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Abstract Flow-Updating (FU) is a fault-tolerant tech-

nique that has proved to be efficient in practice for

the distributed computation of aggregate functions in

communication networks where individual processors

do not have access to global information. Previous dis-

tributed aggregation protocols, based on repeated shar-

ing of input values (or mass) among processors, some-

times called Mass-Distribution (MD) protocols, are not

resilient to communication failures (or message loss)

because such failures yield a loss of mass.

In this paper, we present a protocol which

we call Mass-Distribution with Flow-Updating
(MDFU). We obtain MDFU by applying FU tech-

niques to classic MD. We analyze the convergence time

of MDFU showing that stochastic message loss pro-

duces low overhead. This is the first convergence proof

of an FU-based algorithm. We evaluate MDFU experi-

mentally, comparing it with previous MD and FU pro-

tocols, and verifying the behavior predicted by the anal-
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ysis. Finally, given that MDFU incurs a fixed devia-

tion proportional to the message-loss rate, we adjust

the accuracy of MDFU heuristically in a new protocol

called MDFU with Linear Prediction (MDFU-
LP). The evaluation shows that both MDFU and

MDFU-LP behave very well in practice, even under

high rates of message loss and even changing the in-

put values dynamically.

Keywords Aggregate computation · Distributed

computing · Radio networks · Communication networks

1 Introduction

The distributed computation of algebraic aggregate

functions is particularly challenging in settings where
the processing nodes do not have access to global in-

formation such as the input size. A good example of

such scenario is Sensor Networks [1,35] where unreliable

sensor nodes are deployed at random and the overall

number of nodes that actually start up and sense input

values may be unknown. Under such conditions, well-

known techniques for distributing information through-

out the network such as Broadcast [27] or Gossiping [15]

cannot be directly applied, and data collection is only

practicable if aggregation is performed. Even more chal-

lenging is that loss of messages between nodes or even

node crashes are likely in such harsh settings. It has

been proved [3] that the problem of aggregating val-

ues distributedly in networks where processing nodes

may join and leave arbitrarily is intractable. Hence, ar-

bitrary adversarial message loss also yields the prob-

lem intractable, but a weaker adversary, for instance

a stochastic one as in Dynamic Networks [9], is of in-

terest. In this paper, under a stochastic model of mes-

sage loss, we study communication networks where each



2 P. S. Almeida, C. Baquero, M. Farach-Colton, P. Jesus, and M. A. Mosteiro

node holds an input value and the average of those val-

ues 1 must be obtained by all nodes, none of whom

have access to global information of the network, not

even the total number of nodes n.

A classic distributed technique for aggregation,

sometimes called Mass-Distribution (MD) [13],

works in rounds. In each round, each node shares a frac-

tion of its current average estimation with other nodes,

starting from the input values [4, 6, 7, 25, 34, 36, 39, 40].

Details differ from paper to paper but a common prob-

lem is that, in the face of message loss, those protocols

either do not converge to a correct output or they re-

quire some instantaneous failure detector mechanism

that updates the topology information at each node

in each round. Recently [21–23], a heuristic termed

Flow-Updating (FU) addressed the problem assum-

ing stochastic message loss [21], and even assuming

that input values change and nodes may fail [22] for

synchronous and asynchronous settings [23]. The idea

underlying FU is to keep track of an aggregate func-

tion of all communication for each pair of communi-

cating nodes, since the beginning of the protocol, so

that a current value at a node can be re-computed from

scratch in each round. Empirical evaluation has shown

that FU behaves very well in practice [14, 21–23], but

such protocols have eluded analysis until now. An ex-

tensive and comprehensive study that relates existing

distributed data aggregation techniques was recently

published [24].

