
Speculative Orientation and Tracking System

João Ramos1, Paulo Novais1, Ken Satoh2,
Tiago Oliveira1 and José Neves1

1CCTC/Department of Informatics
University of Minho

Braga, Portugal
{jramos,pjon,toliveira,jneves}@di.uminho.pt

2National Institute of Informatics
Hitotsubashi, Chyoda-ku

Tokyo, Japan
ksatoh@nii.ac.jp

ABSTRACT

The current progresses at the intersection of computer science and health care have the
potential of greatly improving the living conditions of people with disabilities by removing
obstacles that impair the normal unfolding of their everyday lives. Assistive technologies,
as an application of scientific knowledge, aim to help users with their diminished capacities
and, usually, imply a small adaptation from individuals so that they can use the devices
that convey assistive functionalities. One of the most commonly diminished capabilities is
that of spatial orientation. This is mirrored by several research works whose goal is to help
human beings to travel between locations. Once set up, most of the systems featured in
these research works requires changes in the configurations to be made manually in order
to achieve a better adjustment to the user. In order to overcome this drawback, the work
presented herein features a framework of Speculative Computation to set up the compu-
tation of the next step of a user using default values. The consequence of the application
of the framework is a faster reaction to user stimuli, which may result in issuing warnings
when he is likely to choose the wrong direction.

Keywords: Cognitive disabilities, Mobile application, Guidance, Person tracking, Ambient
intelligence, Logic programming.

2000 Mathematics Subject Classification: 68N17, 68T27.

1 Introduction

Technology plays an important role in peoples lives in so many different domains such as busi-
ness, education, communication, social relationships, and so on. With this ever increasing
penetration of technology in everyday life, it was only a matter of time until the development
of mainstream technology started having an impact in the lives of people with disabilities. The
technology developed specifically for the purpose of improving the lives of people with dimin-
ished capacities received the designation of assistive technology. The concept was first legally

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/154274666?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


established in the United States in 1988, by the Technology-Related Assistance for Individu-
als with Disabilities Act, also referred to as Tech Act. This act was extended in 1998 by the
Assistive Technology Act (Alper and Raharinirina, 2006; Scherer, Hart, Kirsch and Schulthe-
sis, 2005). In it, it is stated that “assistive technology is any item, piece of equipment, or
product system. . . that is used to increase, maintain, or improve functional capabilities of indi-
viduals with disabilities”. Passing this act was the first step in seeking to disseminate assistive
technologies and provide them to people with disabilities. Indeed, since the first form of the
act was passed, the attention towards this kind of technology has been increasing, which led,
up until now, to the development of devices to be embedded in a home environment, in order
to assist users and monitor their activities, movements, and health on a daily basis (Stefanov,
Bien and Bang, 2004).
The existence of these smart home environments, also called smarthouses (Sadri, 2007),
minimizes the loss of independence from users with disabilities. This technology also en-
ables caregivers and physicians to have access to information collected from the environment
(Carneiro, Novais, Costa, Gomes, Neves, Tscheligi, De Ruyter, Markopoulus, Wichert, Mir-
lacher, Meschterjakov and Reitberger, 2009), which, in turn, leads to letting the user (e.g., an
elder or a person with cognitive disabilities) stay at home longer with increased independence,
rather than resorting to admission to a health care institution. However, users can only benefit
from the advantages of smarthouses indoors. So, it is necessary to develop means through
which people with disabilities can have an active role in the outside world, participate in their
community, and feel perfectly integrated in society.
The focus of this work is placed on people with cognitive disabilities. According to the Diag-
nostic and Statistical Manual for Mental Disorders (Spitzer, Gibbon, Skodol and First, 1994),
cognitive disabilities are a medical condition in which individuals have more difficulties in per-
forming mental tasks. These tasks include self-care, communication, use of community re-
sources, work, leisure, and so on. There is a classification for cognitive disabilities according
to their severity, which includes the following phases: mild, moderate, severe, and extreme.
The main criterion for a diagnosis is the extent to which the mental functions of an individual
are compromised, which is also related to the cause of the disabilities. They can be brought
about by events such as strokes, Alzheimers disease, mental handicaps, and traumatic brain
injuries.
Orientation is one of the mental tasks that are most affected in people with cognitive disabilities.
If someone is unable to go to where activities take place, it becomes impossible to participate,
which may cause a greater social isolation and bring about, or accentuate, feelings of depres-
sion. To address this issue, researchers have been working on new ways of using the available
technology to increase the outdoor independence of users, namely in helping them to travel
alone between locations. In order to accompany users in their everyday lives, the developed
systems have to be available in devices that users can carry around, they have to be small,
lightweight, and resistant (Dawe, 2006; Dawe, 2007). These physical features can be found in
modern smartphones and tablets, which serve has the support for many of the research works
now in progress. At the same time, the interfaces provided by these systems play an important
role in their acceptance (Dawe, 2006; Dawe, 2007; Friedman and Bryen, 2007). They have



to deliver all the important functionalities, yet be simple enough to allow people with cognitive
disabilities to easily use them. Any distractive element should be removed and the instructions
should be provided in simple texts.
After analysing the current state of the art in the area of orientation systems for people with
cognitive disabilities and identifying the limitations of current systems, a system (Ramos, Ana-
cleto, Costa, Novais, Figueiredo and Almeida, 2012) was developed for the purpose of guiding
the user to different locations using simple interfaces, with the possibility of his caregiver mon-
itoring his movements. This increases the freedom of both parts. The user can travel alone
while the caregiver is engaged in other activities. The differentiating factor, when compared
to other existing systems, is that this system learns the most frequent behaviours of a user
and analyses his activity patterns in order to generate default values for Speculative Computa-
tion. In sensible decision points, when a user has to choose a direction to follow, Speculative
Computation provides a way of managing the lack of real information by providing a tentative
computation for the path the user should follow, based on the extracted defaults. This tenta-
tive computation can be used to issue warnings in order to alert the user in the event of his
following the wrong direction.
This paper is organized as follows. Section 2 contains the main related work on orientation
systems for people with cognitive disabilities and reasoning under incomplete information in
the context of assistive technologies. The criterion used to gather the current research works
was that the orientation systems should be hosted by smartphones. Section 4 provides a
description of the system in development, with its latest improvements. The framework for
Speculative Computation is formulated in section 5. Finally, conclusions are drawn and future
work considerations are made in section 6.

2 Related Work

The work presented herein focuses on orientation systems and ways of anticipating the next
step of a user in the event that he makes a mistake in his path and a warning has to be
issued. In the current orientation systems aimed for people with cognitive disabilities, this kind
of safeguard has not been extensively explored. To demonstrate this, the following subsections
provide related work on the topics of orientation systems and reasoning under incomplete
information.

2.1 Orientation Systems

The technological development experienced in recent years increased the availability of small,
portable, handheld devices with high processing power. Nowadays, purchasing a smartphone
is within reach of most people. These devices are capable of running applications with various
purposes, but one of particular interest for the theme of this work is that of orientation. The in-
corporation of a Global Positioning System (GPS) module in a smartphone made possible the
development of navigation applications. However, these applications serve a general purpose,
they were not developed to be used by people with cognitive disabilities. Recognizing the im-
portance of orientation for people with disabilities and the pivotal role smartphones could have



