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Abstract. This work describes a formalization effort, using the Coq
proof assistant, of fundamental results related to the classical theory of
context-free grammars and languages. These include closure properties
(union, concatenation and Kleene star), grammar simplification (elimi-
nation of useless symbols, inaccessible symbols, empty rules and unit
rules), the existence of a Chomsky Normal Form for context-free gram-
mars and the Pumping Lemma for context-free languages. The result is
an important set of libraries covering the main results of context-free
language theory, with more than 500 lemmas and theorems fully proved
and checked. This is probably the most comprehensive formalization of
the classical context-free language theory in the Coq proof assistant done
to the present date, and includes the important result that is the formal-
ization of the Pumping Lemma for context-free languages.

Keywords: Context-free language theory, language closure, grammar
simplification, Chomsky Normal Form, Pumping Lemma, formalization,
Coq.

1 Introduction

This work is about the mathematical formalization of an important subset of
the context-free language theory, including some of its most important results
such as the Chomsky Normal Form and the Pumping Lemma.

The formalization has been done in the Coq proof assistant. This represents a
novel approach towards formal language theory, specially context-free language
theory, as virtually all textbooks, general literature and classes on the subject
rely on an informal (traditional) mathematical approach. The objective of this
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work, thus, is to elevate the status of this theory to new levels in accordance
with the state-of-the-art in mathematical accuracy, which is accomplished with
the use of interactive proof assistants.

The choice of using Coq comes from its maturity, its widespread use and the
possibility of extracting certified code from proofs. HOL4 and Agda have also
been used in the formalization of context-free language theory (see Section 7),
however they do not comply to at least one of these criteria.

The formalization is discussed in Sections 2 (method used in most of the for-
malization), 3 (closure properties), 4 (grammar simplification), 5 (CNF - Chom-
sky Normal Form) and 6 (Pumping Lemma). The main definitions used in the
formalization are presented in Appendix A. The library on binary trees and their
relation to CNF derivations is briefly discussed in Appendix B.

Formal language and automata theory formalization is not a completely new
area of research. In Section 7, a summary of these accomplishments is presented.
Most of the formalization effort on general formal language theory up to date
has been dedicated to the regular language theory, and not so much to context-
free language theory. Thus, this constitutes the motivation for the present work.
Final conclusions are presented in Section 8.

In order to follow this paper, the reader is required to have basic knowledge of
Coq and context-free language theory. The recommended starting point for Coq
is the book by Bertot and Castéran [1]. Background on context-free language
theory can be found in [2] or [3], among others. A more detailed and complete
discussion of the results of this work can be found in [4]. The source files of the
formalization are available for download from [5].

2 Method

Except for the Pumping Lemma, the present formalization is essentially about
context-free grammar manipulation, that is, about the definition of a new gram-
mar from a previous one (or two), such that it satisfies some very specific prop-
erties. This is exactly the case when we define new grammars that generate
the union, concatenation, closure (Kleene star) of given input grammar(s). Also,
when we create new grammars that exclude empty rules, unit rules, useless sym-
bols and inaccessible symbols from the original ones. Finally, it is also the case
when we construct a new grammar that preserves the language of the original
grammar and still observes the Chomsky Normal Form.

In the general case, the mapping of grammar g1 = (V1,Σ, P1, S1) into gram-
mar g2 = (V2,Σ, P2, S2) requires the definition of a new set of non-terminal
symbols N2, a new set of rules P2 and a new start symbol S2. Similarly, the
mapping of grammar g1 = (V1,Σ, P1, S1) and grammar g2 = (V2,Σ, P2, S2) into
grammar g3 = (V3,Σ, P3, S3) requires the definition of a new set of non-terminal
symbols N3, a new set of rules P3 and a new start symbol S3.

For all cases of grammar manipulation, we consider that the original and
final sets of terminal symbols are the same. Also, we have devised the following
common approach to constructing the desired grammars:



1. Depending on the case, inductively define the type of the new non-terminal
symbols; this will be important, for example, when we want to guarantee
that the start symbol of the grammar does not appear in the right-hand
side of any rule or when we have to construct new non-terminals from the
existing ones; the new type may use some (or all) symbols of the previous
type (via mapping), and also add new symbols;

2. Inductively define the rules of the new grammar, in a way that it allows
the construction of the proofs that the resulting grammar has the required
properties; these new rules will likely make use of the new non-terminal
symbols described above; the new definition may exclude some of the original
rules, keep others (via mapping) and still add new ones;

3. Define the new grammar by using the new type of non-terminal symbols and
the new rules; define the new start symbol (which might be a new symbol
or an existing one) and build a proof of the finiteness of the set of rules for
this new grammar;

4. State and prove all the lemmas and theorems that will assert that the newly
defined grammar has the desired properties;

5. Consolidate the results within the same scope and finally with the previously
obtained results.

In the following sections, this approach will be explored with further detail
for each main result. The definitions of Appendix A are used throughout.

3 Closure Properties

The basic operations of union, concatenation and closure for context-free gram-
mars are described in a rather straightforward way. These operations provide new
context-free grammars that generate, respectively, the union, concatenation and
the Kleene star closure of the language(s) generated by the input grammar(s).6

For the union, given two arbitrary context-free grammars g1 and g2, we want
to construct g3 such that L(g3) = L(g1)∪L(g2) (that is, the language generated
by g3 is the union of the languages generated by g1 and g2).

The classical informal proof constructs g3 = (V3,Σ, P3, S3) from g1 and g2
such that N3 = N1∪N2∪{S3} and P3 = P1∪P2∪{S3 → S1, S3 → S2}. With the
appropriate definitions for the new set of non-terminal symbols, the new set of
rules and the new start symbol, we are able to construct a new grammar g uni
such that g3 = g uni g1 g2.

For the concatenation, given two arbitrary context-free grammars g1 and g2,
we want to construct g3 such that L(g3) = L(g1) · L(g2) (that is, the language
generated by g3 is the concatenation of the languages generated by g1 and g2).

