
Transparent cross-system consistency
João Lo�

INESC-ID/IST – U. Lisboa
Daniel Porto

INESC-ID/IST – U. Lisboa
Carlos Baquero

HASLab/INESC-TEC – U. Minho
∗

João Garcia
INESC-ID/IST – U. Lisboa

Nuno Preguiça
NOVALINCS/FCT – UNL

Rodrigo Rodrigues
INESC-ID/IST – U. Lisboa

Abstract
This paper discusses the motivation and the challenges for pro-
viding a systematic and transparent approach for dealing with
cross-system consistency. Our high level goal is to provide a way to
avoid violations of causality when multiple systems interact, while
(a) avoiding the redesign of existing systems, (b) minimizing the
overhead, and (c) requiring as little developer input as possible.

Keywords Consistency; Microservices; Causality; Coordination.

1 Introduction
Ever-growing user bases challenge Internet companies to design
applications that meet or even exceed the the expectations of the
end-user service experience. Keeping users engaged is important
for business [11] and, conversely, unsatis�ed users end up leaving
the service, thus resulting in loss of revenue [16].

To address both performance and functionality requirements, the
software infrastructure that underlies Internet services normally
resorts to an architecture in which systems are split into multiple
independent cooperating services, where each service can either be
a full blown distributed system such as a mix of storage, processing,
and monitoring systems [? ], or also smaller scale systems such
as microservices [12]. This architecture is not only motivated by
modularity, but it also makes it easier to individually optimize each
system, e.g., in terms of performance and scalability.

However, scattering application data functionality across mul-
tiple services comes at a price. A single user request may span
hundreds of sub-queries that traverse multiple di�erent services [4],
with possibly di�erent consistency semantics. Consequently, copies
of the same (or causally related) data are spread throughout mul-
tiple services, jeopardizing causal relationships. For instance, at
Facebook, noti�cations and posts, although inter-dependent, are
processed by independent systems [1]. Hence, and regardless of the
consistency level guaranteed by individual systems, inconsistencies
can be present in the overall system, and ultimately perceived by
the end user [1, 3].

In fact, exposing inconsistencies to the end-user, may lead to a
direct negative impact on the quality of the user experience, and is
therefore a topic that is monitored by major Internet companies.
Facebook, for example, saw only a small prevalence of inconsisten-
cies in one of their storage systems [13], but is looking at a way to
systematically solve these issues when they occur across di�erent
systems [1]. In particular, when noti�cations for new posts are
delivered before those posts are available, users �ock to community
forums to complain about these causality violations [6–9].

A possible way to orchestrate the behavior of multiple interact-
ing systems, in order to control the overal semantics perceived by
end users is through the use of an external coordination mechanism
such as Zookeeper [10]. While this is an e�ective way to prevent

Notification
Service

Data Storage
Service

ProxyProxy

7

1

2

3

4
5

Post(P1)

Put(P1)

Pub(N1:P1)
Sub(N1:P1)

NOT 
FOUND!

NOT FOUND!

Get(P1)

Get(P1)

N1:P1

8

9

6

Alice Bob 

Figure 1. User visible inconsistencies. If e.g. (2) is delayed, noti�-
cation can be delivered without posts being available.

anomalies from surfacing (as operations are only allowed to pro-
ceed under certain conditions), this solution has three important
drawbacks. First, it requires the developer to identify these pitfalls,
which requires deep understanding of the consistency models in-
volved and their resulting interplay. Second, it requires signi�cant
modi�cations to the various systems in order to invoke this coordi-
nation in the appropriate moments. Finally, coordination systems
like Zookeeper represent a serialization point in the system, which
may introduce signi�cant delays [2]. In fact, a mere fork/join struc-
ture of requests when a single sub-query needs coordination can
cause a cascading slowdown throughout the whole system [1, 15].

Given these di�culties, we argue that it is important to �nd a
solution addresses the problem of the complex and subtle interac-
tions between ecosystems of multiple systems or micro-services,
with various interfaces and semantics. Ideally, such a solution
should meet the following requirements: (1) compatibility with
existing systems, namely avoiding their redesign, (2) introducing
only the necessary amount of coordination, thus minimizing the
coordination overhead, (3) minimizing the burden on the develop-
ers, by requiring only a small amount of annotations to existing
code bases, and without requiring an understanding of the subtle
ways in which the semantics of the di�erent systems may interact,
and (4) preventing non-intuitive behaviors from being exposed to
end users.

The remainder of this paper provides an overview of the chal-
lenges for providing such an approach, and the key techniques that
we can leverage as building blocks.

