [1]. Causes may include traumatic brain injury, stroke,
Alzheimer’s and developmental disability, among others. One
can distinguish four phases of cognitive disabilities: mild,
moderate, severe and extreme. While individuals in the severe
or extreme phases need continuous assistance with every
aspect of their everyday lives, people in the mild or moderate
phases are capable of leading an independent life, requiring
assistance only in certain activities. One of the mental tasks
that is greatly affected is orientation. It is, at the same time,
something that is vital for the autonomy of a person. As
such, there is a clear necessity for technologies that increase
the independence of individuals with cognitive disabilities
outdoors. These technologies can be materialized in orientation
systems that assist the user during his travels and compensate
for his diminished orientation capabilities. Using these ori-
entation/way finding systems the user may be guided from
his current location to a predefined destination. The current
approaches to this include systems that are focused exclusively
on guidance, display of information and communication with
a caregiver or a support community [2], [3], [4]. However, it
would also be useful to anticipate the actions of the user and
provide alerts when he is expected to make a wrong turn in his
path. Through different alerts it would be possible to indicate

to the user that he is approaching a critical point in his route,
in which experience shows that he normally makes a mistake.

This work proposes an orientation system endowed with
such a feature. Besides guidance, an intuitive display of
information, and a tracking suite for caregivers (previously
disclosed in [5]), the system has a mechanism based on
Speculative Computation that issues alerts to the user if he
reaches a point in his path where it is likely for him to make
a mistake. As such, the main contributions of this work are:
i) a method for the generation of default values regarding the
habits of the user when following a route; ii) the integration
of these defaults in a framework for Speculative Computation
with constraint processing; and iii) a module for an orientation
system that analyses a route and issues alerts to the user,
increasing his level of attention.

This paper is organized as follows. Section II presents
related work on orientation systems for people with cognitive
disabilities. Section III provides a brief description of the
orientation system that hosts the Speculative Module. The
Speculative Module and the framework for Speculative Com-
putation are described and formulated in Section IV. Finally,
conclusions are drawn and future work considerations are
made in Section V.

II. RELATED WORK

There are a few research projects that focus on the devel-
opment of orientation systems for people with cognitive dis-
abilities. However, they lack the kind of predictive capability
that would allow them to anticipate the actions of users and
employ preemptive measures to avoid them, in the event that
they are undesirable.

With the recognition that smartphones could play a pivotal
role in the development of orientation systems for individuals
with cognitive disabilities [6], researchers started to focus on
these handheld devices as the ideal vehicles for conveying
guidance. An example of this is the work in [2] which provides
an application that enables a user to travel between locations
using a public transportation system such as a bus. This is
possible through a precompiled list of instructions, created by
a caregiver, and delivered through a smartphone. As the user
moves around, a personal travel assistant uses the GPS module
to deliver the next set of instructions. As such, this system is
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mostly focused on providing an appropriate support for both
the user and the caregiver.

Worries with the way in which information is displayed to
users were behind the work in [6]. In their system, static im-
ages with overlaid arrows, audio messages, and text messages
are used to guide a user. The objective is to find a tailored
way of providing directions to individuals with cognitive dis-
abilities. To achieve this, the preferences of users are modeled
in a Markov Decision Process (MDP) [7]. Another feature is
the use of recognizable landmarks near the user to facilitate
guidance.

Fraunhofer Portugal also develops work in this area with
their AlzNav orientation system [4]. The objective of the
system is to make the interpretation of on-screen instructions
as easy as possible. The direction that a user should take
is shown by an arrow that works as a compass, spinning
around as the user spins his phone. Along with the compass
information, the user also sees on the screen the distance
he should travel in a certain direction. Moreover, the system
provides updates about the situation of the user to the caregiver
through SMSs.