The classical informal proof constructs g3 = (V3,Σ, P3, S3) from g1 and g2
such that N3 = N1 ∪ N2 ∪ {S3} and P3 = P1 ∪ P2 ∪ {S3 → S1S2}. With the
appropriate definitions for the new set of non-terminal symbols, the new set of

6 The results of this section are available in libraries union.v, concatenation.v and
closure.v.



rules and the new start symbol, we are able to construct a new grammar g cat
such that g3 = g cat g1 g2.

For the Kleene star, given an arbitrary context-free grammar g1, we want
to construct g2 such that L(g2) = (L(g1))∗ (that is, the language generated by
g2 is the reflexive and transitive concatenation (Kleene star) of the language
generated by g1).

The classical informal proof constructs g2 = (V2,Σ, P2, S2) from g1 such that
N2 = N1 ∪ N2 ∪ {S2} and P2 = P1 ∪ P2 ∪ {S2 → S2S1, S2 → S1}. With the
appropriate definitions for the new set of non-terminal symbols, the new set of
rules and the new start symbol, we are able to construct a new grammar g uni
such that g2 = g clo g1.

Although simple in their structure, it must be proved that the definitions
g uni, g cat and g clo always produce the correct result. In other words, these
definitions must be “certified”, which is one of the main goals of formalization.
In order to accomplish this, we must first state the theorems that capture the
expected semantics of these definitions. Finally, we have to derive proofs of the
correctness of these theorems.

This can be done with a pair of theorems for each grammar definition: the first
relates the output to the inputs, and the other one does the converse, providing
assumptions about the inputs once an output is generated. This is necessary in
order to guarantee that the definitions do only what one would expect, and no
more.

For union, we prove (considering that g3 is the union of g1 and g2 and S3, S1

and S2 are, respectively, the start symbols of g3, g1 and g2): ∀g1, g2, s1, s2, (S1

⇒∗
g1 s1 → S3 ⇒∗

g3 s1) ∧ (S2 ⇒∗
g2 s2 → S3 ⇒∗

g3 s2). For the converse of union
we prove: ∀s3, (S3 ⇒∗

g3 s3) → (S1 ⇒∗
g1 s3) ∨ (S2 ⇒∗

g2 s3). Together, the two
theorems represent the semantics of the context-free grammar union operation.

For concatenation, we prove (considering that g3 is the concatenation of g1
and g2 and S3, S1 and S2 are, respectively, the start symbols of g3, g1 and g2):
∀g1, g2, s1, s2, (S1 ⇒∗

g1 s1)∧ (S2 ⇒∗
g2 s2) → (S3 ⇒∗

g3 s1 · s2). For the converse of
concatenation, we prove: ∀g3, s3, (S3 ⇒∗

g3 s3) → ∃s1, s2, (S1 ⇒∗
g1 s1) ∧ (S2 ⇒∗

g2
s2) ∧ (s3 = s1 · s2).

For closure, we prove (considering that g2 is the Kleene star of g1 and S2

and S1 are, respectively, the start symbols of g2 and g1): ∀g1, s1, s2, (S2 ⇒∗
g2

ϵ) ∧ ((S2 ⇒∗
g2 s2) ∧ (S1 ⇒∗

g1 s1) → S2 ⇒∗
g2 s2 · s1). Finally: ∀s2, (S2 ⇒∗

g2 s2) →
(s2 = ϵ) ∨ (∃ s1, s′2 | (s2 = s′2 · s1) ∧ (S2 ⇒∗

g2 s′2) ∧ (S1 ⇒∗
g1 s1)).

In all three cases, the correctness proofs are straightforward and follow closely
the informal proofs available in most textbooks. The formalization consists of
a set of short and readable lemmas, except for the details related to mappings
involving sentential forms. Since every grammar is defined with a different set
of non-terminal symbols (i.e. uses a different type for these symbols), sentential
forms from one grammar have to “mapped” to sentential forms of another gram-
mar in order to be usable and not break the typing rules of Coq. This required a
lot of effort in order to provide and use the correct mapping functions, and also



to cope with it during proof construction. This is something that we don’t see
in informal proofs, and is definitely a burden when doing the formalization.

The completeness proofs, on the other hand, resulted in single lemmas with
reasonably long scripts (∼280 lines) in each case. Intermediate lemmas were not
easily identifiable as in the correctness cases and, besides the initial induction of
predicate derives, the long list of various types of case analysis increased the
complexity of the scripts, which are thus more difficult to read.

It should be added that the closure operations considered here can be ex-
plained in a very intuitive way (either with grammars or automata), and for this
reason many textbooks don’t even bother going into the details with mathemat-
ical reasoning. Because of this, our formalization was a nice exercise in revealing
how simple and intuitive proofs can grow in complexity with many details not
considered before.

4 Simplification

The definition of a context-free grammar, and also the operations specified in
the previous section, allow for the inclusion of symbols and rules that may not
contribute to the language being generated. Besides that, context-free grammars
may also contain rules that can be substituted by equivalent smaller and simpler
ones. Unit rules, for example, do not expand sentential forms (instead, they
just rename the symbols in them) and empty rules can cause them to contract.
Although the appropriate use of these features can be important for human
communication in some situations, this is not the general case, since it leads to
grammars that have more symbols and rules than necessary, making difficult its
comprehension and manipulation. Thus, simplification is an important operation
on context-free grammars.

Let G be a context-free grammar, L(G) the language generated by this gram-
mar and ϵ the empty string. Different authors use different terminology when
presenting simplification results for context-free grammars. In what follows, we
adopt the terminology and definitions of [2].