2 Challenges in cross-system causality
As an illustrative example, consider a simple Facebook-like reactive
application composed by a Proxy, a Data Store and a Noti�cation
Service. Proxies handle client requests, such as posting a new mes-
sage. When handling this type of request, the proxy stores the new
post on the Data Store, and publishes a noti�cation to the Noti�-
cation Service. The problem that may arise in this scenario is that,
even if each independent service has strong consistency guarantees

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/154274591?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


PaPoC’17, April 2017, Belgrade, Serbia J. Lo� et al.

(such as linearizability), consistency violations can happen [17]. For
instance, as shown in Figure 1, after processing the request from
alice (

−→1 ), the Proxy splits her post into two di�erent objects: Con-
tent (−→2 ) and Noti�cation (

−→3 ). Although both objects are causally
related, it is possible that one object is delivered (

−−−−→3, 4, 5) while the
other (

−→2 ) could be delayed (or even aborted). As a result, after
seeing a noti�cation for the new post (−→5 ), Bob may try to access
the post (−−→6, 7) and, because its content is not yet available (

−→2 ), Bob
ends up receiving an error message as a response (

−−→8, 9).
A simple solution with a coordination mechanism can be em-

ployed to prevent this problem from happening. As shown in
Figure 2a, the noti�cation for Alice’s post can be propagated to the
Noti�cation Service (−−−−→1, 2, 3), but, before being delivered, the applica-
tion logic must use a coordination service in order to wait (−→4 ) until
the post content becomes available in the Data Store (−−−−→1, 2, 5). Only
then, the coordinator allows the noti�cation to be delivered to Bob
(−−→6, 7). Finally, when Bob visualizes the noti�cation from the new
post that Alice issued and tries to access it (−−→8, 9), the post content
is now available and can be returned to Bob.

Note that this solution has two drawbacks. First, both services
have to adhere to a common coordination protocol. Second, two
additional round trip messages are required to make sure that the
noti�cation can be propagated safely to the Proxy (

−→4 and−→5 ), which
introduce delays. Alternatively, the Noti�cation and Data Store
services could be modi�ed to coordinate directly among themselves
and save a round trip. Nevertheless, the refactoring e�ort of these
services may be very high compared to centralizing that logic in
the application code.

The problem that is illustrated by this simple example may be
exacerbated in real systems. This is because, over time, Internet
applications grow in features, and thus need to connect di�erent
services to provide a richer experience. For instance, the microser-
vices de�nition advocates application decomposition based on the
principles of replacement and upgradeability, favoring a granular
release planning [12]. Hence, new features are added by implement-
ing new microservices, thus resulting in a system design that is
composed by a large number of inter-dependent microservices. For
instance, Net�ix is reported to have hundreds of microservices [4].
Consequently, coordination amongst a growing number of services
ampli�es that above mentioned challenges.

3 Towards cross-system consistency
Figure 2b depicts the blueprint for our proposal. The shaded rectan-
gles interposed between existing components form our proposed
transparent coordination layer. At a high level, our coordination
layer intercepts cross-system communication, adding metadata to
each request. This metadata allows us to keep track of data depen-
dencies and prevent cross-system consistency violations. Next, we
outline the goals and strategies for this layer.

Avoid changes in current systems. Ideally, we want to avoid chang-
ing existing consistency and event-ordering mechanisms, while
averting the drawbacks discussed in §2. Hence, instead of changing
the design of existing systems, we aim to augment existing cross-
system communication interfaces so they transparently provide
consistency between subsystems. In particular, by instrumenting

existing systems to intercept common cross-system communica-
tion APIs (such as RPC frameworks), it is possible to intercept
the metadata appended to the messages to validate causal depen-
dencies without a�ecting the execution of the system. Note that
this strategy was previously adopted in the context of other prob-
lem statements. Crane [5], for example, uses a similar strategy
to achieve transparent state machine replication by changing the
common socket API.

Minimize coordination requirements. By leveraging the existing
baggage abstraction [14], we intend to derive at runtime happened-
before relations between cross-systems operations. This can enable
us to build causal histories for each request, which, in turn, allow
us to know, in any point of the execution, what is the chain of
operations that led to that point.

Minimize developer input. The two components we described
(intercepting communication APIs and baggages) already have the
potential to enable capturing the full causal history of requests,
with a small amount of developer e�ort. In addition to these two
components, another key aspect that our approach enables is that,
by comparing the causal histories of various operations on di�er-
ent systems, we are able to suspect causality violations without
requiring the developer to reason about the consistency de�nitions
of individual systems, which are hard to understand per se, and the
resulting semantics when these systems are interconnected.

