
Integration Challenges of Pure Operation-based CRDTs in
Redis

Georges Younes∗
FCT, Universidade Nova de

Lisboa
Lisboa, Portugal

Ali Shoker†
HASLab / INESC TEC &
Universidade do Minho

Braga, Portugal

Paulo Sérgio Almeida†
HASLab / INESC TEC &
Universidade do Minho

Braga, Portugal

Carlos Baquero†
HASLab / INESC TEC &
Universidade do Minho

Braga, Portugal

ABSTRACT
Pure operation-based (op-based) Conflict-free Replicated Data
Types (CRDTs) are generic and very efficient as they allow
for compact solutions in both sent messages and state size.
Although the pure op-based model looks promising, it is
still not fully understood in terms of practical implemen-
tation. In this paper, we explain the challenges faced in
implementing pure op-based CRDTs in a real system: the
well-known in-memory cache key-value store Redis. Our
purpose of choosing Redis is to implement a multi-master
replication feature, which the current system lacks. The ex-
perience demonstrates that pure op-based CRDTs can be
implemented in existing systems with minor changes in the
original API.

CCS Concepts
•Theory of computation → Distributed algorithms;

Keywords
CRDT; Eventual Consistency; Pure operation-based CRDTs

∗European Union Seventh Framework Program (FP7/2007-
2013) under grant agreement 609551, SyncFree project.
†Project “TEC4Growth - Pervasive Intelligence, Enhancers
and Proofs of Concept with Industrial Impact/NORTE-01-
0145-FEDER-000020” is financed by the North Portugal Re-
gional Operational Programme (NORTE 2020), under the
PORTUGAL 2020 Partnership Agreement, and through the
European Regional Development Fund (ERDF).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PMLDC ’16, July 17 2016, Rome, Italy
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4775-4/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2957319.2957375

1. INTRODUCTION
Eventually consistent replication using Conflict-free Repli-

cated Data Types (CRDTs) has been widely adopted by
the industry [6, 2, 3]. CRDTs are a materialization of the
Strong Eventual Consistency model, which allows all system
replicas to promptly perform read/write operations, leaving
the synchronization to a background phase to achieve even-
tual consistency. More recently, the pure operation-based
CRDT model [2, 1] has been introduced as a generic model
to build CRDTs that can leverage the meta-data provided
by the middleware and reduce the overhead of communica-
tion through exchanging more compact messages. However,
although pure op-based CRDTs have been theoretically out-
lined in [2], it is not yet understood how to implement them
in concrete systems.

In this paper, we summarize our experience in implement-
ing pure op-based CRDTs to build a multi-master replica-
tion feature in Redis [5], the famous in-memory cache sys-
tem. We choose Redis because: (1) it helps us demonstrate
how to integrate pure op-based CRDTS in an existing pop-
ular system; (2) we contribute with the community in build-
ing a crucial multi-master feature that is currently missing
in Redis. Our experience reveals that implementing pure
op-based CRDTs for many data types is straightforward,
whereas integrating them in an existing system is somehow
challenging if the aim is to preserve the legacy API and
code-base intact.

2. BACKGROUND

2.1 Redis
Redis [5] is an in-memory cache and key-value store that

is widely used by well known companies such as Twitter,
GitHub, StackOverflow, Flickr, etc [5]. It significantly re-
duces the response time of services as it usually stands as a
layer between the persistent storage of a service and clients;
thus, instead of having to query the database each time data
is needed, Redis allows caches the data in memory enabling
much faster data retrieval. Redis supports many primitive
datatypes like sets, counters, maps, etc. Redis server is im-
plemented in ANSI C and works in most POSIX systems
[5]; whereas several Redis clients are available in most of the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/154274596?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

programming languages [5].
The popularity of Redis stems from its speed, rich se-

mantics, and stability. It was primarily designed and gen-
erally used in a single server deployment model. A single
Redis instance is a remote centralized solution, and not a
distributed system. However, Redis provides distributed so-
lutions known as Redis Sentinel and Redis Cluster which
allow using multiple instances, asynchronous master-slave
replication, and automatic fail over process.