Context-free grammar simplification comprises the manipulation of rules and
symbols, as described below:

1. An empty rule r ∈ P is a rule whose right-hand side β is empty (e.g. X → ϵ).
We prove that for all G there exists G′ such that L(G) = L(G′) and G′ has
no empty rules, except for a single rule S → ϵ if ϵ ∈ L(G); in this case, S
(the initial symbol of G′) does not appear on the right-hand side of any rule
of G′;

2. A unit rule r ∈ P is a rule whose right-hand side β contains a single non-
terminal symbol (e.g. X → Y ). We prove that for all G there exists G′ such
that L(G) = L(G′) and G′ has no unit rules;

3. A symbol s ∈ V is useful ([2], p. 116) if it is possible to derive a string
of terminal symbols from it using the rules of the grammar. Otherwise, s
is called an useless symbol. A useful symbol s is one such that s ⇒∗ ω,



with ω ∈ Σ∗. Naturally, this definition concerns mainly non-terminals, as
terminals are trivially useful. We prove that for all G such that L(G) ̸= ∅,
there exists G′ such that L(G) = L(G′) and G′ has no useless symbols;

4. A symbol s ∈ V is accessible ([2], p. 119) if it is part of at least one string
generated from the root symbol of the grammar. Otherwise, it is called an
inaccessible symbol. An accessible symbol s is one such that S ⇒∗ αsβ, with
α,β ∈ V ∗. We prove that for all G there exists G′ such that L(G) = L(G′)
and G′ has no inaccessible symbols.

Finally, we prove a unification result: that for all G, if G is non-empty, then
there exists G′ such that L(G) = L(G′) and G′ has no empty rules (except
for one, if G generates the empty string), no unit rules, no useless symbols, no
inaccessible symbols and the start symbol of G′ does not appear on the right-
hand side of any other rule of G′.7

In all these four cases and the five grammars that are discussed next (namely
g emp, g emp’, g unit, g use and g acc), the proof of rules finite is based
on the proof of the corresponding predicate for the argument grammar. Thus,
all new grammars satisfy the cfg specification and are finite as well.

Result (1) is achieved in two steps. In the first step, we map grammar g1 into
an equivalent grammar g2 (except for the empty string), which is free of empty
rules and whose start symbol does not appear on the right-hand side of any rule.
This is done by eliminating empty rules and substituting rules that have nullable
symbols in the right-hand side by a set of equivalent rules. Next, we use g2 to
map g1 into g3 which is fully equivalent to g1 (including the empty string if this
is the case).

Observe that resulting grammar (g emp g or g2) does not generate the empty
string, even if g (or g1) does so. The second step, thus, consists of constructing
g3 such that it generates all the strings of g2 plus the empty string if g1 does so.
This is done by conditionally adding a rule that maps the start symbol to the
empty string.

We define g emp’ g (or g3) such that g emp’ g generates the empty string if
g generates the empty string. This is done by stating that every rule from g emp
g is also a rule of g emp’ g and also by adding a new rule that allow g emp’ g
to generate the empty string directly if necessary.

The proof of the correctness of the previous definitions is achieved through
the following Coq theorem:

Theorem g_emp’_correct: ∀ g: cfg non_terminal terminal,
g_equiv (g_emp’ g) g ∧ (produces_empty g → has_one_empty_rule (g_emp’ g)) ∧
(∼ produces_empty g → has_no_empty_rules (g_emp’ g)) ∧
start_symbol_not_in_rhs (g_emp’ g).

New predicates are used in this statement: produces empty, for a grammar
that produces the empty string, has one empty rule, to describe a grammar
that has a single empty rule among its set of rules (one whose left-hand side

7 The results of this section are available in libraries emptyrules.v, unitrules.v,
useless.v, inaccessible.v and simplification.v.



is the initial symbol), has no empty rules for a grammar that has no empty
rules at all and start symbol not in rhs to state that the start symbol does
not appear in the right-hand side of any rule of the argument grammar.

The proof of g emp’ correct is reduced to the proof of the equivalence
of grammars g and g emp g. The most complex part of this formalization, by
far, is to prove this equivalence, as expressed by lemmas derives g g emp and
derives g emp g. These lemmas state, respectively, that every sentential form
of g (except for the empty string) is also generated by g emp and that every sen-
tential form of g emp is also generated by g. While the second case was relatively
straightforward, the first proved much more difficult. This happens because the
application of a rule of g can cause a non-terminal symbol to be eliminated from
the sentential form (if it is an empty rule), and for this reason we have to intro-
duce a new structure and do many case analysis in the sentential form of g in
order to determine the corresponding new rule of g emp g that has to be used in
the derivation. We believe that the root of this difficulty was the desire to follow
strictly the informal proof of [2] (Theorem 5.1.5), which depends on an intuitive
lemma (lemma 3.1.5), however not easily formalizable. Probably for this reason,
the solution constructed in our formalization is definitely not easy or readable,
and this motivates the continued search for a simpler and more elegant one.

Result (2) is achieved in only one step. We first define the relation unit
such that, for any two non-terminal symbols X and Y , unit X Y is true when
X ⇒+ Y ([2], p. 114). This means that Y can be derived from X by the use of
one or more unit rules.

The mapping of grammar g1 into an equivalent grammar g2 such that g2 is
free of unit rules consists basically of keeping all non-unit rules of g1 and creating
new rules that reproduce the effect of the unit rules that were left behind. No
new non-terminal symbols are necessary. The correctness of g unit comes from
the following theorem:

Theorem g_unit_correct: ∀ g: cfg non_terminal terminal,
g_equiv (g_unit g) g ∧ has_no_unit_rules (g_unit g).

The predicate has no unit rules states that the argument grammar has no
unit rules at all.

We find important similarities in the proofs of grammar equivalence for the
elimination of empty rules (lemma g emp’ correct) and the elimination of unit
rules (lemma g unit correct). In both cases, going backwards (from the new
to the original grammar) was relatively straightforward and required no special
machinery. On the other hand, going forward (from the original to the new
grammar) proved much more complex and required new definitions, functions
and lemmas in order to complete the corresponding proofs.