in the development of cognitive assistants, researchers started the development of systems fit
for the characteristics of these individuals.
The work of (Carmien, Dawe, Fischer, Gorman, Kintsch and Sullivan, 2005) features a system
that enables a user to travel between locations using a public transportation system (e.g., the
bus). They devised an interface that enabled caregivers to create lists of activities that should
be carried out by people with cognitive disabilities. The role of their system is to deliver those
tasks in a simple and comprehensible way while assisting the user in his travels. As such, the
components of the system include: a personal travel assistant that uses real-time GPS data
from the bus fleet to deliver just-in-time prompts to the user; a mobile prompting client and a
prompting script configuration tool for caregivers; and a monitoring system that collects real-
time task status from the mobile client and alerts the support community of potential problems.
Liu, Hile, Borriello, Kautz, Brown, Harniss and Johnson 2009 make use of static images with
overlaid arrows, audio messages, and text messages in their prototype for guiding a user.
The applicability of the system was tested with several real-world scenarios. The underlying
principle of this work is to find models to produce tailored pedestrian wayfinding directions for
people with cognitive impairment. They developed a framework based on a Markov Decision
Process (MDP), which enables the representation of user preferences as costs in a network.
Another feature is the use of recognizable landmarks near the user to facilitate guidance.
AlzNav (Fraunnhover Portugal, 2012) is an orientation system developed by Fraunhofer Por-
tugal. Its functionalities include monitoring and alerts, navigation, call for help, and call for a
taxi. The application runs on an Android device, and its interface is very simple. Its main focus
is to to make the interpretation of the content seen on the screen easy. The direction a user
should take is shown using an arrow that works as a compass, spinning around according to
the direction the user sets on the mobile device. Along with the arrow, the user also sees the
distance he must travel in that direction. The application also sends updates about the situation
of the user to the caregiver through SMSs.
These are some of the most important works in the area of orientation systems for people with
cognitive disabilities. At the level of the orientation method, i.e. the way in which orientation
is presented to the user, the available systems either use static images or a compass-like dis-
play. Technologies such as augmented reality have not been explored enough in this domain.
Augmented reality can increase the interactivity of applications and facilitate the understand-
ing of instructions. The prompts of the applications assist the interpretation of the information
provided by the orientation method and are normally audio and visual. Most of the existing
systems work with a predetermined route, being useful only to take a user from a specific point
A to a specific point B. There are only a few works that analyse the frequent behaviours of
users to try to infer his route, recognize activities, or issue reminders if something is deviating
from its normal course.
In previous work (Ramos et al., 2012; Ramos, Anacleto, Novais, Figueiredo, Almeida and
Neves, 2013; Ramos, Costa, Novais and Neves, 2014; Ramos, Satoh, Novais and Neves,
2014), we have presented a functional prototype of an orientation and localization system. It
is delivered through and Android application that makes use of augmented reality to guide the
user along his route. It also enables the caregiver to know the location of the user in real time.



With the purpose of enhancing the guiding experience, a framework of Speculative Compu-
tation was devised. With the tentative computation based on default values, it is possible to
generate the next step forward before it materializes. This feature can be used as the core of
an alert system. The remaining content of this paper explains how this framework was inte-
grated in the orientation system and describes the modifications and adjustments made to the
system in order to accommodate it.

3 Reasoning Under Incomplete Information

The issue of incomplete information in orientation systems has not been widely explored. In
such systems, it would be advantageous to explore patterns of user behaviour in order to know
frequent habits of an individual so as to provide him a better guidance. This has a particular
application in people with cognitive disabilities. Given their diminished cognitive capacity, they
are prone to errors when following instructions, which makes it easy for them to get lost. As
such, identifying the critical points of a route, where an individual is most likely to choose the
wrong path, would allow a system to issue warnings in order to avoid the situation. There are,
however, some difficulties with this. Given the complexity that travelling routes may have, it
is significantly difficult to analyse them and extract patterns. Moreover, there is a need for a
reasoning model that accommodates these patterns and structures reasoning with them.
One of such reasoning models is the Markov Decision Process (MDP) (Littman, Dean and
Kaelbling, 1995), a discrete time stochastic control process with four components: a set of
states, which represent the current status of the world; a set of actions, which represent pos-
sible alternatives to act; a set of state transitions, representing the effects of the actions; and
a set of immediate rewards, specifying the reward after taking an action. The objective of
MDPs is to map the elements of a state to the possible actions one may take so as to maxi-
mize the immediate reward after taking the action. For cases in which the state of the world
cannot be fully grasped, i.e., when there is incomplete information, there is a special type of
MDP, called the Partially Observable Markov Decision Process (POMDP) (Chong, Kreucher
and Hero, 2009). In it, an agent uses information from previous iterations in order to esti-
mate the current process state, based on a probability distribution over the possible states.
POMDPs were initially developed in the 1980s by the artificial intelligence community has a
way of searching for near optimal solutions for complex planning problems under uncertainty.
POMDPs have been used in artificial intelligence for robot navigation (Kaelbling, Littman and
Cassandra, 1998), healthcare (Bennett and Hauser, 2013), and assistive technology (e.g., as-
sisting people with dementia in hand washing (Hoey, Bertoldi, Poupart and Mihailidis, 2007)).
The drawbacks associated with both MDPs and POMDPs is that they require data-intensive
estimation steps to get accurate estimation models and their is quite complex.
Another reasoning model is Case-based Reasoning (CBR) (Kolodner, 1992). CBR models are
based on recalling past experiences which are similar to the current one and using the solution
of those past experiences in the new situation. Another form of putting the problem would be
to recall things that went wrong in past experiences and avoid repeating the same mistakes.
The advantage of this approach is that it resembles human reasoning in problem solving.



The effectiveness of a CBR system depends highly on the experiences of the reasoner, its
ability to understand the new experiences in terms of the old ones, its capacity to adapt an
old case to the new one, and its capacity to evaluate a solution. Depending on the particular
objective of the CBR implementation, i.e., whether the new situation should be considered
identical to an old one based on its similarities and differences or the goal is to get a solution
for the new case based on the adaptation of a previous one, the type of CBR used can be
classified as interpretative CBR or problem solving CBR (Lopez and Plaza, 1997). It is a
cyclic process consisting of four phases: retrieval of past cases; reusing a set of best past
cases; revising the solutions in order to avoid poor ones; and retaining new solutions. CBR
has been widely applied in clinical decision making in problems of planning and knowledge
management for patients with Alzheimer’s disease (Corchado, Bajo and Abraham, 2008), in
diagnosis and classification of stress-related disorders (Begum, Ahmed, Funk, Xiong and Von
Schéele, 2009), and other applications in the field of assistive technologies. As far as this
research goes there are no significant examples of CBR applied to orientation systems. The
drawbacks of CBR are related with the great number of cases and the large processing time it
takes to find similar cases in the case-base.
The final model exposed in this section, and the object of study of this work, is Specula-
tive Computation. Speculative Computation was derived from Default Reasoning and Abduc-
tive Logic Programming. It was first presented in Satoh et al. (Satoh, Inoue, Iwanuma and
Sakama, 2000) as a method for problem solving in multi-agent systems when the communi-
cation between agents is not ensured. Speculative Computation deals with incomplete infor-
mation by resorting to a set of default ground literals which represent the information being
exchanged. Based on these defaults, tentative computations are made. When the informa-
tion arrives from the system components, the computations are revised and their consistency
is checked against it. Based on this, some processes are started and others are removed.
The initial setting for which Speculative Computation was presented was that of a master-
slave multi-agent system where only the master performs Speculative Computation and the
abducibles assume the form of ground literals. Speculative Computation will be explained in
more detail in the subsequent sections of this paper.
The search for reasoning models was conducted by taking into consideration the domain of
application of this work. As such, only models applied in situations that resemble the context
presented herein were considered.

4 System Description

The aim of the CogHelper system is to help people with cognitive disabilities as well as their
caregivers, through a lightweight application . Its main purpose is to assist the user in moving
between two locations without getting lost. In order to help the caregiver in his tasks, the
system also has tracking functionalities which allow the caregiver to locate the user at any
time.
The system was devised for outdoor use and its architecture can be seen in Figure 1. It is
composed of server-side components, such as the Database and the Agency for the Integration



Figure 1: Architecture of the CogHelper System.

of System Applications and External Services Modules, and client side components, such as
the Cognitive Helper Mobile Solution, the External Services, and the Caregiver Applications.
All the services are connected to the Server, making it the core of the system. The Database
Module contains all the information necessary for the system to accomplish its tasks. This infor-
mation includes usernames, locations, and points of interest. As for the Agency for Integration
of System Applications and External Services Module, it provides the facilities to communicate
with both internal and external services.
The component of the system aimed specifically for people with cognitive disabilities to use
is the Cognitive Helper Mobile Solution which encompasses three layers, displayed in Figure
2. It was developed for Android OS and its main functionality is orientation, enabling the user
to travel independently without getting lost. The first layer is the Localization Layer which has
methods for getting the current location of the user. This is done using either the GPS of the
mobile device or the network through a coarse location. With the information of user location,
it is possible to determine the frequent paths of the user. As for the Decision Layer, it provides
warnings in order to ensure that the user travels in the right direction. It does so through a
Decision Algorithm which crosses data from the camera, accelerometer, and the magnetic
sensor with information about the destination and the correct path.
The directions are given through an augmented reality Interface such as the one depicted in
Figure 3. The system keeps the caregiver informed of the steps of the user through e-mails
and short messages. If the system detects that the user is disorientated or confused through
his shaking the device too much or by going forwards and backwards in the same restricted
area, the system automatically makes a phone call to the caregiver. The third and last layer

Figure 2: Information layers of the Cognitive Helper Mobile Solution.