Although the existing approaches tackle some of the most
important aspects of orientation for individuals with cognitive
disabilities, it is still possible to find aspects in which they
are lacking. Predicting the steps of users would provide an
advantage. By making use of usage patterns, it becomes
possible to identify critical points in the routes that are usually
taken by the user. A critical point may be defined as a point
where something usually goes wrong, or, in this specific case,
where a user starts going in the wrong direction. Then, if the
system is capable of predicting where this will happen, it can
issue alerts to the user and reinforce the right path. This is
the kind of feature that is proposed in the present work. The
objective is to develop an orientation system that adapts to the
user and tries to maximize user autonomy by minimizing the
risk of getting lost.

III. SYSTEM DESCRIPTION

The CogHelper System has the aim of guiding the user
(person with cognitive disabilities) by adapting not only the
level of prompting (indicating wether the user is traveling in
the correct or wrong path) but also adjusting the guiding path
to user preferences. This goal is complemented by a secondary
objective of providing a tracking system for caregivers, which
allows the caregiver to locate the user at any time.

The orientation method provided is devised for outdoor and
the system architecture is shown in Figure 1. The architecture
may be divided in four main modules: the server-side compo-
nents (such as the database and the agency for the integration
of the system applications and external services); the client-
side applications (such as Cognitive Helper Mobile Solution
and Caregiver Applications); and the external services, which
allow the integration of CogHelper with other systems or other
applications. The core of the system is the server since all
the services are connected to it. The database module stores
all the information necessary for the correct execution of the

Fig. 1. Architecture of CogHelper System

Fig. 2. Information layers of the CogHelper Module for People with Cognitive
Disabilities

system (like usernames, locations and points of interest) and
the remaining module provides the facilities for the communi-
cation between the server and the services (both internal and
external).

The component of the system that is specifically aimed
at people with cognitive disabilities is the Cognitive Helper
Mobile Solution (depicted in Figure 2), which consists of four
layers. This component was developed for Android OS and its
main functionality is to guide the user, enabling him to travel
outside alone without getting lost. The Localization Layer has
the methods that enable the system to get current location of
the user, which may be done through the GPS of the mobile
device or through the network (giving a coarse location). With
this information the Navigation Algorithm is able to use the
pattern mining module (responsible for getting the path that
best fits the needs of the user) and the Speculative Module
(which ensures that the user is traveling in the right path
and alerts him before he takes a wrong turn). The Decision
Algorithm (Decision Layer) uses information from the device
camera, magnetic sensor and accelerometer to get the device
orientation and ensure that the user is correctly oriented within
the path.

The directions and alerts are given through an augmented re-
ality interface. This interface module is included in the System
Input/Output Layer, which is also includes a communication
module. The latter is responsible for passing the information
between the server and the user application. User destination
updates, user current location updates, and so forth are some
of the messages exchanged by these services. The last Layer
depicted in Figure 2 (Information Layer) is used as a local
database for storing information about the map, user contacts,
his location history and other data associated with the user.



Fig. 3. Information layers of the CogHelper Module for Caregivers

Caregivers may use two different applications, a mobile ap-
plication for Android OS and a Web application. Despite being
developed for different platforms, these two applications have
the same goal, provide a monitoring platform for the caregiver
to check the current position of the user without having to
be physically present. However there are some differences
between the two. As depicted in Figure 3 the difference resides
in the User Preferences module that is only present in the Web
application. This module is responsible for adding, editing and
removing user preferences such as destination points. This
feature makes the Web application more complex. The Watch
User Path module allows the caregiver to know the current
location of the user. Inside the Notification Layer there are
two modules that generate and receive alerts from and to the
user application. The third Layer (System Input/Output) has
the User Interface, which enables the user to interact with the
application and shows the necessary information to the user.
The other module ensures the communication with the server.

IV. A SPECULATIVE MODULE FOR USERS WITH
COGNITIVE DISABILITIES

The objective of the Speculative Module is to predict the
next step of the user of the orientation system and manipulate
that prediction in order to determine if an alert/warning should
be issued. The whole procedure is controlled by Speculative
Computation, acting as an interface between the instructions
for the correct path (encoded as rules in the framework), the
predictions about user transitions from one point to another in
the path (encoded as default values), and the real information
about these transitions that arrive from the other modules
of the system. The Speculative Module has two main com-
ponents, the framework of Speculative Computation and the
method for the Generation of Default Values.