The proof that every sentence generated by the original grammar is also
generated by the transformed grammar (without unit rules) requires the in-
troduction of the derives3 predicate specially for this purpose. Because this
definition represents the derivation of sentences directly from a non-terminal
symbol, it is possible to abstract over the use of unit rules. Since derives3 is



a mutual inductive definition, we had to create a specialized induction principle
(derives3 ind 2) and use it explicitly, which resulted in more complex proofs.

Result (3) is obtained in a single and simple step, which consists of inspecting
all rules of grammar g1 and eliminating the ones that contain useless symbols in
either the left or right-hand side. The other rules are kept in the new grammar
g2. Thus, P2 ⊆ P1. No new non-terminals are required.

The g use definition, of course, can only be used if the language generated
by the original grammar is not empty, that is, if the start symbol of the original
grammar is useful. If it were useless then it would be impossible to assign a root
to the grammar and the language would be empty. The correctness of the use-
less symbol elimination operation is certified by proving theorem g use correct,
which states that every context-free grammar whose start symbol is useful gener-
ates a language that can also be generated by an equivalent context-free grammar
whose symbols are all useful.

Theorem g_use_correct: ∀ g: cfg non_terminal terminal,
non_empty g → g_equiv (g_use g) g ∧ has_no_useless_symbols (g_use g).

The predicates non empty, and has no useless symbols used above assert,
respectively, that grammar g generates a language that contains at least one
string (which in turn may or may not be empty) and the grammar has no useless
symbols at all.

Result (4) is similar to the previous case: the rules of the original grammar
g1 are kept in the new grammar g2 as long as their left-hand consist of accessible
non-terminal symbols (by definition, if the left-hand side is accessible then all
the symbols in the right-hand side of the same rule are also accessible). If this
is not the case, then the rules are left behind. Thus, P2 ⊆ P1.

The correctness of the inaccessible symbol elimination operation is certified
by proving theorem g acc correct, which states that every context-free gram-
mar generates a language that can also be generated by an equivalent context-
free grammar whose symbols are all accessible.

Theorem g_acc_correct: ∀ g: cfg non_terminal terminal,
g_equiv (g_acc g) g ∧ has_no_inaccessible_symbols (g_acc g).

In a way similar to has no useless symbols, the absence of inaccessible
symbols in a grammar is expressed by predicate has no inaccessible symbols
used above.

The proof of g acc correct is also natural when compared to the arguments
of the informal proof. It has only 384 lines on Coq script and, despite the simi-
larities between it and the proof of g use correct, it is still ∼40% shorter than
that. This is partially due to a difference in the definitions of g use rules and
g acc rules: in the first case, in order to be eligible as a rule of g use, a rule
of g must provably consist only of useful symbols in both the left and right-
hand sides; in the second, it is enough to prove that only the left-hand side is
accessible (the rest is consequence of the definition). Since we have a few uses
of the constructors of these definitions, the simpler definition of g acc rules
resulted in simpler and shorter proofs. As a matter of fact, it should be possible



to do something similar to the definition of g use rules, since the left-hand
side of a rule is automatically useful once all the symbols in the right-hand side
are proved useful (a consequence of the definition). This will be considered in a
future review of the formalization.

So far we have only considered each simplification strategy independently of
the others. If one wants to obtain a new grammar that is simultaneously free of
empty and unit rules, and of useless and inaccessible symbols, it is not enough to
consider the previous independent results: it is necessary to establish a suitable
order to apply these simplifications, in order to guarantee that the final result
satisfies all desired conditions. Then, it is necessary to prove that the claims do
hold.

For the order, we should start with (i) the elimination of empty rules, followed
by (ii) the elimination of unit rules. The reason for this is that (i) might introduce
new unit rules in the grammar, and (ii) will surely not introduce empty rules,
as long as the original grammar is free of them (except for S → ϵ, in which case
S, the initial symbol of the grammar, must not appear on the right-hand side of
any rule). Then, elimination of useless and inaccessible symbols (in either order)
is the right thing to do, since they only remove rules from the original grammar
(which is specially important because they do not introduce new empty or unit
rules). The formalization of this result is captured in the following theorem:

Theorem g_simpl_ex_v1: ∀ g: cfg non_terminal terminal, non_empty g →
∃ g’: cfg (non_terminal’ non_terminal) terminal, g_equiv g’ g ∧
has_no_inaccessible_symbols g’ ∧ has_no_useless_symbols g’ ∧
(produces_empty g → has_one_empty_rule g’) ∧
(∼ produces_empty g → has_no_empty_rules g’) ∧
has_no_unit_rules g’ ∧ start_symbol_not_in_rhs g’.

The proof of g simpl ex v1 demands auxiliary lemmas to prove that the
characteristics of the initial transformations are preserved by the following ones.
For example, that all of the unit rules elimination, useless symbol elimination
and inaccessible symbol elimination operations preserve the characteristics of
the empty rules elimination operation.

5 Chomsky Normal Form

The Chomsky Normal Form (CNF) theorem, proposed and proved by Chomsky
in [6], asserts that ∀ G = (V,Σ, P, S), ∃ G′ = (V ′,Σ, P ′, S′) | L(G) = L(G′) ∧
∀ (α →G′ β) ∈ P ′, (β ∈ Σ) ∨ (β ∈ N ·N).

That is, every context-free grammar can be converted to an equivalent one
whose rules have only one terminal symbol or two non-terminal symbols in the
right-hand side. Naturally, this is valid only if G does not generate the empty
string. If this is the case, then the grammar that has this format, plus a single rule
S′ →G ϵ, is also considered to be in the Chomsky Normal Form, and generates
the original language, including the empty string. It can also be assured that in
either case the start symbol of G′ does not appear on the right-hand side of any
rule of G′.



The existence of a CNF can be used for a variety of purposes, including to
prove that there is an algorithm to decide whether an arbitrary context-free
language accepts an arbitrary string, and to test if a language is not context-free
(using the Pumping Lemma for context-free languages, which can be proved with
the help of CNF grammars).