Figure 3: Augmented reality interface of the CogHelper Mobile Application for users with cog-
nitive disabilities.

is the System Input/Output. It features a User Interface and a communication module whose
function is to pass on the information between the server and the user. Such information may
include the update of user destinations, the update of the current location, and so forth.
There are two applications for caregivers, a mobile application for Android OS and a Web
application. Their main goal is to inform the caregiver about the current location and state of the
user. Despite this, there are some differences between the two. While the Web application is
more complex, enabling the caregiver to add, edit or remove user preferences,(e.g. destination
points), the mobile application is simpler in terms of the functionalities it provides, focusing
more on monitoring tasks.
To improve the features of the system, Speculative Computation was included in the mobile
application for people with cognitive disabilities under the Localization Layer, since it needs in-
formation about the current location of the user, provided by the GPS device or by the network.

5 A Speculative System for Users with Cognitive Disabilities

The procedure initially presented by (Kakas, Kowalski and Toni, 1998) on abduction in logic
programming was a starting point for the theory of Speculative Computation and Abduction.
This theory was an extension of (Kakas et al., 1998) procedure made by Satoh (Satoh et al.,
2000). Under this theory the computation of a given action/task continues when facing an
incomplete information scenario. Applying this theory means that the computation does not
stop (or does not suspend) when there is a lack of information. Using a default value the
computation continues and tries to generate a tentative solution for the problem. Whenever
the missing information is received, the current computation is re-examined in order to verify if
the default value is consistent with the real one.
During the execution of the speculative framework the computation may change between two
phases, Process Reduction Phase and Fact Arrival Phase. During the normal execution the
process is in the former phase changing temporally to the latter one when a value is returned.
Thus, the Fact Arrival Phase is considered an interruption phase.



In this section we define the framework of Speculative Computation that is used and present a
case to show the execution of the framework.

5.1 Framework of Speculative Computation

To develop an orientation method for people with cognitive disabilities using Speculative Com-
putation is necessary to define a framework (designed by SFOM ) according to the tuple 〈Σ, E ,
∆,A,P, I〉, which consists of five sets. The first element of the tuple (Σ) represents a finite
set of constants, which contains each system module. The set represented by E includes the
predicates called external predicates. When Q is a literal belonging to an external predicate
and S is the identifier of the information source, Q@S is called an askable literal. We define
∼(Q@S) as (∼Q)@S.
Default values are assumed whenever the information is incomplete. They are included in
the set represented by ∆ (default answer set). This is a set of ground askable literals which
satisfies the following condition: ∆ does not contain at the same time p(t1, . . . , tn)@S and
∼p(t1, . . . , tn)@S. A is the set of abducible predicates. Q is called abducible when it is a literal
with an abducible predicate.
The set of rules (P) that the program is going to execute are in the form:

• H ← B1, B2, . . . , Bn where H is a positive ordinary literal and each of B1, . . . , Bn is an
ordinary literal, an askable literal or an abducible literal; and

• H is the non-empty head of the rule (named head(R)) in which R is the rule of the form
H ← B1, . . . , Bn. The body of the rule is represented by B1, . . . , Bn (named body(R))
and may be replaced by the boolean value true.

The last set, denoted by I, contains the integrity constraints, which do not allow contradictions
during the execution of the speculative framework. The integrity constraints are in the form
⊥← B1, . . . , Bn where ⊥ is the symbol for the contradiction. B1, . . . , Bn are ordinary literals,
askable literals or abducibles. At least one of B1, . . . , Bn must be an askable literal or an
abducible.
An askable literal may have two different meanings, namely:

• An askable literal Q@S in a rule R ∈ P represents a question that is asked to a system
module S;

• An askable literal in ∆ denotes a default true value (true or false), i.e., p(t1, . . . , tn)@S ∈
∆, p(t1, . . . , tn)@S is usually true for a question to a system module S, and ∼p(t1, . . . ,
tn)@S ∈ ∆, p(t1, . . . , tn)@S is generally false for a question to a system module S.

In the logic program given below the literal path(a, b) denotes that there is a physical con-
nection between the locations a and b, thus the user may travel between them. The literal
show next point is used to indicate that the system must show the next location to which the
user should travel. This location may be an intermediate point or the final destination. When-
ever the user travels in the wrong direction the literal show user warning is activated indicating



to the system that it must alert the user. In the set of the external predicates there are the pred-
icates user travel(a, b) (which says that the user will travel from location a to location b) and
included(a) (to indicate if a location a is part of the route). These external predicates ask infor-
mation from sources gps sensor and recognizer, respectively. The former verifies if the user is
travelling from point A to B. The latter checks if point B is included in the set of valid locations.
The framework of Speculative Computation that is given below ensures that the user is trav-
elling in the correct path and assesses the need for issuing alerts when he misses a turning
point. This framework is given in terms of the following logic programming suite.

. Σ = {gps sensor, recognizer}

. E = {user travel, included}

. ∆ = {user travel(1, 3)@gps sensor,∼user travel(1, 2)@gps sensor,

user travel(3, 4)@gps sensor, user travel(4, 3)@gps sensor,

user travel(3, 2)@gps sensor,

included(1)@recognizer, included(2)@recognizer,

included(3)@recognizer,∼ included(4)@recognizer

. A = {show next point, show user warning}

. P is a mark of the following set of rules:

guide(A,A)← .

guide(A,B)←
path(A,F ),

show next point(F ),

user travel(A,F )@gps sensor,

guide(F,B).

guide(A,B)←
path(A,F ),

user travel(A,F )@gps sensor,

show user warning(F ),

guide(F,B).

path(1, 2)← .

path(1, 3)← .

path(3, 4)← .

path(3, 2)← .

path(4, 3)← .

. I denotes the following set of integrity constraint or invariants:

⊥←
show next point(F ),

∼ included(F )@recognizer.



1	  

begin 2	  

3	   4	  

end 

Figure 4: Possible ways to travel between locations 1 and 2.

⊥←
show user warning(F ),

included(F )@recognizer.

The two invariants included in set I ensure that the system does not show a warning when the
user travels in the correct path and that it does not show a location that is not valid (is not part
of the route) as the next travelling point.
In the setting depicted above the system assumes as default that the user will travel between
locations 1 and 2 through an intermediate location 3. Figure 4 presents the possible paths that
may be done by the user.

5.2 Preliminary Definitions

To be able to create a proof procedure for the previously described frame-work there is the
need of defining some concepts.

Definition 5.1. The tuple 〈GS,OD, IA,ANS〉 represents a process in which GS (Goal Set)
is a set of extended literals to prove. These literals express the current status of an alter-
native computation; Outside Defaults (OD) is the set of askable literals and represents the
assumed information about the outside world during the process; the set of negative literals
or abducibles is named Inside Assumptions (IA) and contains the values that are assumed
during the process; finally, the set ANS is the set of instantiations of variables in the initial
query.

Definition 5.2. PS (Process Set) is a set of processes. AAQ is a set of askable literals that
have already been asked. The Current Belief State (CBS) is the set of askable literals.

The set of processes PS expresses all the alternative computations considered. AAQ ensures
that redundant questions are not made to the sensors. The current status of the outside world
is expressed through the CBS. During the execution of the framework there are different types
of process, which is important to define: active processes and suspended processes.

Definition 5.3. Let 〈GS,OD, IA,ANS〉 be a process and CBS be a current belief state. A
process is active with respect to CBS if OD ⊆ CBS. A process is suspended with respect to
CBS otherwise.