In this paper, we introduce the concept of FU to

MD. First, we present a protocol that we call Mass-
Distribution with Flow-Updating (MDFU). The

main difference with MD is that, instead of computing

incrementally, the average is computed from scratch in

each round using the initial input value and the accu-

mulated value shared with other nodes so far (which we

refer to as either mass shared , or flow passed). The

main difference with FU is that if messages are not lost

the algorithm is exactly MD, which facilitates the the-

oretical analysis of the convergence time under failures

parameterized by the failure probability (or message-
loss rate).

Our results.We first leverage previous work on bound-

ing the mixing time of Markov chains [37] to show that,

for any 0 < ξ < 1, the convergence time of MDFU under

reliable communication is 2 ln(n/ξ)/Φ(G)2, where Φ(G)

is the conductance of the underlying graph character-

izing the execution of MDFU on the network, and ξ is

the error guarantee as specified below. Then, we show

that, with probability at least 1 − 1/n, for a message-

loss rate f < 1/ ln(2∆e)3, the multiplicative overhead

1 Other algebraic aggregate functions can be computed in
the same bounds using an average protocol [7, 25].

on the convergence time produced by message loss is

less than 1/(1 −
√
f ln(2∆e)3), and it is constant for

f ≤ 1/(e(2∆e)e), where ∆ is the maximum number of

neighbors of any node. Also, we show that, with prob-

ability at least 1 − 1/n, for any 0 < ξ < 1, after con-

vergence the expected average estimation at any node

is in the interval [(1− ξ)(1− f)v, (1 + ξ)v]. This is the

first convergence proof for an FU-based algorithm.

With respect to message complexity, if the commu-

nication is reliable MDFU has the same or better mes-

sage complexity than gossip-based protocols. Indeed,

gossip-based protocols such as MD [13], where in each

round each node exchanges values with all neighbors,

have exactly the same time complexity of MDFU, which

yields the same message complexity of 2|E| messages

per round. On the other hand, for gossip-based proto-

cols such as [25], where in each round each node ex-

changes values with only one neighbor, although have

smaller per-round message complexity of at most 2|V |,
they incur in a convergence time overhead that in the

worst case may be as bad as exponential (e.g. dissemi-

nation on a path). Finally, if the communication is un-

reliable, there is a message complexity overhead that

depends on the failure model, but MDFU guarantees

the correct computation whereas gossip-based protocols

may output arbitrarily bad results in face of failures.

In MDFU, if some flow is not received, a node com-

putes the current estimation using the last flow re-

ceived. Thus, in presence of message loss, nodes do

not converge to the average and only some parametric

bound can be guaranteed as shown. Aiming to improve

the accuracy of MDFU, we present a new heuristic pro-

tocol that we call MDFU with Linear Prediction
(MDFU-LP). The difference with MDFU is that if some

flow is not received a node computes the current esti-

mation using an estimation of the flow that should have

been received.

We evaluate MDFU and MDFU-LP experimentally

and find that the performance of MDFU is comparable

to FU and other competing algorithms under reliable

communication. In the presence of message loss, the

empirical evaluation shows that MDFU behaves as pre-

dicted in the analysis converging to the average with a

bias proportional to the message-loss rate. This bias is

not present in the original FU, which converges to the

correct value even under message loss. In a third set

of evaluations, we observe that MDFU-LP converges to

the correct value even under high message loss rates,

with the same speed as under reliable communication.

We also test MDFU under changing input values to

verify that it tolerates dynamic changes in practice, in

contrast to classic MD algorithms, which need to restart

the computation each time values are changed.
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Roadmap. In Section 2 we formally define the model

and the problem, and we give an overview of related

work. Section 3 includes the details of MDFU and its

analysis, whereas its empirical evaluation is covered in

Section 4. In Section 5 we present the details of MDFU-

LP and its experimental evaluation. Section 6 evaluates

MDFU in a dynamic setting, where input values change

over time.

2 Preliminaries

Model. We consider a static connected communication

network formed by a set V of n processing nodes. We

assume that each node has an identifier (ID). Any pair

of nodes i, j ∈ V such that i may send messages to

j without relying on other nodes (one hop) are called

neighbors. We assume that the IDs are assigned so

that each node is able to distinguish all its neighbors.