The idea of mapping G into G′ consists of creating a finite number of new
non-terminal symbols and new rules, in the following way:

1. For every terminal symbol σ that appears in the right-hand side of a rule
r = α →G β1 · σ · β2 of G, create a new non-terminal symbol [σ], a new rule
[σ] →G′ σ and substitute σ for [σ] in r;

2. For every rule r = α →G N1N2 · · ·Nk of G, where Ni are all non-terminals,
create a new set of non-terminals and a new set of rules such that α →G′

N1[N2 · · ·Nk], [N2 · · ·Nk] →G′ N2[N3 · · ·Nk], · · · , [Nk−2Nk−1Nk] →G′ Nk−2

[ Nk−1Nk ], [Nk−1Nk] →G′ Nk−1Nk.

Case (1) substitutes all terminal symbols of the grammar for newly created
non-terminal symbols. Case (2) splits rules that have three or more non-terminal
symbols on the right-hand side by a set of rules that have only two non-terminal
symbols in the right-and side. Both changes preserve the language of the original
grammar.

It is clear from above that the original grammar must be free of empty and
unit rules in order to be converted to a CNF equivalent. Also, it is desirable that
the original grammar contains no useless and no inaccessible symbols, besides
assuring that the start symbol does not appear on the right-hand side of any rule.
Thus, it will be required that the original grammar be first simplified according
to the results of Section 4.

Given the original grammar g1, we construct two new grammars g2 and g3.
The first generates the same set of sentences of g1, except for the empty string,
and the second includes the empty string:

1. Construct g2 such that L(g2) = L(g1)− ϵ;
2. Construct g3 (using g2) such that L(g3) = L(g2) ∪ {ϵ}.

Then, either g2 or g3 will be used to prove the existence of a CNF grammar
equivalent to g1.

For step 1, the construction of g2 (that is, g cnf g) is more complex, as
we need to substitute terminals for new non-terminals, introduce new rules for
these non-terminals and also split the rules with three or more symbols on the
right-hand side.

Next, we prove that g2 is equivalent to g (or g1). It should be noted, however,
that the set of rules defined above do not generate the empty string. If this is
the case, then we construct g3 (that is, g cnf’) with a new empty rule.

The statement of the CNF theorem can then be presented as:8

8 The results of this section are available in library chomsky.v.



Theorem g_cnf_ex: ∀ g: cfg non_terminal terminal,
(produces_empty g ∨ ∼ produces_empty g) ∧
(produces_non_empty g ∨ ∼ produces_non_empty g) →
∃ g’: cfg (non_terminal’ (emptyrules.non_terminal’ non_terminal) terminal)
terminal, g_equiv g’ g ∧ (is_cnf g’ ∨ is_cnf_with_empty_rule g’) ∧
start_symbol_not_in_rhs g’.

The new predicates used above assert, respectively, that the argument gram-
mar (i) produces at least one non-empty string (produces non empty), (ii) is
in the Chomsky Normal Form (is cnf) and (iii) is in the Chomsky Normal
Form and has a single empty rule with the start symbol in the left-hand side
(is cnf with empty rule).

It should be observed that the statement of g cnf ex is not entirely con-
structive, as we require, for any context-free grammar g, a proof that either g
produces the empty string or g does not produce the empty string, and also that
g produces a non-empty string or g does not produce a non-empty string. Since
we have not yet included a proof of the decidability of these predicates in our
formalization (something that we plan to do in the future), the statement of the
lemma has to require such proofs explicitly. They are demanded, respectively,
by the elimination of empty rules and elimination of useless symbols phases of
grammar simplification.

The formalization of this section required a lot of insights not directly avail-
able from the informal proofs, the most important being the definition of the
predicate g cnf rules (for the rules of the g cnf grammar). In a first attempt,
this inductive definition resulted with 14 constructors. Although correct, it was
refined many times until it was simplified to only 4 after the definition of the
type of the new non-terminals was adjusted properly, with a single construc-
tor. This effort resulted in elegant definitions which allowed the simplification
of the corresponding proofs, thus leading to a natural and readable formaliza-
tion. In particular, the strategy used in the proof of lemma derives g cnf g
(which states that every sentence produced by g cnf g is also produced by g) is
a very simple and elegant one, which uses the information already available in
the definition of g cnf rules.

6 Pumping Lemma

The Pumping Lemma is a property that is verified for all context-free languages
(CFLs) and was stated and proved for the first time by Bar-Hillel, Perles and
Shamir in 1961 ([7]). It does not characterize the CFLs, however, since it is
also verified by some languages that are not context-free. It states that, for
every context-free language and for every sentence of such a language that has
a certain minimum length, it is possible to obtain an infinite number of new
sentences that must also belong to the language. This minimum length depends
only on the language defined. In other words (let L be defined over alphabet
Σ): ∀ L, (cfl L) → ∃ n | ∀ α, (α ∈ L) ∧ (|α| ≥ n) → ∃ u, v, w, x, y ∈ Σ∗ | (α =
uvwxy) ∧ (|vx| ≥ 1) ∧ (|vwx| ≤ n) ∧ ∀ i, uviwxiy ∈ L.



The Pumping Lemma is stated in Coq as follows:9, 10, 11, 12

Lemma pumping_lemma: ∀ l: lang terminal,
(contains_empty l ∨ ∼ contains_empty l) ∧
(contains_non_empty l ∨ ∼ contains_non_empty l) → cfl l →
∃ n: nat, ∀ s: sentence, l s → length s ≥ n →
∃ u v w x y: sentence, s = u ++v ++w ++x ++y ∧
length (v ++x) ≥ 1 ∧ length (u ++y) ≥ 1 ∧ length (v ++w ++x) ≤ n ∧
∀ i: nat, l (u ++(iter v i) ++w ++(iter x i) ++y).

A typical use of the Pumping Lemma is to show that a certain language is
not context-free by using the contrapositive of the statement of the lemma. The
proof proceeds by assuming that the language is context-free, and this leads to
a contradiction from which one concludes that the language in question can not
be context-free.