The previous definition states that an active process is a process in which the outside defaults
are consistent with the current belief state.



5.3 Process Reduction Phase

During this phase a process may suffer some changes. In the next description a changed PS,
AAQ and CBS are defined as NewPS, NewAAQ and NewCBS.

Initial Step: Let GS be an initial goal set. The tuple 〈GS, ∅, ∅, ANS〉 is given to the proof
procedure where ANS is a set of variables in GS. That is, PS = {〈GS, ∅, ∅, ANS〉}. Let
AAQ = ∅ and CBS = ∆.

Iteration Step: Do the following:

. Case 1: If there is an active process 〈∅, OD, IA,ANS〉 with respect to CBS in PS,
terminate the process by returning outside defaults OD, inside assumptions IA, and
instantiation for variables ANS.

. Case 2: If there is no active process, terminate the process by reporting a failure of the
goal;

. Case 3: Select an active process 〈GS,OD, IA,ANS〉 with respect to CBS from PS

and select an extended literal L in GS. Let PS′ = PS − {〈GS,OD, IA,ANS〉} and
GS′ = GS − {L}. For the selected extended literal L, do the following:

− Case 3.1: If L is a positive ordinary literal, NewPS = PS′
⋃
{〈({body(R)}

⋃
GS′)θ,

OD, IA,ANSθ〉|∃R ∈ P and ∃most general unifier (mgu) θ so that
head(R)θ = Lθ.

− Case 3.2: If L is a ground negative ordinary literal or a ground abducible then:

∗ Case 3.2.1: If L ∈ IA then NewPS = PS′
⋃
{〈GS′, OD, IA,ANS〉}.

∗ Case 3.2.2: If L ∈ IA then NewPS = PS′.

∗ Case 3.2.3: If L /∈ IA then NewPS = PS′
⋃
{〈NewGS,OD, IA

⋃
{L}, ANS〉}

where NewGS = {fail(BS)|BS ∈ resolvent(L,P
⋃
I)}

⋃
GS′ and

resolvent(L, T ) is defined as follows:

· If L is a groung negative ordinary literal, resolvent(L, T ) = {{L1θ, . . . ,

Lkθ}|H ← L1, . . . , Lk ∈ T so that L = Hθ by a ground substitution θ}
· If L is a ground abducible, resolvent(L, T ) = {{L1θ, . . . , Li−1θ, Li+1θ, . . . ,

Lkθ}|⊥ ← L1, . . . , Lk ∈ T so that L = Liθ by a ground substitution θ}.

− Case 3.3: If L is fail(BS), then

∗ If BS = ∅, NewPS = PS′;

∗ IF BS 6= ∅, then do the following:

(1) Select B from BS and let BS′ = BS − {B}.
(2) Case 3.3.1: If B is a positive ordinary literal, NewPS = PS′

⋃
{〈NewGS⋃

GS′, OD, IA,ANS〉} where NewGS = {fail(({body(R)}
⋃

BS′)θ|∃R ∈ P and ∃mgu θ so that head(R)θ = Bθ}
Case 3.3.2: If B is a ground negative ordinary literal or a ground askable
literal or an abducible, NewPS = PS′

⋃
{〈{fail(BS′)}

⋃
GS′, OD, IA,

ANS〉}
⋃
{〈{B}

⋃
GS′, OD, IA,ANS〉}.



− Case 3.4: If L is a ground askable literal, Q@S, then do the following:

(1) If L /∈ AAQ and L /∈ AAQ, then send the question Q to the slave agent S and
NewAAQ = AAQ

⋃
{L}.

(2) If L ∈ OD then NewPS = PS′ else NewPS = PS′
⋃
{〈GS′, OD

⋃
{L},

IA,ANS〉}.

5.4 Fact Arrival Phase

During the process reduction phase it is asked information to the information sources. When-
ever this information is returned from the source the current belief state is revised according to
it. Supposing that an answer Q is returned from a sensor S. Let L = Q@S. After finishing a
step of the process reduction phase, do the following:

• If L ∈ CBS, then NewCBS = CBS − {L}
⋃
{L}

• Else if L /∈ CBS, then NewCBS = CBS
⋃
{L}.

Some askable literals might not be included in the initial belief set. Thus, if there is a process
that is using such askable literal or their complements, they are suspended until the answer
arrives.

5.5 Execution Example

An execution example of the program introduced in Section 5.1 is presented bellow. For the
process reduction, the following strategy is used:

. When a positive literal is reduced, new processes are created along according to the rule
order in the program, which are unifiable with the positive literal;

. A newly created or newly resumed process and the most left literal is always selected.

In the next execution trace for guide(1, 2) the selected literal is underlined in the selected active
process. AAQ and CBS are only shown when a change occurs.
During the next execution trace the user travels between locations 1 and 2 through intermediate
location 3 and takes the wrong direction towards location 4. At this stage the system alerts the
user and guides him to the correct path.

1©
PS = {〈{guide(1, 2)}, ∅, ∅〉}

AAQ = ∅
CBS = {user travel(1, 3)@gps sensor,∼user travel(1, 2)@gps sensor,

user travel(3, 4)@gps sensor, user travel(4, 3)@gps sensor,

user travel(3, 2)@gps sensor, included(1)@recognizer,

included(2)@recognizer, included(3)@recognizer,

∼ included(4)@recognizer

2© By case 3.1
PS = {〈{path(1, F ), show next point(F ), user travel(1, F )@gps sensor, guide(F, 2)}, ∅, ∅〉,

〈{path(1, F ), user travel(1, F )@gps sensor, show user warning(F ), guide(F, 2)}, ∅, ∅〉}



3© By case 3.1
PS = {〈{show next point(2), user travel(1, 2)@gps sensor, guide(2, 2)}, ∅, ∅〉,

〈{show next point(3), user travel(1, 3)@gps sensor, guide(3, 2)}, ∅, ∅〉, P1
1 }

At step 3 the system starts to check if it is possible to use the path between locations 1 and 2
to guide the user.

4© By case 3.2.3
PS = {〈{fail(∼ included(2)@recognizer), user travel(1, 2)@gps sensor, guide(2, 2)}, ∅,

{show next point(2)}〉,
P2

2 , P1}

5© By case 3.3.2
PS = {〈{fail(∅), user travel(1, 2)@gps sensor, guide(2, 2)}, ∅, {show next point(2)}〉,

〈{included(2)@recognizer, user travel(1, 2)@gps sensor, guide(2, 2)}, ∅,
{show next point(2)}〉,
P2, P1}

6© By case 3.3
PS = {〈{included(2)@recognizer, user travel(1, 2)@gps sensor, guide(2, 2)}, ∅,

{show next point(2)}〉,
P2, P1}

7© By case 3.4
included(2) is asked to the recognizer

PS = {〈{user travel(1, 2)@gps sensor, guide(2, 2)}, {included(2)@recognizer},
{show next point(2)}〉,
P2, P1}

AAQ = {included(2)@recognizer}

8© By case 3.4
user travel(1, 2) is asked to the gps sensor

PS = {〈{guide(2, 2)}, {included(2)@recognizer, user travel(1, 2)@gps sensor},
{show next point(2)}〉,
P2, P1}

AAQ = {included(2)@recognizer, user travel(1, 2)@gps sensor}

At this stage, since the system does not have an answer for the question user travel(1, 2)@gps sensor,
it uses the default false value and suspends the computation of this branch. The system be-
gins the same process for a new branch that uses a path between locations 1 and 3.