A. Framework of Speculative Computation

Speculative Computation as a reasoning framework was
initially presented in [8] for problem solving in multi-agent
systems when the communication between agents is not en-
sured. The Speculative Computation part of the Speculative
Module is based on a logic programming framework that
uses abductive reasoning [9]. As such, it includes a dynamic
belief mechanism about the outside world. A Framework of
Speculative Computation for an Orientation Method (SFOM )
is a tuple 〈Σ, E ,∆,A,P, I〉. The meaning of each element is

the following. Σ is a finite set of constants. An element in Σ
is a module of the orientation system. E is a set of predicates
called external predicates, representing the decision criteria.
When Q is a literal with an external predicate and S is the
identifier of a system module, Q@S is called an askable literal.
∼(Q@S) is defined as (∼Q)@S. Default values are assumed
whenever the information is incomplete. They are included in
the set represented by ∆ (default answer set). This is a set of
ground askable literals which satisfies the following condition:
∆ does not contain at the same time p(t1, . . . , tn)@S and
∼p(t1, . . . , tn)@S. A is the set of abducible predicates. Q
is called abducible when it is a literal with an abducible
predicate. The set of rules (P) that the program is going to
execute are in the form: H ← B1, B2, . . . , Bn where H is a
positive ordinary literal and each of B1, . . . , Bn is an ordinary
literal, an askable literal or an abducible literal; and H is the
non-empty head of the rule (named head(R)) in which R is
the rule of the form H ← B1, . . . , Bn. The body of the rule
is represented by B1, . . . , Bn (named body(R)) and may be
replaced by the boolean value true. The last set, denoted by I,
contains the integrity constraints, which do not allow contra-
dictions during the execution of the speculative framework.
The integrity constraints are in the form ⊥← B1, . . . , Bn

where ⊥ is the symbol for contradiction. B1, . . . , Bn are
ordinary literals, askable literals or abducibles. At least one
of B1, . . . , Bn must be an askable literal or an abducible. An
askable literal may have two different meanings: an askable
literal Q@S in a rule R ∈ P represents a question that is asked
to a system module S; or an askable literal in ∆ denotes a
default truth value (true or false), i.e., p(t1, . . . , tn)@S ∈ ∆,
p(t1, . . . , tn)@S is usually true for a question to a system
module S, and ∼p(t1, . . . , tn)@S ∈ ∆, p(t1, . . . , tn)@S is
generally false for a question to a system module S. The
literals in ∆ represent the defaults about travel habits of the
user in a specific route and the inclusion of locations in that
route.

In the logic program given below, which provides a for-
malization of the example in Figure 4, the literal path(a, b)
denotes that there is a physical connection between the lo-
cations a and b, thus the user may travel between them.
The literal show next point is used to indicate that the
system must show the next location to which the user should
travel. This location may be an intermediate point or the final
destination. Whenever the user travels in the wrong direction
the literal show user warning is activated indicating to the
system that it must alert the user. In the set of external
predicates there are the predicates user travel(a, b) (which
says that the user will travel from location a to location b)
and included(a) (to indicate if a location a is part of the
route). These external predicates ask information from sources
gps sensor and recognizer, respectively. The former verifies
if the user is traveling from point A to B. The latter checks if
point B is included in the set of valid locations.