The Pumping Lemma derives from the fact that the number of non-terminal
symbols in any context-free grammar G that generates L is finite. There are
different strategies that can be used to prove that the lemma can be derived
from this fact. We searched through 13 proofs published in different textbooks
and articles by different authors, and concluded that in 6 cases ([7], [8], [9], [10],
[11] and [2]) the strategy uses CNF grammars and binary trees for representing
derivations. Other 5 cases ([12], [13], [14], [15] and [16]) present tree-based proofs
that however do not require the grammar to be in CNF. Finally, Harrison ([17])
proves the Pumping Lemma as a corollary to the more general Ogden’s Lemma
and Amarilli and Jeanmougin ([18]) use a strategy with pushdown automata
instead of context-free grammars.

The difference between the proofs that use binary trees and those that use
general trees is that the former uses n = 2k (where k is the number of non-
terminal symbols the grammar) and the latter uses n = mk (where m is the
length of the longest right-hand side among all rules of the grammar and k is
the number of non-terminal symbols in the grammar). In both cases, the idea is
the same: to show that sufficiently long sentences have parse trees for which a
maximal path contains at least two instances of the same non-terminal symbol.

Since 11 out of 13 proofs considered use grammars and generic trees and,
of these, 6 use CNF grammars and binary trees (including the authors of the
original proof), this strategy was considered as the choice for the present work.
Besides that, binary trees can be easily represented in Coq as simple inductive
types, where generic trees require mutually inductive types, which increases the

9 This statement contains the extra clause length (u ++ y) >= 1, corresponding to
|uy| ≥ 1, which is normally not mentioned in textbooks.

10 Predicates contains empty and contains non empty are indeed decidable and thus it
would not be necessary to explicitly state that they satisfy the Law of the Excluded
Middle. However, this property has not been addressed in the formalization yet,
which justifies the statement of the lemma as it is.

11 Application iter l i on a list l and a natural i yields list li.
12 The results of this section are available in library pumping.v.



complexity of related proofs. Thus, for all these reasons we have adopted the
proof strategy that uses CNF grammars and binary trees in what follows.

The classical proof considers that G is in the Chomsky Normal Form, which
means that derivation trees have the simpler form of binary trees. Then, if the
sentence has a certain minimum length, the frontier of the derivation tree should
have two or more instances of the same non-terminal symbol in some path that
starts in the root of this tree. Finally, the context-free character of G guarantees
that the subtrees related to these duplicated non-terminal symbols can be cut
and pasted in such a way that an infinite number of new derivation trees are
obtained, each of which is related to a new sentence of the language. The formal
proof presented here is based in the informal proof available in [3].

The proof of the Pumping Lemma starts by finding a grammar G that gen-
erates the input language L (this is a direct consequence of the predicate cfl,
which states that the language is context-free). Next, we obtain a CNF grammar
G′ that is equivalent to G, using previous results. Then, G is substituted for G′

and the value for n is defined as 2k, where k is the length of the list of non-
terminals of G′ (which in turn is obtained from the predicate rules finite).
An arbitrary sentence α of L(G′) that satisfies the required minimum length n
is considered. Lemma derives g cnf equiv btree is then applied in order to
obtain a btree t that represents the derivation of α in G′. Naturally we have to
ensure that α ̸= ϵ, which is true since by assumption |α| ≥ 2k.

The next step is to obtain a path (a sequence of non-terminal symbols ended
by a terminal symbol) that has maximum length, that is, whose length is equal
to the height of t plus 1. This is accomplished by means of the definition bpath
and the lemma btree ex bpath. The length of this path (which is ≥ k+2) allows
one to infer that it must contain at least one non-terminal symbol that appears
at least twice in it. This result comes from the application of the lemma pigeon
which represents a list version of the well-known pigeonhole principle:

Lemma pigeon: ∀ A: Type, ∀ x y: list A, (∀ e: A, In e x → In e y) →
length x = length y + 1→ ∃ d: A, ∃ x1 x2 x3: list A, x = x1 ++[d] ++x2 ++[d] ++x3.

This lemma (and other auxiliary lemmas) is included in library pigeon.v, and
its proof requires the use of classical reasoning (and thus library Classical Prop
of the Coq Standard Library). This is necessary in order to have a decidable
equality on the type of the non-terminals of the grammar, and this is the only
place in the whole formalization where this is required. Nevertheless, we plan to
pursue in the future a constructive version of this proof.

Since a path is not unique in a tree, it is necessary to use some other repre-
sentation that can describe this path uniquely, which is done by the predicate
bcode and the lemma bpath ex bcode. A bcode is a sequence of boolean values
that tell how to navigate in a btree. Lemma bpath ex bcode asserts that every
path in a btree can be assigned a bcode.

Once the path has been identified with a repeated non-terminal symbol, and
a corresponding bcode has been assigned to it, lemma bcode split is applied
twice in order to obtain the two subtrees t1 and t2 that are associated respectively
to the first and second repeated non-terminals of t.



From this information it is then possible to extract most of the results needed
to prove the goal, except for the pumping condition. This is obtained by an
auxiliary lemma pumping aux, which takes as hypothesis the fact that a tree t1
(with frontier vwx) has a subtree t2 (with frontier w), both with the same roots,
and asserts the existence of an infinite number of new trees obtained by repeated
substitution of t2 by t1 or simply t1 by t2, with respectively frontiers viwxi, i ≥ 1
and w, or simply viwxi, i ≥ 0.

The proof continues by showing that each of these new trees can be combined
with tree t obtained before, thus representing strings uviwxiy, i ≥ 0 as necessary.
Finally, we prove that each of these trees is related to a derivation in G′, which
is accomplished by lemma btree equiv produces g cnf.