9©
PS = {〈{show next point(3), user travel(1, 3)@gps sensor, guide(3, 2)}, ∅, ∅〉

P1, P3
3 }

10© By case 3.2.3
PS = {〈{fail(∼ included(3)@recognizer), user travel(1, 3)@gps sensor, guide(3, 2)}, ∅,

{show next point(3)}〉
P1, P3}

1P1 = 〈{path(1, F ), user travel(1, F )@gps sensor, show user warning(F ), guide(F, 2)}, ∅, ∅〉
2P2 = 〈{show next point(3), user travel(1, 3)@gps sensor, guide(3, 2)}, ∅, ∅〉
3P3 = 〈{guide(2, 2)}, {included(2)@recognizer, user travel(1, 2)@gps sensor}, {show next point(2)}〉



11© By case 3.3.2
PS = {〈{fail(∅), user travel(1, 3)@gps sensor, guide(3, 2)}, ∅, {show next point(3)}〉,

〈{included(3)@recognizer, user travel(1, 3)@gps sensor, guide(3, 2)}, ∅,
{show next point(3)}〉,
P1, P3}

12© By case 3.3
PS = {〈{included(3)@recognizer, user travel(1, 3)@gps sensor, guide(3, 2)}, ∅,

{show next point(3)}〉,
P1, P3}

13© By case 3.4
included(3) is asked to the recognizer

PS = {〈{user travel(1, 3)@gps sensor, guide(3, 2)}, {included(3)@recognizer},
{show next point(3)}〉,
P1, P3}

AAQ = {included(2)@recognizer, user travel(1, 2)@gps sensor, included(3)@recognizer}

14© By case 3.4
user travel(1, 3) is asked to the gps sensor

PS = {〈{guide(3, 2)}, {included(3)@recognizer, user travel(1, 3)@gps sensor},
{show next point(3)}〉,
P1, P3}

AAQ = {included(2)@recognizer, user travel(1, 2)@gps sensor, included(3)@recognizer,

user travel(1, 3)@gps sensor}

The execution of the program assumed, at this stage, that the user is travelling from 1 to 3.
Then, it suspends this branch and resumes the branche that is used to alert the user whenever
needed.

15©
PS = {〈{path(1, F ), user travel(1, F )@gps sensor, show user warning(F ), guide(F, 2)}, ∅, ∅〉,

P3, P4
4 }

16© By case 3.1
PS = {〈{user travel(1, 2)@gps sensor, show user warning(2), guide(2, 2)}, ∅, ∅〉,

〈{user travel(1, 3)@gps sensor, show user warning(3), guide(3, 2)}, ∅, ∅〉
P3, P4}

17© By case 3.4
PS = {〈{show user warning(2), guide(2, 2)}, {user travel(1, 2)@gps sensor}, ∅〉,

P5
5 , P3, P4}

18© By case 3.2.3
PS = {〈{fail(included(2)@recognizer), guide(2, 2)}, {user travel(1, 2)@gps sensor},

{show user warning(2)}〉,
P5, P3, P4}

19© By case 3.3.2
PS = {〈{fail(∅), guide(2, 2)}, {user travel(1, 2)@gps sensor}, {show user warning(2)}〉,

〈{∼ included(2)@recognizer, guide(2, 2)}, {user travel(1, 2)@gps sensor},
{show user warning(2)}〉
P5, P3, P4}

4P4 = 〈{guide(3, 2)}, {included(3)@recognizer, user travel(1, 3)@gps sensor}, {show next point(3)}〉
5P5 = 〈{user travel(1, 3)@gps sensor, show user warning(3), guide(3, 2)}, ∅, ∅〉



20© By case 3.3
PS = {〈{∼ included(2)@recognizer, guide(2, 2)}, {user travel(1, 2)@gps sensor},

{show user warning(2)}〉
P5, P3, P4}

21© By case 3.4
PS = {〈{guide(2, 2)}, {user travel(1, 2)@gps sensor, ∼ included(2)@recognizer},

{show user warning(2)}〉
〈{user travel(1, 3)@gps sensor, show user warning(3), guide(3, 2)}, ∅, ∅〉
P3, P4}

22© By case 3.4
PS = {〈{show user warning(3), guide(3, 2)}, {user travel(1, 3)@gps sensor}, ∅〉

P3, P4, P6
6 }

23© By case 3.2.3
PS = {〈{fail(included(3)@recognizer), guide(3, 2)}, {user travel(1, 3)@gps sensor},

{show user warning(3)}〉
P3, P4, P6}

24© By case 3.3.2
PS = {〈{fail(∅), guide(3, 2)}, {user travel(1, 3)@gps sensor}, {show user warning(3)}〉

〈{∼ included(3)@recognizer, guide(3, 2)}, {user travel(1, 3)@gps sensor},
{show user warning(3)}〉
P3, P4, P6}

25© By case 3.3
PS = {〈{∼ included(3)@recognizer, guide(3, 2)}, {user travel(1, 3)@gps sensor},

{show user warning(3)}〉
P3, P4, P6}

26© By case 3.4
PS = {〈{guide(3, 2)}, {user travel(1, 3)@gps sensor, ∼ included(3)@recognizer},

{show user warning(3)}〉
P3, P4, P6}

Since locations 2 and 3 are valid, the two branches that are used to alert the user are sus-
pended. The integrity contraints show that the system does not alert the user when he is
travelling in the correct path and this is shown in these previous steps.

27©
user travel(1, 3) is returned from gps sensor

nothing changes

From this point on the execution will do the same as in step 1: guide the user from the inter-
mediate location 3 to the final location 2. It starts by finding a possible path to the destination
and tries to show if the location is valid or alerts the user if not. For each possible location two
new branches are derived from the current one.

28©
PS = {〈{guide(3, 2)}, {included(3)@recognizer, user travel(1, 3)@gps sensor}, {show next point(3)}〉

P3, P6, P7
7 }

6P6 = 〈{guide(2, 2)}, {user travel(1, 2)@gps sensor, ∼ included(2)@recognizer}, {show user warning(2)}〉
7P7 = 〈{guide(3, 2)}, {user travel(1, 3)@gps sensor, ∼ included(3)@recognizer}, {show user warning(3)}〉



29© By case 3.1
PS = {〈{path(3, F ), show next point(F ), user travel(3, F )@gps sensor, guide(F, 2)},

{included(3)@recognizer, user travel(1, 3)@gps sensor}, {show next point(3)}〉
〈{path(3, F ), user travel(3, F )@gps sensor, show user warning(F ), guide(F, 2)},
{included(3)@recognizer, user travel(1, 3)@gps sensor}, {show next point(3)}〉
P3, P6, P7}

30© By case 3.1
PS = {〈{show next point(2), user travel(3, 2)@gps sensor, guide(2, 2)},

{included(3)@recognizer, user travel(1, 3)@gps sensor}, {show next point(3)}〉
〈{show next point(4), user travel(3, 4)@gps sensor, guide(4, 2)},
{included(3)@recognizer, user travel(1, 3)@gps sensor}, {show next point(3)}〉
P8

8, P3, P6, P7}

31© By case 3.2.3
PS = {〈{fail(∼ included(2)@recognizer), user travel(3, 2)@gps sensor, guide(2, 2)},

{included(3)@recognizer, user travel(1, 3)@gps sensor}, {show next point(3),

show next point(2)}〉
P9

9, P8, P3, P6, P7}

32© By case 3.3.2
PS = {〈{fail(∅), user travel(3, 2)@gps sensor, guide(2, 2)}, {included(3)@recognizer,

user travel(1, 3)@gps sensor}, {show next point(3), show next point(2)}〉
〈{included(2)@recognizer, user travel(3, 2)@gps sensor, guide(2, 2)},
{included(3)@recognizer, user travel(1, 3)@gps sensor}, {show next point(3),

show next point(2)}〉
P9, P8, P3, P6, P7}

33© By case 3.3
PS = {〈{included(2)@recognizer, user travel(3, 2)@gps sensor, guide(2, 2)},

{included(3)@recognizer, user travel(1, 3)@gps sensor}, {show next point(3),

show next point(2)}〉
P9, P8, P3, P6, P7}

34© By case 3.4
PS = {〈{user travel(3, 2)@gps sensor, guide(2, 2)}, {included(3)@recognizer,

user travel(1, 3)@gps sensor, included(2)@recognizer}, {show next point(3),

show next point(2)}〉
P9, P8, P3, P6, P7}

35© By case 3.4
user travel(3, 2) is asked to the gps sensor

PS = {〈{guide(2, 2)}, {included(3)@recognizer, user travel(1, 3)@gps sensor,

included(2)@recognizer, user travel(3, 2)@gps sensor}, {show next point(3),

show next point(2)}〉
P9, P8, P3, P6, P7}

AAQ = {included(2)@recognizer, user travel(1, 2)@gps sensor, included(3)@recognizer,

user travel(1, 3)@gps sensor, user travel(3, 2)@gps sensor}

8P8 = 〈{path(3, F ), user travel(3, F )@gps sensor, show user warning(F ), guide(F, 2)},
{included(3)@recognizer, user travel(1, 3)@gps sensor}, {show next point(3)}〉

9P9 = 〈{show next point(4), user travel(3, 4)@gps sensor, guide(4, 2)}, {included(3)@recognizer,

user travel(1, 3)@gps sensor}, {show next point(3)}〉



36© By case 3.1
PS = {〈∅, {included(3)@recognizer, user travel(1, 3)@gps sensor, included(2)@recognizer,

user travel(3, 2)@gps sensor}, {show next point(3), show next point(2)}〉
〈{show next point(4), user travel(3, 4)@gps sensor, guide(4, 2)}, {included(3)@recognizer,

user travel(1, 3)@gps sensor}, {show next point(3)}〉
P8, P3, P6, P7}

After step 36 the execution trace finds the total path to travel, however there are other branches
that may be computed. Thus, the system verifies if the unfinished branch is viable to be
computed. In this case it computes over the path that connects location 3 and location 4.