The set of ordered pairs of neighbors (or, edges) is

called E. The network is symmetric, meaning that, for

any i, j ∈ V , (i, j) ∈ E if and only if (j, i) ∈ E. The

set of neighbors of a given node i is denoted as Ni and

|Ni| is called the degree of i. For each pair of nodes

i, j ∈ V , the maximum degree between i, j is denoted as

Dij = max{|Ni|, |Nj |}. The maximum degree through-

out the network is denoted as ∆ = maxi∈V |Ni|. Each

node i knows Ni and Dij for each j ∈ Ni, but does

not know the size of the whole network n. The time

is slotted in rounds and each round is divided in two

phases. In each round, a node is able to send (resp.

receive) one message to (resp. from) all its neighbors

(communication phase) and to perform local computa-

tions (computation phase). However, for each (i, j) ∈ E
and for each communication phase, a message from i to

j is lost independently with probability f . This is a cru-

cial difference with previous work where, although edge-

failures are considered, messages are not lost thanks to

the availability of some failure detection mechanism.

More details are given in the previous work section.

Nodes are assumed to be reliable, i.e. they do not fail.

Problem. Each node i holds an input value vi, for

1 ≤ i ≤ n. The aim is for each node to compute the

average v =
∑n
i=1 vi/n without any global knowledge

of the network. We focus on the algorithmic cost of

such computation, counting only the number of rounds

that the computation takes after simultaneous startup

of all nodes, leaving aside medium access issues to other

layers. This assumption could be removed as in [13].

Previous Work. Previous work on aggregate compu-

tations has been particularly prolific for the area of Ra-

dio Networks, including both theoretical and experi-

mental work [10,16–20,25,26,28,30,31,33,42]. Many of

those and other aggregation techniques exploit global

information of the network [13, 16, 28, 30], or are not

resilient to message loss [4, 6, 25].

FU is a recent fault-tolerant approach [21, 22] in-

spired on the concept of flows (from graph theory). Like

common MD techniques, it is based on the execution of

an iterative averaging process at all nodes, and all esti-

mates eventually converge to the system-wide average.

MD protocols exchange “mass”, which lead them to

converge to a wrong result in the case of message loss.

In contrast, FU does not exchange “mass”. Instead it

performs idempotent flow exchanges which provide re-

silience against message loss. In particular, FU keeps

the initial input value at each node unchanged (in a

sense, always conserving the global mass), exchanging

and updating flows between neighbors for them to pro-

duce a new estimate. The estimate is computed at each

node from the input values and the contribution of the

flows. No theoretical bounds on the performance of the

algorithm were provided. Empirical evaluation shows

that FU performs better than classic MD algorithms,

especially in low-degree networks, and it supports high

levels of message loss [21]. Moreover, it self-adapts to

dynamic changes (i.e. nodes leaving/arriving and in-

put value change) without any restart mechanism (like

other approaches), and tolerates node crashes [22].

MD protocols for average computations in arbitrary

networks based on gossiping (exchange values in pairs)

were studied in [4, 25]. Results in [4] are presented for

all gossip-based algorithms by characterizing them by

a matrix that models how the algorithm evolves while

sharing values in pairs iteratively. As in our results, the

time bounds shown are given as a function of the spec-
tral decomposition of the graph underlying the compu-

tation. The work is focused on optimizing distributedly

the spectral gap, in order to minimize convergence time.

The dynamics of the model are motivated by changes

in topology induced by nodes leaving and joining the

network. Those changes may be introduced in the prob-

ability of establishing communication between any two

nodes. However, the delivery of messages has to be re-

liable to ensure mass conservation. An algorithm called

Push-Sum that takes advantage of the broadcast na-

ture of Radio Networks (i.e., it is not restricted to gos-

sip) is included in [25], yielding similar bounds. Chen,

Pandurangan, and Hu [6] present an MD algorithm

that first builds a forest over the network, where each

root collects the information, and then a gossiping al-

gorithm among the roots is used. The authors show a

reduction on the energy consumption with respect to

the uniform gossip algorithm. On the other hand, the

MD algorithm presented in [7] relies on a different ran-

domly chosen local leader in each round to distribute
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values. The bounds given are also parameterized by

the eigen-structure of the underlying graph. This re-

sult was extended more recently [5] to networks with

a time-varying connection graph. The protocol requires

to stochastically choose a new connectivity graph for

each round, and the network is geometric.