The formalization of the Pumping Lemma is quite readable and easily mod-
ifiable to an alternative version that uses a smaller value of n (as in the original
proof contained in [7]). It builds nicely on top of the previous results on grammar
normalization, which in turn is a consequence of grammar simplification. It is
however long (pumping lemma has 436 lines of Coq script) and the key insights
for its formalization were (i) the construction of the library trees.v, specially the
lemmas that relate binary trees to CNF grammars; (ii) the identification and
isolation of lemma pumping aux, to show the pumping of subtrees in a binary
tree and (iii) the proof of lemma pigeon. None of these aspects are clear from
the informal proof, they showed up only while working in the formalization.

7 Related Work

Context-free language theory formalization is a relatively new area of research,
when compared with the formalization of regular languages theory, with some
results already obtained with the Coq, HOL4 and Agda proof assistants.

The pioneer work in context-free language theory formalization is probably
the work by Filliâtre and Courant ([19]), which led to incomplete results (along
with some important results in regular language theory) and includes closure
properties (e.g. union), the partial equivalence between pushdown automata and
context-free grammars and parts of a certified parser generator. No paper or
documentation on this part of their work has been published however.

Most of the extensive effort started in 2010 and has been devoted to the
certification and validation of parser generators. Examples of this are the works
of Koprowski and Binsztok (using Coq, [20]), Ridge (using HOL4, [21]), Jour-
dan, Pottier and Leroy (using Coq, [22]) and, more recently, Firsov and Uustalu
(in Agda, [23]). These works assure that the recognizer fully matches the lan-
guage generated by the corresponding context-free grammar, and are important
contributions in the construction of certified compilers.

On the more theoretical side, on which the present work should be consid-
ered, Norrish and Barthwal published on general context-free language theory
formalization using the HOL4 proof assistant ([24], [25], [26]), including the exis-
tence of Chomsky and Greibach normal forms for grammars, the equivalence of
pushdown automata and context-free grammars and closure properties. These



results are from the PhD thesis of Barthwal ([27]), which includes also a proof
of the Pumping Lemma for context-free languages. Thus, Barthwal extends our
work with pushdown automata and Greibach Normal Form results, and for this
reason it is the most complete formalization of context-free language theory up
to date, in any proof assistant. Recently, Firsov and Uustalu proved the existence
of a Chomsky Normal Form grammar for every general context-free grammar,
using the Agda proof assistant ([28]). For a discussion of the similarities and
differences of our work and those of Barthwal and Firsov, please refer to [4].

A special case of the Pumping Lemma for context-free languages, namely the
Pumping Lemma for regular languages, is included in the comprehensive work
of Doczkal, Kaiser and Smolka on the formalization of regular languages ([29]).

8 Conclusions

This is probably the most comprehensive formalization of the classical context-
free language theory done to the present date in the Coq proof assistant, and
includes the important result that is the second ever formalization of the Pump-
ing Lemma for context-free languages (the first in the Coq proof assistant). It
is also the first ever proof of the alternative statement of the Pumping Lemma
that uses a smaller value of n (for more details, see [7] and [4]).

The whole formalization consists of 23,984 lines of Coq script spread in 18
libraries (each library corresponds to a different file), not including the example
files. The libraries contain 533 lemmas and theorems, 99 constructors, 63 defini-
tions (not including fixpoints), 40 inductive definitions and 20 fixpoints among
1,067 declared names.

The present work represents a relevant achievement in the areas of formal
language theory and mathematical formalization. As explained before, there is
no record that the author is aware of, of a project with a similar scope in the
Coq proof assistant covering the formalization of context-free language theory.
The results published so far are restricted to parser certification and theoretical
results in proof assistants other than Coq. This is not the case, however, for
regular language theory, and in a certain sense the present work can be considered
as an initiative that complements and extends that work with the objective of
offering a complete framework for reasoning with the two most popular and
important language classes from the practical point of view. It is also relevant
from the mathematical perspective, since there is a clear trend towards increased
and widespread usage of interactive proof assistants and the construction of
libraries for fundamental theories.

Plans for future development include the definition of new devices (e.g. push-
down automata) and results (e.g. equivalence of pushdown automata and context-
free grammars), code extraction and general enhancements of the libraries, with
migration of parts of development into SSReflect (to take advantage, for example,
of finite type results).
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A Definitions

We present next the main definitions used in the formalization.13 Context-free
grammars are represented in Coq very closely to the usual algebraic definition.
Let G = (V,Σ, P, S) be a context-free grammar. The sets N = V \Σ and
Σ are represented as types (usually denoted by names such as, for example,
non terminal and terminal), separately from G. The idea is that these sets are
represented by inductive type definitions whose constructors are its inhabitants.
Thus, the number of constructors in an inductive type corresponds exactly to
the number of (non-terminal or terminal) symbols in a grammar.

Once these types have been defined, we can create abbreviations for senten-
tial forms (sf), sentences (sentence) and lists of non-terminals (nlist). The
first corresponds to the list of the disjoint union of the types non-terminal
and terminal, while the other two correspond to simple lists of, respectively,
non-terminal and terminal symbols.

The record representation cfg has been used for G. The definition states that
cfg is a new type and contains three components. The first component is the
start symbol of the grammar (a non-terminal symbol) and the second is rules,
that represents the rules of the grammar. Rules are propositions (represented

13 The results of this appendix are available in libraries cfg.v and cfl.v.



in Coq by Prop) that take as arguments a non-terminal symbol and a (possibly
empty) list of non-terminal and terminal symbols (corresponding, respectively,
to the left and right-hand side of a rule). Grammars are parametrized by types
non terminal and terminal.

Record cfg (non_terminal terminal : Type): Type:= {
start_symbol: non_terminal;
rules: non_terminal → sf → Prop;
rules_finite:

∃ n: nat,
∃ ntl: nlist,
∃ tl: tlist,
rules_finite_def start_symbol rules n ntl tl }.