37© By case 3.2.3
PS = {〈{fail(∼ included(4)@recognizer), user travel(3, 4)@gps sensor, guide(4, 2)},

{included(3)@recognizer, user travel(1, 3)@gps sensor}, {show next point(3),

show next point(4)}〉
P8, P3, P6, P7, P10

10}

38© By case 3.3.2
PS = {〈{fail(∅), user travel(3, 4)@gps sensor, guide(4, 2)}, {included(3)@recognizer,

user travel(1, 3)@gps sensor}, {show next point(3), show next point(4)}〉
〈{included(4)@recognizer, user travel(3, 4)@gps sensor, guide(4, 2)}, {included(3)@recognizer,

user travel(1, 3)@gps sensor}, {show next point(3), show next point(4)}〉
P8, P3, P6, P7, P10}

39© By case 3.3
PS = {〈{included(4)@recognizer, user travel(3, 4)@gps sensor, guide(4, 2)},

{included(3)@recognizer, user travel(1, 3)@gps sensor}, {show next point(3),

show next point(4)}〉
P8, P3, P6, P7, P10}

The current computed branch is suspended since the default value for included(4) is false, i.e.,
location 4 is not a valid location and the program must not show this location as a location to
travel to. The current branch is suspended and the branch suspended on step 29 is resumed.

40© By case 3.4
included(4) is asked to the recognizer

PS = {〈{user travel(3, 4)@gps sensor, guide(4, 2)}, {included(3)@recognizer,

user travel(1, 3)@gps sensor, included(4)@recognizer}, {show next point(3),

show next point(4)}〉
〈{path(3, F ), user travel(3, F )@gps sensor, show user warning(F ), guide(F, 2)},
{included(3)@recognizer, user travel(1, 3)@gps sensor}, {show next point(3)}〉
P3, P6, P7, P10}

AAQ = {included(2)@recognizer, user travel(1, 2)@gps sensor, included(3)@recognizer,

user travel(1, 3)@gps sensor, user travel(3, 2)@gps sensor, included(4)@recognizer}

41© By case 3.1
PS = {〈{user travel(3, 4)@gps sensor, show user warning(4), guide(4, 2)}, {included(3)@recognizer,

user travel(1, 3)@gps sensor}, {show next point(3)}〉
〈{user travel(3, 2)@gps sensor, show user warning(2), guide(3, 2)}, {included(3)@recognizer,

user travel(1, 3)@gps sensor}, {show next point(3)}〉
P3, P6, P7, P10, P11

11}

10P10 = 〈∅, {included(3)@recognizer, user travel(1, 3)@gps sensor, included(2)@recognizer,

user travel(3, 2)@gps sensor}, {show next point(3), show next point(2)}〉



user travel(3, 4) is asked to the gps sensor

PS = {〈{show user warning(4), guide(4, 2)}, {included(3)@recognizer,

user travel(1, 3)@gps sensor, user travel(3, 4)@gps sensor}, {show next point(3)}〉
P12

12, P3, P6, P7, P10, P11}

43© By case 3.2.3
PS = {〈{fail(included(4)@recognizer), guide(4, 2)}, {included(3)@recognizer,

user travel(1, 3)@gps sensor, user travel(3, 4)@gps sensor}, {show next point(3),

show user warning(4)}〉
P12, P3, P6, P7, P10, P11}

44© By case 3.3.2
PS = {〈{fail(∅), guide(4, 2)}, {included(3)@recognizer, user travel(1, 3)@gps sensor,

user travel(3, 4)@gps sensor}, {show next point(3), show user warning(4)}〉
〈{∼ included(4)@recognizer, guide(4, 2)}, {included(3)@recognizer,

user travel(1, 3)@gps sensor, user travel(3, 4)@gps sensor}, {show next point(3),

show user warning(4)}〉
P12, P3, P6, P7, P10, P11}

45© By case 3.3
PS = {〈{∼ included(4)@recognizer, guide(4, 2)}, {included(3)@recognizer,

user travel(1, 3)@gps sensor, user travel(3, 4)@gps sensor}, {show next point(3),

show user warning(4)}〉
P12, P3, P6, P7, P10, P11}

Using default values the system detects that the user may travel towards location 4. This
location is not a valid one so the system alerts the user and guides him to the correct path.

46© By case 3.4
∼ included(4) is asked to the recognizer

PS = {〈{guide(4, 2)}, {included(3)@recognizer, user travel(1, 3)@gps sensor,

user travel(3, 4)@gps sensor, ∼ included(4)@recognizer}, {show next point(3),

show user warning(4)}〉
〈{user travel(3, 2)@gps sensor, show user warning(2), guide(3, 2)},
{included(3)@recognizer, user travel(1, 3)@gps sensor}, {show next point(3)}〉
P3, P6, P7, P10, P11}

Before deriving new branches from guide(4, 2) the system resumes another branch that verifies
if an alert show be sent to the user if he travels towards location 2.

47© By case 3.4
PS = {〈{show user warning(2), guide(3, 2)}, {included(3)@recognizer,

user travel(1, 3)@gps sensor, user travel(3, 4)@gps sensor}, {show next point(3)}〉
P13

13, P3, P6, P7, P10, P11}

11P11 = 〈{user travel(3, 4)@gps sensor, guide(4, 2)}, {included(3)@recognizer,

user travel(1, 3)@gps sensor, included(4)@recognizer}, {show next point(3), show next point(4)}〉
12P12 = 〈{user travel(3, 2)@gps sensor, show user warning(2), guide(3, 2)}, {included(3)@recognizer,

user travel(1, 3)@gps sensor}, {show next point(3)}〉
13P13 = 〈{guide(4, 2)}, {included(3)@recognizer, user travel(1, 3)@gps sensor,

user travel(3, 4)@gps sensor, ∼ included(4)@recognizer}, {show next point(3), show user warning(4)}〉



48© By case 3.2.3
PS = {〈{fail(included(2)@recognizer), guide(3, 2)}, {included(3)@recognizer,

user travel(1, 3)@gps sensor, user travel(3, 4)@gps sensor}, {show next point(3),

show user warning(2)}〉
P13, P3, P6, P7, P10, P11}

49© By case 3.3.2
PS = {〈{fail(∅), guide(3, 2)}, {included(3)@recognizer, user travel(1, 3)@gps sensor,

user travel(3, 4)@gps sensor}, {show next point(3), show user warning(2)}〉
〈{∼ included(2)@recognizer, guide(3, 2)}, {included(3)@recognizer,

user travel(1, 3)@gps sensor, user travel(3, 4)@gps sensor}, {show next point(3),

show user warning(2)}〉
P13, P3, P6, P7, P10, P11}

50© By case 3.3
PS = {〈{∼ included(2)@recognizer, guide(3, 2)}, {included(3)@recognizer,

user travel(1, 3)@gps sensor, user travel(3, 4)@gps sensor}, {show next point(3),

show user warning(2)}〉
P13, P3, P6, P7, P10, P11}

Since location 2 is a valid location the current branch is suspended and the one resumed in
step 46 is resumed, deriving two more branches.