The framework of Speculative Computation that is given
below ensures that the user is traveling in the correct path and
assesses the need for issuing alerts when he may miss a turning



Fig. 4. Possible ways to travel between locations 1 and 3.

point. This framework is given in terms of the following logic
program:

• Σ = {gps sensor, recognizer}
• E = {user travel, included}
• ∆ = {user travel(1, 2)@gps sensor,

user travel(2, 4)@gps sensor,
∼user travel(4, 2)@gps sensor,
user travel(2, 3)@gps sensor,
included(1)@recognizer, included(2)@recognizer,
included(3)@recognizer,∼ included(4)@recognizer

• A = {show next point, show user warning}
• P is the following set of rules:

guide(A,A)← .
guide(A,B)←

path(A,F ),
show next point(F ),
user travel(A,F )@gps sensor,
guide(F,B).

guide(A,B)←
path(A,F ),
user travel(A,F )@gps sensor,
show user warning(F ),
guide(F,B).

path(1, 2)← .
path(2, 4)← .
path(2, 3)← .
path(4, 2)← .

• I denotes the following set of integrity constraint or invariants:
⊥←

show next point(F ),
∼ included(F )@recognizer.

⊥←
show user warning(F ),
included(F )@recognizer.

The two invariants included in set I ensure that the system
does not show an alert when the user travels in the correct
path and that it does not show a location that is not valid (is
not part of the route) as the next traveling point. In the setting
depicted above the framework assumes as default that the user
normally travels from 1 to 2, from 2 to 4, and from 2 to 3, but
not from 4 to 2. The framework also assumes that 1, 2 and
3 are included in the path, but 4 is not. Figure 4 presents the
setting for the decision of whether to show or not a warning.
It is a graph representing the path that a user should take. At
location 2, there is an alternative path that may take the user
to location 4. This is a point where the user may follow the
wrong path.

B. Preliminary Definitions

The normal execution of the framework comprises the
reduction of a non askable literal into subgoals under the rules
in P . Upon the appearance of an askable literal a query is sent
to the system modules . When the answers are returned from
Σ, they are added to the execution. To be able to create a proof
procedure for the previously described framework there is the
need for a few definitions:

Definition 1. The tuple 〈GS,OD, IA,ANS〉 represents a process
in which GS (Goal Set) is a set of extended literals to prove. These
literals express the current status of an alternative computation;
Outside Defaults (OD) is the set of askable literals and represents
the assumed information about the outside world during the process;
the set of negative literals or abducibles is named Inside Assumptions
(IA) and contains the values that are assumed during the process;
finally, the set ANS is the set of instantiations of variables in the
initial query.

Definition 2. APS is a set of active processes and SPS is a set of
suspended processes.

Definition 3. AAQ is a set of askable literals that have already been
asked. The Current Belief State (CBS) is the set of askable literals.

The APS expresses the set of processes that are consistent
with the CBS and the SPS represents those which are not.
AAQ ensures that redundant questions are not made to the
sensors. The current status of the outside world is expressed
through the CBS. During the execution of the framework
there are different types of process, namely active processes
and suspended processes.

Definition 4. Let 〈GS,OD, IA,ANS〉 be a process and CBS be
a current belief state. A process is active with respect to CBS if
OD ⊆ CBS. A process is suspended with respect to CBS otherwise.

The previous definitions state that an active process is a
process in which the outside defaults are consistent with the
current belief state. As such, if a process that states that an
alert to the user should be issued is active, it means that the
system will perform that action.

C. Process Reduction Phase

During this phase a process may suffer some changes. It
represents the normal reduction of literals according to the
rules in P , the integrity constraints I, and the CBS. In
the following description changed PS, AAQ and CBS are
defined as NewPS, NewAAQ and NewCBS.

Initial Step: Let GS be an initial goal set. The tuple
〈GS, ∅, ∅, ANS〉 is given to the proof procedure where ANS
is a set of variables in GS. That is, PS = {〈GS, ∅, ∅, ANS〉}.
Let AAQ = ∅ and CBS = ∆.

Iteration Step: Do the following:
• Case 1: If there is an active process 〈∅, OD, IA,ANS〉

with respect to CBS in PS, terminate the process by
returning outside defaults OD, inside assumptions IA,
and instantiation for variables ANS.