MD protocols have been used also for Distributed

Average Consensus [34, 36, 38–41] within Control The-

ory, but they do not apply to our model. For example,

in [40,41] the model includes unreliable communication

links, but the algorithm requires instantaneous update

of the topology information held at each node at the

beginning of each round. Others, either rely on simi-

lar features [34, 36, 38] or do not consider changes in

topology at all [39].

The common problem in all the MD protocols is that

they are not resilient to message loss, because it implies

a loss of mass. Hence, if messages are lost, they need to

restart the computation from scratch. In MDFU, mes-

sage loss has an impact on convergence time, which we

show to be small, but the computation recovers from

those losses, yielding the correct value. In fact, it is this

characteristic of MDFU and FU in general what makes

the technique suitable for dynamic settings in which the

input values change with time.

3 MDFU

As in previous work [4,7,13,25], MDFU is based on re-

peatedly sharing among neighbors a fraction of the av-

erage estimated so far. Unlike in those papers, in MDFU

the estimation is computed from scratch in each round,

as in FU [21, 22]. For that purpose, each node keeps

track of the cumulative value passed to each neighbor

(or, cumulative flow) since the protocol started. To-

gether with the original input value, those flows allow

each node to recompute the average estimation in each

round. Should some flow from node i to node j be lost,

j temporarily computes the estimation using the last

flow received from i. Further details can be found in

Algorithm 1.

Recall that the aim is to compute the average

v =
∑n
i=1 vi/n of all input values. Let ei(r) be the

average estimate of node i in round r, and ε(r) =

maxi{|ei(r)− v|/v} be the maximum relative error of

the average estimates in round r. We want to bound

the number of rounds after which the maximum rela-

tive error is below some parametric value ξ.

In each round, a node shares a fraction of its current

estimate with each neighbor. Therefore, the execution

of each round can be characterized by a transition
matrix , denoted as P = (pij), ∀i, j ∈ V , such that for

Algorithm 1: MDFU. Pseudocode for node i. ei
is the estimate of node i. Fin(j) is the cumula-

tive inflow from node j. Fout(j) is the cumulative

outflow to node j.

// initialization

ei ← vi1

foreach j ∈ Ni do2

Fin(j)← 03

Fout(j)← ei/ (2Dij)4

foreach round do5

// communication phase

foreach j ∈ Ni do6

Send j message 〈i, Fout(j)〉7

foreach 〈j, F 〉 received do8

Fin(j)← F9

// computation phase

ei ← vi +
∑
j∈Ni

(Fin(j)− Fout(j))10

foreach j ∈ Ni do11

Fout(j)← Fout(j) + ei/ (2Dij)12

any round r where messages are not lost

pij =


1/(2Dij) if i 6= j and (i, j) ∈ E,

1−
∑
k∈Ni 1/(2Dik) if i = j,

0 (i, j) /∈ E
(1)

and e(r + 1) = e(r)P, where e(·) is the row vector

(e1(·)e2(·) . . . en(·)).
For the analysis that follows, we assume familiarity

with Markov chains, random walks, and spectral graph

theories. For an introduction refer to [8, 12,29].