51© By case 3.4
PS = {〈{guide(3, 2)}, {included(3)@recognizer, user travel(1, 3)@gps sensor,

user travel(3, 4)@gps sensor, ∼ included(2)@recognizer}, {show next point(3),

show user warning(2)}〉
〈{guide(4, 2)}, {included(3)@recognizer, user travel(1, 3)@gps sensor,

user travel(3, 4)@gps sensor, ∼ included(4)@recognizer}, {show next point(3),

show user warning(4)}〉
P3, P6, P7, P10, P11}

52©
∼ user travel(3, 4) is returned from recognizer

CBS = {user travel(1, 3)@gps sensor,∼user travel(1, 2)@gps sensor,

∼ user travel(3, 4)@gps sensor, user travel(4, 3)@gps sensor,

user travel(3, 2)@gps sensor, included(1)@recognizer,

included(2)@recognizer, included(3)@recognizer,

∼ included(4)@recognizer

53© By case 3.1
PS = {〈{show next point(3), user travel(4, 3)@gps sensor, guide(3, 2)}, {included(3)@recognizer,

user travel(1, 3)@gps sensor, user travel(3, 4)@gps sensor, ∼ included(4)@recognizer},
{show next point(3), show user warning(4)}〉
P3, P6, P7, P10, P11, P14

14}

54© By case 3.2.3
PS = {〈{fail(∼ included(3)@recognizer), user travel(4, 3)@gps sensor, guide(3, 2)},

{included(3)@recognizer, user travel(1, 3)@gps sensor, user travel(3, 4)@gps sensor,

∼ included(4)@recognizer}, {show next point(3), show user warning(4)}〉
P3, P6, P7, P10, P11, P14}

14P14 = 〈{guide(3, 2)}, {included(3)@recognizer, user travel(1, 3)@gps sensor, user travel(3, 4)@gps sensor,

∼ included(2)@recognizer}, {show next point(3), show user warning(2)}〉



55© By case 3.3.2
PS = {〈{fail(∅), user travel(4, 3)@gps sensor, guide(3, 2)}, {included(3)@recognizer,

user travel(1, 3)@gps sensor, user travel(3, 4)@gps sensor, ∼ included(4)@recognizer},
{show next point(3), show user warning(4)}〉
〈{included(3)@recognizer, user travel(4, 3)@gps sensor, guide(3, 2)}, {included(3)@recognizer,

user travel(1, 3)@gps sensor, user travel(3, 4)@gps sensor, ∼ included(4)@recognizer},
{show next point(3), show user warning(4)}〉
P3, P6, P7, P10, P11, P14}

56© By case 3.3
PS = {〈{included(3)@recognizer, user travel(4, 3)@gps sensor, guide(3, 2)}, {included(3)@recognizer,

user travel(1, 3)@gps sensor, user travel(3, 4)@gps sensor, ∼ included(4)@recognizer},
{show next point(3), show user warning(4)}〉
P3, P6, P7, P10, P11, P14}

57© By case 3.4
PS = {〈{user travel(4, 3)@gps sensor, guide(3, 2)}, {included(3)@recognizer,

user travel(1, 3)@gps sensor, user travel(3, 4)@gps sensor, ∼ included(4)@recognizer},
{show next point(3), show user warning(4)}〉
P3, P6, P7, P10, P11, P14}

58© By case 3.4
user travel(4, 3) is asked to the gps sensor

PS = {〈{guide(3, 2)}, {included(3)@recognizer, user travel(1, 3)@gps sensor,

user travel(3, 4)@gps sensor, ∼ included(4)@recognizer}, {show next point(3),

show user warning(4)}〉
P3, P6, P7, P10, P11, P14}

AAQ = {included(2)@recognizer, user travel(1, 2)@gps sensor, included(3)@recognizer,

user travel(1, 3)@gps sensor, user travel(3, 2)@gps sensor, included(4)@recognizer,

user travel(4, 3)@gps sensor}

At this stage the system will derive four new branches: two for location 2 and two for 4. As
the system knows that the user is not going in the direction of location 4, both branches will
be suspended. The only branch that will continue the computation is the one that points to
location 2 as the next point to travel. These processes are not shown in detailed steps due to
the extension of the proof procedure and they will be similar to the steps from step 28 onwards.
For the previous execution the framework starts with the objective of guiding the user between
the starting location 1 and the ending 2. At an initial step it tries to find a path between location
1 and the destination. According to Figure 4 there are two possibilities, which are locations 2
(the goal) and 3. The system starts processing 2 branches for each next possible location: one
branch of the pair lets the execution continue if the next location is valid (i.e., is included in the
valid locations set) and the user is travelling to it; the other branch represents the case in which
the location is not valid and the user is travelling towards it. In the former the system keeps
guiding the user to the next point (since he is travelling in the correct path) whereas in the
latter the system alerts the user, informing him about his mistake and guides him to the correct
path. Any branch that tries to execute an alternative combination of the previously described
situations is suspended since it is not valid (e.g., alert the user when the next location is valid).
During the execution of a branch the program may query the information source. While this
information is not returned the program continues its execution, so branches which queried for



user travel(1, 2)@gps sensor are paused (since the default value is negative). The only branch
that continues the computation is the one that assumes the default value user travel(1, 3)@

gps sensor. Whenever an answer is returned from the information source the computation is
revised. The current branch may be paused and a previously paused one may be resumed.
The system continues to start, pause, and resume branches during the entire processing until
the destination point is reached.
Besides not knowing an answer, the system continues the computation using Speculative Com-
putation. This situation occurs at different steps in which a default value is assumed.
At Step 9, show next point(3) is assumed and the integrity constraints are checked. Thus, it is
ensured that there is no contradiction by checking if ∼ included(3)@recognizer is not derived.
In this step an ordinary abduction is performed. When an answer is returned and confirms the
default value, nothing changes.
In situations like the previous one the Speculative Computation is in an advanced stage of the
computation and it does not have to be revised.
The previous execution trace represents a computation example and it has not been imple-
mented. Its purpose is to check if it is possible to formalize the orientation problem through
Speculative Computation. According to the proof, applying Speculative Computation is expres-
sive and adequate.

6 Conclusions

Orientation may be a serious problem for people with cognitive disabilities. Some may even
be prevented by caregivers to go out their homes by themselves due to the risk of getting lost.
In order to minimize this risk and increase the autonomy of people researchers have been
developing orientation methods for people with cognitive disabilities, so that they may travel
alone and be remotely monitored.
Our orientation system used augmented reality, surpassing limitations of different systems that
use static pictures with overlayered arrows or other symbols, or of systems that resemble a
compass in which the user needs to interpret and understand the direction. On the other
hand, our system enables caregivers to know, in real time, the current location of the person
with cognitive disabilities on a map. In order to increase the effectiveness of the system, it is
possible to connect it to external services expanding its features.
To increase the system responsiveness and enable it to be ready for a possible error situation
before it happens (predictive feature) it was envisioned a suite for speculative computation
having in mind the public that will use our system.
Applying the framework of Speculative Computation enables the system to deal with incom-
plete information. Instead of pausing the computation and wait for a value to calculate the
correct path to follow, the framework uses a default value and keeps the computation running.
When the missing data is returned the computation is revised. If the returned value is coherent
with the default one then the computation is in an advanced stage of execution. However, if the
returned value is contradictory with the default then the computed branch is suspended and
another may be started or resumed.



The Speculative Computation framework lets the system be in a constant execution stage.
Instead of pausing the computation and be in an idle state. Thus, the system may have a
predictive feature since it may be ready to alert the user before he turns in the wrong direction.
Lastly, the Speculative Computation framework does not compute the set of default values,
i.e., it just uses the values that compose the set. The method for the detection of user be-
haviour patterns is independent of the framework, but Speculative Computation can be used in
combination with it, providing a structured reasoning framework capable of coping with miss-
ing information. Future work includes analysing behaviour extraction methods, specific for the
problem of orientation, which can be useful for the extraction of default values.
The detection of frequent trajectory patterns had been studied in (Giannotti, Nanni, Pinelli
and Pedreschi, 2007; Monreale, Pinelli and Trasarti, 2009; Lee, Chen and Ip, 2009). In these
studies the authors use different location acquisition methods (e.g., GPS and GSM networks)
to gather the user location. The detection of patterns is the result of a data mining process in
which different algorithms are applied. Knowing the user preferences (frequent trajectories) our
system may use this information to create a route that better adapts to the user characterists.
Thus, the path used to guide the user may not be the shortest one, but the one that the user
knows better.