Redis Sentinel [5] is a solution to manage Redis instances
by monitoring them, notifying other nodes in case of a failover,
and starting a failover process. It is mostly used for man-
aging master and slave nodes, notifying a change in the be-
haviour, handling the failover if a master is down, starting
the election of new master, and in reconfiguration. On the
other hand, Redis Cluster [5] is a solution for data sharding
with failover mechanism and replication as well. It is mostly
used when the dataset does not fit on a single machine.

As both replication methods use an asynchronous master-
slave replication, which may cause some issues as we de-
scribed earlier, we found it interesting to have a multi mas-
ter replication feature in Redis, to improve high availability,
through using Pure op-based CRDTs [2] that we summarize
in the next section.

2.2 Pure Op-based CRDTs
Conflict-free Replicated Data Types (CRDTs) [6] are used

to replicate data across multiple replicas without immedi-
ate synchronization between them. They are designed in a
formal way to resolve conflicts between replicas using even-
tual consistency (EC). There are two approaches for CRDTs:
Operation-based CRDTs and State-based CRDTs [6]. The
former broadcasts the update operation itself while the lat-
ter broadcasts the local state to the other replicas. In the
“Classical”operation-based approach in [6], the replica sends
not only the operation and arguments but also meta-data
containing information that will be needed to achieve con-
vergence. This design may result in large state size and leads
to confusion with the state-based approach. Pure operation-
based CRDTs [2] were introduced as a solution that offers
very compact state size and a generic framework, indepen-
dent of the data type.

In the pure op-based CRDT approach, every operation
is applied locally and disseminated to all other replicas via
a Tagged Reliable Causal Broadcast middleware [2]. The
compact size of the message is given by the fact that the
meta-data needed to preserve the causal order is provided
by the middleware. As a result, the disseminated message
size is reduced to containing only the operation name and
arguments.

Each pure op-based CRDT has the following specification:

• prepare: returns the operation and arguments needed
for the dissemination.

• effect: removes redundant operations from the POLog
and checks for stable operations to move them to the
sequential data type.

• eval: returns the result of the query from the state by
combining the data of the POLog and the sequential
data type.

3. ARCHITECTURE

In order to implement the multi-master replication fea-
ture using pure op-based CRDTs, we integrated three layers
into Redis Server’s code. We present below the three layers,
shown in Figure 1, with a brief description of each layer.

Request handler.
The handler layer is the intermediate layer between Redis

Client API and the TRCB and CRDT layers. Every client
request is redirected by the original Redis Client API to this
layer. Then, this layer prepares a client object containing
the operation and arguments (if any), serializes it and ships
it to the TRCB layer for dissemination.

Tagged Reliable Causal Broadcast.
The second layer (TRCB) is used to broadcast client re-

quests (operations and arguments) to all nodes in the clus-
ter. This layer tags the client objects received from the han-
dler with a timestamp needed to guarantee causal delivery
at each node. Also, the TRCB is implemented in a way to
guarantee exactly-once delivery of each client object to each
node in the cluster.

CRDT layer.
The CRDT layer is where we implement the pure op-based

CRDTs and their related structures, such as the POLog
(Partially-Ordered Log), a map where the key is a times-
tamp and the value is the operation and arguments, follow-
ing the designs and specifications in [2]. In addition to that,
we perform a two-phase POLog compaction to make CRDTs
even more efficient. The first phase removes obsolete and
redundant information from the POLog in a way that does
not affect the result of the queries, keeping only relevant of
operations. The second one is by using causal stability in-
formation from the middleware to discard the timestamps of
causally stable operations and move them from the POLog
to the Redis data types.

4. CHALLENGES
In order to implement a multi-master replication feature

in Redis using pure op-based CRDTs we had to figure out
solutions for the challenges we faced. The challenges are in
terms of architecture design, preserving original API with
minor changes, reusability of Redis code, configurability of
the system, choice of messaging pattern and implementation
of causal stability. We address, in each of the subsections
below, these challenges as well as our solution for each of
them.