• Case 2: If there is no active process, terminate the process
by reporting a failure of the goal;

• Case 3: Select an active process 〈GS,OD, IA,ANS〉
with respect to CBS from PS and select an extended
literal L in GS. Let PS′ = PS−{〈GS,OD, IA,ANS〉}
and GS′ = GS − {L}. For the selected extended literal
L, do the following:
– Case 3.1: If L is a positive ordinary literal,
NewPS = PS′

⋃
{〈({body(R)}

⋃
GS′)θ,

OD, IA,ANSθ〉|∃R ∈ P and ∃most general



unifier (mgu) θ so that
head(R)θ = Lθ.

– Case 3.2: If L is a ground negative ordinary literal or
a ground abducible then:
∗ Case 3.2.1: If L ∈ IA then NewPS =
PS′

⋃
{〈GS′, OD, IA,ANS〉}.

∗ Case 3.2.2: If L ∈ IA then NewPS = PS′.
∗ Case 3.2.3: If L /∈ IA then NewPS =
PS′

⋃
{〈NewGS,OD, IA

⋃
{L}, ANS〉}

where NewGS = {fail(BS)|BS ∈
resolvent(L,P

⋃
I)}

⋃
GS′ and

resolvent(L, T ) is defined as follows:
· If L is a groung negative ordinary literal,
resolvent(L, T ) = {{L1θ, . . . , Lkθ}|H ←
L1, . . . , Lk ∈ T so that L = Hθ by a ground
substitution θ}
· If L is a ground abducible,
resolvent(L, T ) = {{L1θ, . . . , Li−1θ, Li+1θ,
. . . , Lkθ}|⊥ ← L1, . . . , Lk ∈ T so that
L = Liθ by a ground substitution θ}.

– Case 3.3: If L is fail(BS), then
∗ If BS = ∅, NewPS = PS′;
∗ IF BS 6= ∅, then do the following:

(1) Select B from BS and let BS′ = BS − {B}.
(2) Case 3.3.1: If B is a positive ordinary

literal, NewPS = PS′
⋃
{〈NewGS⋃

GS′, OD, IA,ANS〉} where
NewGS = {fail(({body(R)}

⋃
BS′)θ|∃R ∈ P and ∃mgu θ so that
head(R)θ = Bθ}
Case 3.3.2: If B is a ground negative
ordinary literal or a ground askable
literal or an abducible, NewPS =
PS′

⋃
{〈{fail(BS′)}

⋃
GS′, OD, IA,

ANS〉}
⋃
{〈{B}

⋃
GS′, OD, IA,ANS〉}.

– Case 3.4: If L is a ground askable literal, Q@S, then
do the following:
(1) If L /∈ AAQ and L /∈ AAQ, then send the

question Q to the slave agent S and NewAAQ =
AAQ

⋃
{L}.

(2) If L ∈ OD then NewPS = PS′ else NewPS =
PS′

⋃
{〈GS′, OD

⋃
{L},

IA,ANS〉}.
D. Fact Arrival Phase

During the process reduction phase information is asked
from the system modules. Whenever this information is re-
turned from the source the current belief state is revised
according to it. Supposing that an answer Q is returned from
a system module S. Let L = Q@S. After finishing a step of
the process reduction phase, do the following:
• If L ∈ CBS, then NewCBS = CBS − {L}

⋃
{L}

• Else if L /∈ CBS, then NewCBS = CBS
⋃
{L}.

Some askable literals might not be included in the initial
belief set. Thus, if there is a process that is using such askable

literal or their complements, they are suspended until the
answer arrives.

E. Generation of Default Values

The Framework of Speculative Computation uses the values
from the default answer set (defined by ∆) whenever it
is under a scenario of incomplete information. During the
execution of the framework it asks the information source and
keeps the execution using the value from this set. The default
answer set needs to be generated each time the user wants
to travel from the location he currently is to the destination
selected inside the mobile application. This generation process
is very important because its goal is to find a traveling route
that is adjusted to the preferences of the user. Instead of
guiding the user though the shortest path, it might guide him
through a longer, but preferred, path. This set also includes
values of possible mistakes that the user may make, reflecting
his habits when following that route. They are used in order
to alert and prevent him from taking the wrong path.