Acknowledgment

This work is part-funded by ERDF - European Regional Development Fund through the COM-
PETE Programme (operational programme for competitiveness) and by National Funds through
the FCT Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and
Technology) within project FCOMP-01-0124-FEDER-028980 (PTDC/EEI-SII/1386/2012). The
work of João Ramos is supported by a doctoral grant by FCT - Fundação para a Ciência e a
Tecnologia (Portuguese Foundation for Science and Technology) SFRH/BD/89530/2012. The
work of Tiago Oliveira is also supported by the FCT grant with the reference SFRH/BD/85291/-
2012.

References

Alper, S. and Raharinirina, S.: 2006, Assisitive Technology for Individuals with Disabilities:
A Review and Synthesis of the Literature, Journal of Special Education Technology
21(2), 47–64.

Begum, S., Ahmed, M. U., Funk, P., Xiong, N. and Von Schéele, B.: 2009, A Case-based
decision support system for individual stress diagnosis using fuzzy similarity matching,
Computational Intelligence 25, 180–195.



Bennett, C. C. and Hauser, K.: 2013, Artificial intelligence framework for simulating clinical
decision-making: A Markov decision process approach, Artificial Intelligence in Medicine
57(1), 9–19.

Carmien, S., Dawe, M., Fischer, G., Gorman, A., Kintsch, A. and Sullivan, J. F.: 2005, Socio-
technical environments supporting people with cognitive disabilities using public trans-
portation, ACM Transactions on Computer-Human Interaction 12(2), 233–262.

Carneiro, D., Novais, P., Costa, R., Gomes, P., Neves, J., Tscheligi, M., De Ruyter, B.,
Markopoulus, P., Wichert, R., Mirlacher, T., Meschterjakov, A. and Reitberger, W.: 2009,
EMon: Embodied Monitorization, Proceedings of the European Conference on Ambient
Intelligence 5859, 133–142.

Chong, E. K. P., Kreucher, C. M. and Hero, A. O.: 2009, Partially Observable Markov Decision
Process Approximations for Adaptive Sensing.

Corchado, J. M., Bajo, J. and Abraham, A.: 2008, GerAmi: Improving healthcare delivery in
geriatric residences, IEEE Intelligent Systems 23, 19–25.

Dawe, M.: 2006, Desperately seeking simplicity: how young adults with cognitive disabilities
and their families adopt assistive technologies, Proceedings of the SIGCHI conference on
Human Factors in computing systems, CHI ’06, ACM, pp. 1143–1152.

Dawe, M.: 2007, “Let Me Show You What I Want”: Engaging Individuals with Cognitive Disabil-
ities and their Families in Design, Technology pp. 2177–2182.

Fraunnhover Portugal: 2012, AlzNav.
URL: http://www.fraunhofer.pt/en/fraunhofer aicos/projects/internal research/alznav.html

Friedman, M. G. and Bryen, D. N.: 2007, Web accessibility design recommendations for people
with cognitive disabilities, Technology and Disability 19(4), 205–212.

Giannotti, F., Nanni, M., Pinelli, F. and Pedreschi, D.: 2007, Trajectory Pattern Mining, Pro-
ceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’07, ACM, pp. 330–339.

Hoey, J., Bertoldi, A. V., Poupart, P. and Mihailidis, A.: 2007, Assisting Persons with Dementia
during Handwashing Using a Partially Observable Markov Decision Process, Proceedings
of the 5th International Conference on Vision Systems.

Kaelbling, L. P., Littman, M. L. and Cassandra, A. R.: 1998, Planning and acting in partially
observable stochastic domains.

Kakas, A. C., Kowalski, R. A. and Toni, F.: 1998, The Role of Abduction in Logic Programming,
Handbook of Logic in Artificial Intelligence and Logic Programming 5, 235–324.

Kolodner, J. L.: 1992, An introduction to case-based reasoning, Artificial Intelligence Review
6(1), 3–34.



Lee, A. J. T., Chen, Y. A. and Ip, W. C.: 2009, Mining frequent trajectory patterns in spatial-
temporal databases, Information Sciences 179(13), 2218–2231.

Littman, M., Dean, T. and Kaelbling, L.: 1995, On the complexity of solving Markov decision
problems, Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence,
pp. 394–402.

Liu, A. L., Hile, H., Borriello, G., Kautz, H., Brown, P. A., Harniss, M. and Johnson, K.: 2009,
Informing the Design of an Automated Wayfinding System for Individuals with Cognitive
Impairments, Proceedings of Pervasive Health ’09, Vol. 9, London UK, p. 8.

Lopez, R. and Plaza, E.: 1997, Case-Based Reasoning : An Overview, AI Communications
10, 21–29.

Monreale, A., Pinelli, F. and Trasarti, R.: 2009, WhereNext : a Location Predictor on Trajec-
tory Pattern Mining, Proceedings of the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining - KDD ’09, pp. 637–645.

Ramos, J., Anacleto, R., Costa, A., Novais, P., Figueiredo, L. and Almeida, A.: 2012, Orienta-
tion System for People with Cognitive Disabilities, in P. Novais, K. Hallenborg, D. I. Tapia
and J. M. C. Rodrı́guez (eds), Ambient Intelligence - Software and Applications, Vol. 153
of Advances in Intelligent and Soft Computing, Springer Berlin Heidelberg, pp. 43–50.

Ramos, J., Anacleto, R., Novais, P., Figueiredo, L., Almeida, A. and Neves, J.: 2013,
Geo-localization System for People with Cognitive Disabilities, in J. B. Pérez, J. M. C.
Rodrı́guez, J. Fähndrich, P. Mathieu, A. Campbell, M. C. Suarez-Figueroa, A. Ortega,
E. Adam, E. Navarro, R. Hermoso and M. N. Moreno (eds), Trends in Practical Applica-
tions of Agents and Multiagent Systems, Vol. 221 of Advances in Intelligent Systems and
Computing, Springer International Publishing, pp. 59–66.

Ramos, J., Costa, A., Novais, P. and Neves, J.: 2014, Interactive Guiding and Localization
Platform, International Journal of Artificial Intelligence (IJAI) 12(1), 63–78.

Ramos, J., Satoh, K., Novais, P. and Neves, J.: 2014, Modelling an Orientation System based
on Speculative Computation, in S. Omatu, H. Bersini, J. M. Corchado, S. Rodrı́guez,
P. Pawlewski and E. Bucciarelli (eds), Distributed Computing and Artificial Intelligence,
11th International Conference, Vol. 290 of Advances in Intelligent Systems and Comput-
ing, Springer International Publishing, pp. 319–326.

Sadri, F.: 2007, Multi-Agent Ambient Intelligence for Elderly Care and Assistance, Aip Confer-
ence Proceedings, Vol. 2007, Aip, pp. 117–120.

Satoh, K., Inoue, K., Iwanuma, K. and Sakama, C.: 2000, Speculative Computation by Ab-
duction under Incomplete Communication Environments, MultiAgent Systems, 2000. Pro-
ceedings. Fourth International Conference on Speculative computation by abduction un-
der incomplete communication environments, Vol. 12, pp. 263–270.



Scherer, M. M. J., Hart, T., Kirsch, N. and Schulthesis, M.: 2005, Assistive Technologies for
Cognitive Disabilities, Critical Reviews in Physical and Rehabilitation Medicine 17(3), 195–
215.

Spitzer, R. L., Gibbon, M., Skodol, A. E. and First, M. B.: 1994, DSM-IV casebook: A learning
companion to the Diagnostic and Statistical Manual of Mental Disorders, 4 edn, American
Psychiatric Association.

Stefanov, D. H., Bien, Z. and Bang, W.-C.: 2004, The smart house for older persons and
persons with physical disabilities: structure, technology arrangements, and perspectives.,
IEEE Transactions on Neural and Rehabilitation Systems Engineering 12(2), 228–250.