4.1 Design
A major challenge was the choice of the architecture de-

sign, as shown in section 3. On one hand, implementing
pure op-based CRDTs on top of Redis allows us to use Re-
dis primitive data types as sequential data types for our
CRDTs, but this would require us to implement a new client
API. On the other hand, implementing Redis on top of pure
op-based CRDTs preserves the same Redis client API and
uses CRDTs to store the data, but we do not benefit from
Redis’ data types and related APIs. Instead, we integrated,
within Redis code, three layers responsible for the replica-
tion process, keeping the same client API and benefiting
from Redis’s data types as sequential data types in our pure
op-based model.

Figure 1: The general architecture of our multi-master proposed solution.

Moreover, from the multithreading perspective, under-
standing the way these layers work and how they interact
with each other is crucial for the pure op-based model to
work both correctly and efficiently. The handler layer is
always waiting for client requests, independently from the
TRCB and CRDT layers. Both the TRCB and CRDT layers
work independently and in parallel. The TRCB constantly
reads from two buffers (UNIX file descriptors): one contain-
ing the client requests and another the peer updates. The
TRCB layer has a subthread, using the subscribe pattern,
listening to peer updates, which runs continuously and in-
dependently from the main TRCB thread which deals with
causal reliable dissemination. The CRDT layer reads opera-
tions delivered by the TRCB and adds them to the POLog.
It has a subthread responsible of the 2-phase POLog com-
paction process.

4.2 Preserving Redis client API
We implemented most of Redis data types such as keys,

strings, sets, hashes, bitmaps and hyperloglogs due to the
ability to map these data types to pure op-based CRDTs.
In the current version we do not support sorted sets and
lists.

The main factor that makes this possible is that the use
of CRDTs is only transient and for replication purposes; the
storage happens in Redis data types. This preserves the
original behaviour of Redis from the application developer’s
perspective.

We use the Redis Set as an example to illustrate the
changes we made to implement the pure op-based ORSet
specification.

A Redis Set is an unordered collection of strings. The
operation to add an element to a set is SADD and is used
as SADD myset element1, returning 1 if element1 was added
to the set, and 0 if not. The SREM command removes an
element from the set using SREM myset element1, returning
1 if element1 was removed from the set, and 0 if not. The
command SMEMBERS allows the client to query the set,
returning all the elements in the set.

We use a pure op-based observed-remove set (ORSet) to

map the original Redis Set. A pure op-based ORSet has a
POLog and the Redis Set itself used as a sequential data
type. No changes were made to API: the operations are
added to the POLog until they are causally stable and then
added to/removed from the Redis Set using SADD/SREM,
returning 1/0 in case of success/failure. For SMEMBERS,
as in the pure op-based model, elements can exist in both
the POLog and in the sequential data type. SMEMBERS
behaves as the original Redis API, and returns the number
of elements by combining those in the POLog with those in
the Redis Set.

4.3 Causal Stability Implementation
The pure op-based model uses the notion of causal sta-

bility, to discard timestamp information of operations once
they become stable and to move them from the POLog to
the sequential data type.

A clock t, and corresponding message, is causally stable
at node i when all messages subsequently delivered at i will
have timestamp u ≥ t.

In order to detect causal stability we designed a mecha-
nism using two new structures in the TRCB layer, at each
node i, in order to implement this notion of causal stability.
The first one is an N × N matrix called Last Timestamp
Matrix (LTM), where N is the number of nodes and each
row j of the LTM is the version vector of the most recently
delivered message from the node j. The second structure is
a version vector called Stable Version Vector(SVV). At each
node i, SV Vi is the pointwise minimum of all version vec-
tors in the LTM. Each operation in the POLog that causally
precedes (happend-before) the SVV is considered stable and
removed from the POLog, to be added to the sequential data
type.