Validating cross-system requests. Thanks to the use of baggages,
we are closer to our goal of being able to detect the following
scenario: there is an event B (e.g., a noti�cation) that depends
on another event A that happened before B (e.g., a post). Then
B triggers an event D (looking up a value in cache), where the
state of the cache is such that it should have seen the e�ects of A
but it didn’t. In particular, event D is associated with a baggage
that re�ects the dependency on event A, but the baggage that is
associated with the cache state does not re�ect the dependency on
A.

The challenge, however, is that there is also the possibility that
the cache will never be a�ected by A, and therefore the fact that
the baggage associated with the cache state does not refect A is not
a violation of causality.

To address this, we envision that the system goes through a
training phase, which determines automatically the fact that the
cache system is normally supposed to re�ect posts. This training
phase builds all the dependence graphs that the system generates
using baggages, and builds templates associated with typical fork-
join patterns such as the one described.

Preventing anomalous behaviors. When a request is matched
against one of the invalid templates, we prevent anomalous behav-
ior by simply intercepting requests (at our instrumentation layer
level), and delaying their delivery until some happened-before con-
dition is met. In other words, we delay requests until some other
event on another system has completed, deeming the current re-
quest’s causal history no longer invalid (and hence it can be safely
delivered).

This raises another challenge, illustrated by the example in Fig-
ure 2b, which is that there are two ways to achieve this. The �rst
one is to delay the execution of reading data from the cache (

−→7 )
until its causal dependency is met, but this is undesirable since it
will cause the user to notice this delay. As such, we would prefer a
solution where we prevent the noti�cation from being delivered to



Transparent cross-system consistency PaPoC’17, April 2017, Belgrade, Serbia

Notification
Service

Data Storage
Service

ProxyProxy

9

1

2

3 6

7

Post(P1)

Put(P1)

Pub(N1:P1) Sub(N1:P1)

P1

P1

Get(P1)

Get(P1)

N1:P1

10

11

8
Coordination

Service

Create(P1)

Wait(P1)4

5

Alice Bob 

(a) Coordination service. Consistency plus extra communication steps.

Notification
Service

Data Storage
Service

ProxyProxy

7

1

2

3 4

5

Post(P1)

Put(P1)

Pub(N1:P1) Sub(N1:P1)

P1

P1

Get(P1)

Get(P1)

N1:P1

8

9

6Proxy

Alice Bob 

(b) Transparent coordination. Prevents causality violations.

Figure 2. Coordination strategies

users (−→5 ) before making sure that posts are stored (
−→2 ). Consider

(
−→2 ) happens-before (−→5 ), we can proactively delay the delivery of
(
−→5 ) until we know (

−→2 ) has been completed.
Note that, while we were discussing (

−→5 ), we could instead make
the exact same case for (−→4 ). We could delay (

−→4 ) until the Noti�-
cation Service has seen (

−→2 ). Would a developer rather prevent a
noti�cation to be delivered to the proxy or to the client? There is no
correct answer, since this choice is applications speci�c. Therefore
this action requires developer input.

4 Final remarks
In this position paper we discussed the challenges for providing a
systematic and transparent approach for dealing with cross-system
consistency.

References
[1] Philippe Ajoux, Nathan Bronson, Sanjeev Kumar, Wyatt Lloyd, and Kaushik

Veeraraghavan. 2015. Challenges to Adopting Stronger Consistency at Scale.
In 15th Workshop on Hot Topics in Operating Systems (HotOS ’15). h�ps://www.
usenix.org/conference/hotos15/workshop-program/presentation/ajoux

[2] Peter Bailis, Alan Fekete, Michael J. Franklin, Ali Ghodsi, Joseph M. Hellerstein,
and Ion Stoica. 2014. Coordination avoidance in database systems. VLDB
Endowment 8, 3 (nov 2014), 185–196. DOI:h�p://dx.doi.org/10.14778/2735508.
2735509

[3] David R. Cheriton and Dale Skeen. 1993. Understanding the limitations of
causally and totally ordered communication. ACM SIGOPS Operating Systems
27, 5 (dec 1993), 44–57. DOI:h�p://dx.doi.org/10.1145/173668.168623

[4] Adrian Cockcroft. 2014. Migrating to Cloud Native with Microservices. In GOTO
Conference (GOTOCon ’14). 76. h�p://gotocon.com/dl/goto-berlin-2014/slides/
AdrianCockcro�

[5] Heming Cui, Rui Gu, Cheng Liu, Tianyu Chen, and Junfeng Yang. 2015. Paxos
made transparent. 25th Symposium on Operating Systems Principles (SOSP ’15)
(2015), 105–120. DOI:h�p://dx.doi.org/10.1145/2815400.2815427

[6] Facebook Help Community. 2017. Anyone know why I can click on a post and I
get the page not found? (2017). h�ps://www.facebook.com/help/community/
question/?id=1062960447061148

[7] Facebook Help Community. 2017. Noti�cation links with picture only brings to
page not found. (2017).