The predicate rules finite def assures that the set of rules of the grammar
is finite by proving that the length of right-hand side of every rule is equal or
less than a given value, and also that both left and right-hand side of the rules
are built from finite sets of, respectively, non-terminal and terminal symbols
(represented here by lists). This represents an overhead in the definition of a
grammar, but it is necessary in order to allow for the definition of non terminal
and terminal as generic types in Coq.

Since generic types might have an infinite number of elements, one must make
sure that this is not the case when defining the non terminal and terminal sets.
Also, even if these types contain a finite number of inhabitants (constructors),
it is also necessary to prove that the set of rules is finite. All of these is cap-
tured by predicate rules finite def. Thus, for every cfg defined directly of
constructed from previous grammars, it will be necessary to prove that the pred-
icate rules finite def holds.

The other fundamental concept used in this formalization is the idea of deriva-
tion: a grammar g derives a string s2 from a string s1 if there exists a series of
rules in g that, when applied to s1, eventually results in s2. A direct derivation
(i.e. the application of a single rule) is represented by s1 ⇒ s2, and the reflexive
and transitive closure of this relation (i.e. the application of zero or more rules)
is represented by s1 ⇒∗ s2. An inductive predicate definition of this concept in
Coq (derives) uses two constructors:

Inductive derives
(non_terminal terminal : Type)
(g : cfg non_terminal terminal)
: sf → sf → Prop :=
| derives_refl :

∀ s : sf,
derives g s s

| derives_step :
∀ (s1 s2 s3 : sf)
∀ (left : non_terminal)
∀ (right : sf),
derives g s1 (s2 ++inl left :: s3) →
rules g left right → derives g s1 (s2 ++right ++s3)



The constructors of this definition (derives refl and derives step) are the
axioms of our theory. Constructor derives refl asserts that every sentential
form s can be derived from s itself. Constructor derives step states that if a
sentential form that contains the left-hand side of a rule is derived by a grammar,
then the grammar derives the sentential form with the left-hand side replaced
by the right-hand side of the same rule. This case corresponds to the application
of a rule in a direct derivation step.

A grammar generates a string if this string can be derived from its start
symbol. Finally, a grammar produces a sentence if it can be derived from its
start symbol.

Two grammars g1 (with start symbol S1) and g2 (with start symbol S2)
are equivalent (denoted g1 ≡ g2) if they generate the same language, that is,
∀s, (S1 ⇒∗

g1 s) ↔ (S2 ⇒∗
g2 s). This is represented in our formalization in Coq by

the predicate g equiv.
With these and other definitions (see [4]), it is possible to prove various

lemmas about grammars and derivations, and also operations on grammars, all
of which are useful when proving the main theorems of this work.

Library cfg.v contains 4,393 lines of Coq script (∼18.3% of the total) and
105 lemmas and theorems (∼19.7% of the total).

B Generic Binary Trees Library

In order to support the formalization of the Pumping Lemma in Section 6, an
extensive library of definitions and lemmas on binary trees and their relation
to CNF grammars has been developed.14 This library is based in the definition
of a binary tree (btree) whose internal nodes are non-terminal symbols and
leaves are terminal symbols. The type btree is defined with the objective of
representing derivation trees for strings generated by context-free grammars in
the Chomsky Normal Form:

Inductive btree (non_terminal terminal: Type): Type:=
| bnode_1: non_terminal → terminal → btree
| bnode_2: non_terminal → btree → btree → btree.

The constructors of btree relate to the two possible forms that the rules
of a CNF grammar can assume (namely with one terminal symbol or two non-
terminal symbols in the right-hand side). Naturally, the inhabitants of the type
btree can only represent the derivation of non-empty strings.

Next, we have to relate binary trees to CNF grammars. This is done with the
predicate btree cnf, used to assert that a binary tree bt represents a derivation
in CNF grammar g. Now we can show that binary trees and derivations in
CNF grammars are equivalent. This is accomplished by two lemmas, one for
each direction of the equivalence. Lemma derives g cnf equiv btree asserts
that for every derivation in a CNF grammar exists a binary tree that represents
this derivation. It is general enough in order to accept that the input grammar

14 The results of this appendix are available in library trees.v.



might either be a CNF grammar, or a CNF grammar with an empty rule. If
this is the case, then we have to ensure that the derived sentence is not empty.
Lemma btree equiv derives g cnf proves that every binary tree that satisfies
btree cnf corresponds to a derivation in the same (CNF) grammar.

Among other useful lemmas, the following one is of fundamental importance
in the proof of the Pumping Lemma, as it relates the length of the frontier of a
binary tree to its height:

Lemma length_bfrontier_ge:
∀ t: btree,
∀ i: nat,
length (bfrontier t) ≥ 2 ˆ (i − 1) →
bheight t ≥ i.

The notion of subtree is also important, and is defined inductively as follows
(note that a tree is not, in this definition, a subtree of itself):

Inductive subtree (t: btree): btree → Prop:=
| sub_br: ∀ tl tr: btree, ∀ n: non_terminal,

t = bnode_2 n tl tr → subtree t tr
| sub_bl: ∀ tl tr: btree, ∀ n: non_terminal,

t = bnode_2 n tl tr → subtree t tl
| sub_ir: ∀ tl tr t’: btree, ∀ n: non_terminal,

subtree tr t’ → t = bnode_2 n tl tr → subtree t t’
| sub_il: ∀ tl tr t’: btree, ∀ n: non_terminal,

subtree tl t’ → t = bnode_2 n tl tr → subtree t t’.

The following lemmas, related to subtrees, among many others, are also fun-
damental in the proof of the Pumping Lemma:

Lemma subtree_trans:
∀ t1 t2 t3: btree,
subtree t1 t2 → subtree t2 t3 → subtree t1 t3.

Lemma subtree_includes:
∀ t1 t2: btree,
subtree t1 t2 → ∃ l r : sentence,
bfrontier t1 = l ++bfrontier t2 ++r ∧ (l ̸= [] ∨ r ̸= []).

Library trees.v has 4,539 lines of Coq script (∼18.9% of the total) and 84
lemmas (∼15.7% of the total)).