4.4 TRCB communication
The implementation of the pure op-based CRDT model

requires a dissemination middleware that guarantees an exactly-
once delivery that respects causal order. We used the Pub-
lish/Subscribe messaging pattern where each node is sub-
scribed to all the others because it meets best our asyn-

chronous multi-master broadcast requirements. We tried
to use the already existing pub/sub communication imple-
mentation of Redis Cluster and found it was not feasible
for two reasons. The first reason is that Pub/Sub in Redis
Cluster works by broadcasting every publish to every other
Redis Cluster node through a cluster bus. This limits the
pub/sub throughput to the bisection bandwidth of the un-
derlying network infrastructure divided by the number of
nodes times message size. Pub/sub thus scales linearly with
respect to the cluster size, but in the the negative direc-
tion. The second is that the Cluster bus binary protocol is
not publicly documented since it is not intended for external
software devices to talk with Redis Cluster nodes using this
protocol.

Many libraries such as RabbitMQ1 [4] provide features
like reliability, but in order to obtain it can lead to trade-
offs in performance. Instead, in order to allow us to have
more control over the implementation trade-offs, we used
ZeroMQ2 [7] as it is much lightweight and decided to imple-
ment a reliable causal delivery mechanism, enhanced with
tagging, over ZeroMQ best-effort Pub/Sub.

4.5 Reusability of Redis code
In the pure op-based CRDT specification in [1], each CRDT

uses two main structures: the POLog and the sequential
data type. However, the ability to map most of Redis prim-
itive data types to pure op-based CRDTs allowed us to use
the Redis data types as sequential data types for the CRDT,
with the CRDTs being used only for dissemination and to
store data temporarily, before it is stored in Redis when
causal stability is achieved.

In some cases we didn’t even need to change the command
implementation. Considering the previous example in sub-
section 4.2, the command implementation for both SADD
and SREM were used as is. For SMEMBERS, we had to
change the implementation as we needed to read elements
from both the POLog and the Redis Set and return the
combination to the client.

4.6 Configurability
We tried to keep Redis as configurable as possible in the

same intuition of Redis Cluster. A Redis server can be used
as a normal single instance or as a node in a multi-master
cluster depending on the configuration.

5. CONCLUSION
We showed how pure op-based CRDTs can be integrated

in Redis with minor changes in the original system’s API.
Three lessons we learned. First, pure op-based CRDTs are
fairly easy to implement, being generic across multiple data
types. Second, integrating them in an existing system is
challenging if keeping the legacy API intact is an objective.
Third, the modular design we used in this implementation
makes this model easy to mimic and thus implement multi-
master replication in other systems with few changes.

1RabbitMQ is an open source message broker software
(sometimes called message-oriented middleware) that imple-
ments the Advanced Message Queuing Protocol (AMQP).
2ZeroMQ (also spelled ∅MQ, 0MQ or ZMQ) is a high-
performance asynchronous messaging library, aimed at use
in distributed or concurrent applications.

6. REFERENCES
[1] C. Baquero, P. S. Almeida, and A. Shoker. Making

operation-based crdts operation-based. In Proceedings
of the First Workshop on Principles and Practice of
Eventual Consistency, page 7. ACM, 2014.

[2] P. S. A. Carlos Baquero and A. Shoker. Making
operation-based crdts operation-based. In Distributed
Applications and Interoperable Systems - 14th IFIP
WG 6.1 International Conference, DAIS 2014, Held as
Part of the 9th International Federated Conference on
Distributed Computing Techniques, DisCoTec 2014,
Berlin, Germany, June 3-5, 2014, Proceedings, pages
126–140, 2014.

[3] Paulo Sergio Almeida, Ali Shoker, and Carlos Baquero.
Efficient State-based CRDTs by Delta-Mutation. In
Proceedings of the International Conference of
Networked sYStems, NETYS’15. Springer, May 2015.

[4] RabitMQ. Rabbitmq - messaging that just works.
https://www.rabbitmq.com.

[5] Redis. Redis Documentation.
http://redis.io/documentation.

[6] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski.
A comprehensive study of Convergent and
Commutative Replicated Data Types. Technical report,
jan 2011.

[7] ZeroMQ. Distributed Messaging - zeromq.
http://zeromq.org.