[8] Facebook Help Community. 2017. Why am i Not receiving all of my noti�ca-
tions on posts that i comment on? (2017). h�ps://www.facebook.com/help/
community/question/?id=1514215372130647

[9] Facebook Help Community. 2017. Why when I get noti�cations but then not
showing up on my page? (2017). h�ps://www.facebook.com/help/community/
question/?id=10152452521000351

[10] Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira, and Benjamin Reed. 2010.
ZooKeeper: Wait-free Coordination for Internet-scale Systems. USENIX Annual
Technical Conference 8 (2010), 9. h�p://portal.acm.org/citation.cfm?id=1855851

[11] Sanjeev Kulkarni, Nikunj Bhagat, Masong Fu, Vikas Kedigehalli, Christopher
Kellogg, Sailesh Mittal, Jignesh M. Patel, Karthik Ramasamy, and Siddarth Taneja.
2015. Twitter Heron. ACM SIGMOD International Conference on Management
of Data (SIGMOD ’15) (2015), 239–250. DOI:h�p://dx.doi.org/10.1145/2723372.
2742788

[12] J. Lewis and M. Fowler. 2016. Microservices: A de�nition of this new architectural
term. (2016). h�ps://martinfowler.com/articles/microservices.html

[13] Haonan Lu, Kaushik Veeraraghavan, Philippe Ajoux, Jim Hunt, Yee Jiun Song,
Wendy Tobagus, Sanjeev Kumar, and Wyatt Lloyd. 2015. Existential consistency.
In 25th Symposium on Operating Systems Principles (SOSP ’15). ACM Press, New
York, New York, USA, 295–310. DOI:h�p://dx.doi.org/10.1145/2815400.2815426

[14] Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca. 2015. Pivot Tracing: Dynamic
causal monitoring for distributed systems. In Symposium on Operating Systems
Principles (SOSP ’15). 378–393. DOI:h�p://dx.doi.org/10.1145/2815400.2815415

[15] Syed Akbar Mehdi, Cody Littley, Natacha Crooks, Lorenzo Alvisi, Nathan
Bronson, and Wyatt Lloyd. 2017. I Can’t Believe It’s Not Causal!. In 14th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 17).
USENIX Association, Boston, MA. h�ps://www.usenix.org/conference/nsdi17/
technical-sessions/presentation/mehdi

[16] E Schurman and J Brutlag. 2009. The user and business impact of server delays,
additional bytes, and HTTP chunking in web search. (2009). h�p://scholar.
google.com/scholar?hl=en

[17] Irene Zhang, Niel Lebeck, Ariadna Norberg, Pedro Fonseca, Brandon Holt, Ray-
mond Cheng, Arvind Krishnamurthy, and Henry M Levy. 2016. Diamond: Au-
tomating Data Management and Storage for Wide-area, Reactive Applications.
In 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI ’16). 723–738.

https://www.usenix.org/conference/hotos15/workshop-program/presentation/ajoux
https://www.usenix.org/conference/hotos15/workshop-program/presentation/ajoux
http://dx.doi.org/10.14778/2735508.2735509
http://dx.doi.org/10.14778/2735508.2735509
http://dx.doi.org/10.1145/173668.168623
http://gotocon.com/dl/goto-berlin-2014/slides/AdrianCockcroft
http://gotocon.com/dl/goto-berlin-2014/slides/AdrianCockcroft
http://dx.doi.org/10.1145/2815400.2815427
https://www.facebook.com/help/community/question/?id=1062960447061148
https://www.facebook.com/help/community/question/?id=1062960447061148
https://www.facebook.com/help/community/question/?id=1514215372130647
https://www.facebook.com/help/community/question/?id=1514215372130647
https://www.facebook.com/help/community/question/?id=10152452521000351
https://www.facebook.com/help/community/question/?id=10152452521000351
http://portal.acm.org/citation.cfm?id=1855851
http://dx.doi.org/10.1145/2723372.2742788
http://dx.doi.org/10.1145/2723372.2742788
https://martinfowler.com/articles/microservices.html
http://dx.doi.org/10.1145/2815400.2815426
http://dx.doi.org/10.1145/2815400.2815415
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/mehdi
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/mehdi
http://scholar.google.com/scholar?hl=en
http://scholar.google.com/scholar?hl=en

	Abstract
	1 Introduction
	2 Challenges in cross-system causality
	3 Towards cross-system consistency
	4 Final remarks
	References