The generation of the default values is a complex process
and is dependent on the number of times the person has
traveled with the aid of the CogHelper System. If it is the
first time the person with cognitive disabilities is using the
application, then there is no historic data about him and the
generated route will use a shortest path method (e.g., Dijkstra
algorithm). If there is historic data available, then all similar
routes are retrieved from the database. This set of routes
includes those with the same (or approximately) starting point
or routes that go through the current starting point to the
intended destination, i.e., routes that started elsewhere and,
from a given point, become similar to the other routes retrieved
from the database.

After this first retrieval step, a pattern mining method is
applied [10], [11], [12] to get the best route (the one that best
fits user preferences). Figure 5 represents a calculated path
using the raw data retrieved from the database in which a
pattern mining method has been applied. This example route
will be used to guide the user between the points.

To be able to use the resulting route to guide the user
it is necessary to remove the error of the raw data. For
this normalizing step there are multiple online services like
RoadMatcher[13], TrackMatching[14] and GraphHopper[15],
to name a few. To use these services, the system sends the
route raw points and receives the points without the inherent
raw error. This second phase ends with a route like the one
presented in Figure 6.

Removing the error from the raw GPS data enables the
system to guide the user in a more precise way, however
if we use this calculated route for the guiding process it
would generate too many assertive messages informing the
user to travel small distances, given the density of points. This
situation would be distracting to the user since the number of
prompts would be exacerbated. Thus, after this process we
need to reduce the number of routing points to the minimum.
Using the map information from OpenStreetMap, it is possible
to get the starting and ending points of a street and get



Fig. 5. Route obtained from database raw data and after applying a pattern
mining method

Fig. 6. Route obtained after applying a pattern mining method

intersections with other streets. With these points, it becomes
possible to guide the user and predict if he is going to take
a wrong turn at an intermediate intersection (using historic
data from the database). This reduction process is illustrated
in Figure 7.

With the reduced route the system may guide the user
to the intended destination. However, there is the need to
convert the GPS points (latitude and longitude coordinates) so
that the framework of Speculative Computation may use this
information and create the alerts whenever they are necessary.
This data conversion transforms single location points into arcs
that connect these points. Thus, if the generated route has 30
valid points (including start, end and intermediate locations)
29 arcs are created. These are used to indicate the next location
point that the user should travel to. In order to alert the user
we need to create another arc between the error point X (see

Fig. 7. Route with reduced number of points

Fig. 8. Generation of default values schema

error turn in Figure 7) and an intersection with a valid point.
This arc together with the literal ∼included(X) indicates that
the user is traveling to a wrong direction and an alert must be
shown. The entire process of generating the default values
depends on historic data of each user. Note that a user may
have historic information about previous interactions with the
application, but it may not suit the current guidance because
the user may be traveling to a different destination or from a
different starting location. Figure 8 shows a schematic of the
tasks necessary to get the default answer set.

F. Execution Example

An execution example of the Program introduced in Sec-
tion IV-A is presented below. For the process reduction,
when a positive literal is reduced, new processes are created
according to the rule order in the program, if the rules are
unifiable with the positive literal.

In the next execution example for guide(1, 3) the selected
literal is underlined in the selected active process. SPS, AAQ
and CBS are only shown when a change occurs. During the
following execution trace the user travels between locations 1
and 3 through intermediate location 2 and takes the wrong
direction towards location 4. When this occurs the system
alerts the user and guides him to the correct path.