3.1 Convergence Time for f = 0

Consider first the case when the communication is re-

liable, that is f = 0. Then, the above characteriza-

tion is round independent and, given that P is stochas-

tic, it can be seen as the transition matrix of a time-

homogeneous Markov chain (Xr)
∞
r=1 with finite state

space V . Furthermore, (Xr)
∞
r=1 is irreducible, and ape-

riodic, then it is ergodic and it has a unique stationary

distribution. Given that P is doubly stochastic such

stationary distribution is πi = 1/n for all i ∈ V . Thus,

bounding the convergence time of (Xr)
∞
r=1 we have a

bound for the convergence time of MDFU without mes-

sage loss. The following notation will be useful. Let G

be a weighted undirected graph with set of nodes V and

where, for each pair i, j ∈ V , the edge (i, j) has weight

πipij . G is called the underlying graph of the Markov

chain (Xr)
∞
r=1. The following quantity characterizes the

likelihood that the chain does not stay in a subset of

the state space with small stationary probability. Let
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the conductance of graph G be

Φ(G) = min
∅⊂V ′⊂V∑
i∈V ′ πi≤1/2

∑
i,j∈V ′ pijπi∑
i∈V ′ πi

.

The following theorem shows the convergence time of

MDFU with reliable communication parameterized in

the conductance of G.

Theorem 1 For any communication network of n

nodes running MDFU, for any 0 < ξ < 1, and for

rc = 2 ln(n/ξ)/Φ(G)2, if f = 0, it holds that ε(r) ≤ ξ

for any round r ≥ rc, where Φ(G) is the conductance

of the underlying graph characterizing the execution of

MDFU on the network.

Proof We want to find a value of rc such that for

all r ≥ rc it holds that maxi{|ei(r) − v|/v} ≤ ξ.

Then, we want maxi{|ei(r)/
∑
j∈V vj − 1/n|} ≤ ξ/n.

Given that ei(r) =
∑
j∈V vj(P

r)ji, it is enough to have

maxj,i∈V {|(Pr)ji − 1/n|} ≤ ξ/n. On the other hand,

given that pijπi = pjiπj for all i, j ∈ V , the Markov

chain is time-reversible. Then, as proved in [37], it is

maxi,j∈V |(Pr)ij − πj |/πj ≤ λr1/minj∈V πj , where λ1
is the second largest eigenvalue of P (all the eigen-

values of P are positive because pii ≥ 1/2 for all

i ∈ V ). Given that πi = 1/n for all i ∈ V , we have

maxi,j∈V |(Pr)ij − 1/n| ≤ λr1. Thus, from the inequal-

ity above, it is enough to have λr1 ≤ ξ/n. As proved

also in [37], given that (Xr)
∞
r=1 is ergodic and time-

reversible, it is λ1 ≤ 1 − Φ(G)2/2. Then, it is enough

(1−Φ(G)2/2)r ≤ ξ/n. Given that Φ(G) ≤ 1, using that

1− x ≤ e−x for x < 1, the claim follows.

ut

3.2 Convergence Time for f > 0

Mixing time of a multiple random walk. Recall

that we carry out an average computation of n input

values where each node i shares a 1/(2Dij) fraction of

its estimate in each round of the computation with each

neighboring node j. We have characterized each round

of the computation with a transition matrix P so that

in each round r the vector of estimates e(r) is multiplied

by P.

As explained in the proof of Theorem 1, the Markov

chain defined in Section 3.1 that models the average

computation is time reversible. Time-reversible Markov

chains can be viewed as random walks on graphs [29],

that is, a stochastic process on the set of nodes V where

a particle moves around the network randomly. In our

case, for each round, instead of choosing the next node

where the particle will be located uniformly among

neighbors, the matrix of transition probabilities is P.

A state of this process (which of course is also Marko-

vian) is a distribution of the location of the particle

over the nodes. The measure of this random walk that

becomes relevant in our application is the mixing time,

that is, the number of rounds before such distribution

will be close to uniform. The mixing time of this ran-

dom walk is the same as the convergence time of the

Markov chain (Xr)
∞
r=1, setting appropriately for each

case the desired maximum deviation with respect to

the stationary distribution as follows.