1©
APS = {〈{guide(1, 3)}, ∅, ∅〉}
AAQ = ∅
CBS = {user travel(1, 2)@gps sensor,
user travel(2, 3)@gps sensor, user travel(2, 4)@gps sensor,
included(1)@recognizer, included(2)@recognizer,
included(3)@recognizer,∼ included(4)@recognizer}

2© By case 3.1
APS = {〈{path(1, F ), show next point(F ),
user travel(1, F )@gps sensor, guide(F, 3)}, ∅, ∅〉,
〈{path(1, F ), user travel(1, F )@gps sensor,
show user warning(F ), guide(F, 3)}, ∅, ∅〉}

3© By case 3.1
APS = {〈{show next point(2),
user travel(1, 2)@gps sensor, guide(2, 3)}, ∅, ∅〉,
〈{user travel(1, 2)@gps sensor,
show user warning(2), guide(2, 3)}, ∅, ∅〉}

4© By case 3.2.3, 3.3.2 and 3.3
APS = {〈{included(2)@recognizer,
user travel(1, 2)@gps sensor, guide(2, 3)}, ∅,
{show next point(2)}〉,
〈{user travel(1, 2)@gps sensor,
show user warning(2), guide(2, 3)}, ∅, ∅〉}

5© By case 3.4
included(2) is asked to the recognizer
APS = {〈{user travel(1, 2)@gps sensor, guide(2, 3)},
{included(2)@recognizer}, {show next point(2)}〉,
〈{user travel(1, 2)@gps sensor,
show user warning(2), guide(2, 3)}, ∅, ∅〉}
AAQ = {included(2)@recognizer}

To an easier comprehension of this execution example the
branch that would check if an alert should be issued when
the user travels towards location 2 is omitted since it would
become a suspended process.

6© By case 3.4
APS = {〈{guide(2, 3)}, {included(2)@recognizer,
user travel(1, 2)@gps sensor}, {show next point(2)}〉}

7© By case 3.1
APS = {〈{path(2, F ), show next point(F ),
user travel(2, F )@gps sensor, guide(F, 3)},
{included(2)@recognizer, user travel(1, 2)@gps sensor},
{show next point(2)}〉,
〈{path(2, F ), user travel(2, F )@gps sensor,
show user warning(F ), guide(F, 3)}, {included(2)@recognizer,
user travel(1, 2)@gps sensor}, {show next point(2)}〉}

8© By case 3.1
APS = {〈{show next point(3),
user travel(2, 3)@gps sensor, guide(3, 3)},
{included(2)@recognizer, user travel(1, 2)@gps sensor},
{show next point(2)}〉,
〈{show next point(4), user travel(2, 4)@gps sensor,
guide(4, 3)}, {included(2)@recognizer,
user travel(1, 2)@gps sensor}, {show next point(2)}〉P1 ,
〈{user travel(2, 3)@gps sensor, show user warning(3),
guide(3, 3)}, {included(2)@recognizer,
user travel(1, 2)@gps sensor}, {show next point(2)}〉P2

〈{user travel(2, 4)@gps sensor, show user warning(4),

guide(4, 3)}, {included(2)@recognizer,
user travel(1, 2)@gps sensor}, {show next point(2)}〉P3}

9© By case 3.2.3, 3.3.2 and 3.3
APS = {〈{included(3)@recognizer,
user travel(2, 3)@gps sensor, guide(3, 3)},
{included(2)@recognizer, user travel(1, 2)@gps sensor},
{show next point(2), show next point(3)}〉,
P1, P2, P3}

10© By case 3.4
included(3) is asked to the recognizer
APS = {〈{user travel(2, 3)@gps sensor, guide(3, 3)},
{included(2)@recognizer, user travel(1, 2)@gps sensor,
included(3)@recognizer},
{show next point(2), show next point(3)}〉,
P1,
〈{user travel(2, 3)@gps sensor, show user warning(3),
guide(3, 3)}, {included(2)@recognizer,
user travel(1, 2)@gps sensor}, {show next point(2)}〉,
P3}
AAQ = {included(2)@recognizer,
user travel(1, 2)@gps sensor, included(3)@recognizer}

11© By case 3.4
user travel(2, 3) is asked to the gps sensor
APS = {〈{guide(3, 3)}, {included(2)@recognizer,
user travel(1, 2)@gps sensor, included(3)@recognizer,
user travel(2, 3)@gps sensor},
{show next point(2), show next point(3)}〉P4 ,
P1,
〈{show user warning(3), guide(3, 3)},
{included(2)@recognizer, user travel(1, 2)@gps sensor,
user travel(2, 3)@gps sensor}, {show next point(2)}〉,
P3}
AAQ = {included(2)@recognizer,
user travel(1, 2)@gps sensor, included(3)@recognizer,
user travel(2, 3)@gps sensor}

12© By case 3.2.3, 3.3.2 and 3.3
APS = {P4, P1,
〈{∼ included(3)@recognizer, guide(3, 3)},
{included(2)@recognizer, user travel(1, 2)@gps sensor,
user travel(2, 3)@gps sensor},
{show next point(2), show user warning(3)}〉,
P3}

According to what was previously described, the branch
represented by P3 is not shown since the system must not
indicate the user to travel towards location 4. Thus, after
executing this branch, it will become a suspended process.

13© By case 3.4
included(4) is asked to the recognizer
APS = {P4,
〈{user travel(2, 4)@gps sensor, show user warning(4),
guide(4, 3)}, {included(2)@recognizer,
user travel(1, 2)@gps sensor}, {show next point(2)}〉}
AAQ = {included(2)@recognizer,
user travel(1, 2)@gps sensor, included(3)@recognizer,
user travel(2, 3)@gps sensor, included(4)@recognizer}

14© By case 3.4
user travel(2, 4) is asked to the gps sensor
APS = {P4,
〈{show user warning(4), guide(4, 3)}, {included(2)@recognizer,



user travel(1, 2)@gps sensor, user travel(2, 4)@gps sensor},
{show next point(2)}〉}
AAQ = {included(2)@recognizer,
user travel(1, 2)@gps sensor, included(3)@recognizer,
user travel(2, 3)@gps sensor, included(4)@recognizer,
user travel(2, 4)@gps sensor}

15© By case 3.2.3, 3.3.2 and 3.3
APS = {P4,
〈{∼ included(4)@recognizer, guide(4, 3)},
{included(2)@recognizer, user travel(1, 2)@gps sensor,
user travel(2, 4)@gps sensor},
{show next point(2), show user warning(4)}〉}

16© By case 3.4
APS = {〈{guide(3, 3)}, {included(2)@recognizer,
user travel(1, 2)@gps sensor, included(3)@recognizer,
user travel(2, 3)@gps sensor},
{show next point(2), show next point(3)}〉,
〈{guide(4, 3)}, {included(2)@recognizer,
user travel(1, 2)@gps sensor, user travel(2, 4)@gps sensor,
∼included(4)@recognizer},
{show next point(2), show user warning(4)}〉P5}

17© By case 3.1
APS = {〈∅, {included(2)@recognizer,
user travel(1, 2)@gps sensor, included(3)@recognizer,
user travel(2, 3)@gps sensor},
{show next point(2), show next point(3)}〉,
P5}
At this stage the system has an active process that will also

become suspended since the user is alerted before making
the mistake of turning to location 4. When this occurs the
execution trace ends since there is no more active processes.

V. CONCLUSION AND FUTURE WORK

This work proposes a default generation method which
produces predictions for the direction that a user may follow
at particular points in his route. The process is based on
data from previous runs of the system which are used to
identify critical points, such as intersections, where he may
make a mistake in his path. The habits of the user at those
locations are also assessed in order to determine the direction
he usually follows when he is there. These habits will become
the default values. Here, Speculative Computation is used as
a control mechanism that helps the system determine whether
it is necessary to issue an alert or not. The integration of both
the Generation of Defaults and Speculative Computation to
create a predictive feature for orientation systems is the main
contribution of this work. The method for the detection of
user orientation patterns is independent of the framework, but
Speculative Computation can be used in combination with it,
providing a structured reasoning framework. With the general
definition of the Generation of Defaults, it becomes necessary
to explore different pattern mining techniques in order to
determine which is the most appropriate for the problem at
hand. Therefore, this will be the object of study in future
works.
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