A useful representation of this process in our ap-

plication is to assume a set S of particles, all of the

same value ν, so that at the beginning each node i

holds a subset Si of particles such that |Si|ν = vi. In

order to analyze the computation along many rounds,

we assume that ν is small enough so that particles are

not divided. Consider the (independent) random walk

of any given particle x starting at some node v0. If

at round r the particle x is at node vr, it moves to

node vr+1 with the probability pvr,vr+1
given by the

matrix P in Equation 1. Clearly, the sequence of ran-

dom nodes (vr : r = 0, 1, . . . ) is the Markov chain

(Xr)
∞
r=1 with finite state space V and transition ma-

trix P. We denote by p
(r)
x the distribution of vr, where

p
(r)
x (i) = Prob(vr = i) for r > 0, p

(0)
x (v0) = 1, and

p
(0)
x (v) = 0 for any v 6= v0. That is, the probability

that at round r the particle x is at node i. Then, view-

ing the distribution of the r-th round as a row vector

p
(r)
x in R|V |, the rule of the walk can be expressed by

p
(r+1)
x = p

(r)
x P and hence p

(r)
x = p

(0)
x Pr. We define the

mixing time of this multiple random walk as a number

of rounds rc after which the distribution of all particles
is within ξ/n of the uniform, for 0 < ξ < 1. That is, for

any r ≥ rc and i ∈ V , it is |p(r)x (i)− 1/n| ≤ ξ/n. With-

out message loss, it can be seen that the mixing time

of the above defined multiple random walk is the same

as the convergence time of the Markov chain (Xr)
∞
r=1

computed in the proof of Theorem 1. We consider now

the case where messages may be lost.

The following lemma shows bounds on the multi-

plicative overhead produced by message loss on the mix-

ing time. To prove these bounds, we have carefully cho-

sen bounds on the message-loss probability f so that

we can apply concentration bounds on the delay that

any particle may suffer due to message loss. The bounds

on f , computed down to constants in the lemma, are

asymptotically inverse functions of ∆, that is, the max-

imum degree throughout the network.

Lemma 1 Consider any communication network of n

nodes and maximum degree ∆ = maxi∈V |Ni| running
MDFU, any 0 < f ≤ 1/ ln(2∆e)3, any 0 < ξ < 1, let
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rc = 2 ln(n/ξ)/Φ(G)2, and let

q =

{
1/e if f ≤ 1/(e(2∆e)e)

f
(√

4 ln(2∆e)3/f − 3− 1
)
/2 otherwise.

Consider a multiple random walk modeling MDFU as

described. With probability at least 1 − 1/n, after r =

rc/(1 − q) rounds it holds that maxx∈S,i∈V |p(r)x (i) −
1/n| ≤ ξ/n, where p(r)x (i) is the probability that particle

x is located at node i in round r.

Proof We model the network with a directed graph

{V,E}, with V and E as defined in the model. Recall

that in each round of MDFU the estimation is com-

puted from scratch using the received flows and the

original input value. If some flow from node i to node

j is lost, j temporarily computes the estimation using

the last flow received from i, but the computation will

be adjusted again to the correct value in the next round

that i communicates with j. Thus, in terms of our mul-

tiple random walks model, a message loss is equivalent

to have some particles “delayed” in an edge. We model

a message loss in the edge (i, j) ∈ E with a buffer on the

edge (i, j) where particles are “delayed”. In the multi-

ple random walks model, every particle can be delayed

independently on every edge, whereas in MDFU when

an edge fails many particles are delayed simultaneously.

We overcome this dependency using the union bound.

For a computation of r rounds, it is enough to con-

sider at most n(2∆)r particles, because initially there

are n input values and each value is divided r times by

at most 2∆. Consider the random walk of a given parti-

cle x ∈ S. For each round, x is delayed with probability

f . We bound the mixing time by bounding the number

of rounds that any particle is delayed as follows.

Assume first that 1/(e(2∆e)e) < f ≤ 1/ ln(2∆e)3.

For r rounds, the expected number of rounds when a

given particle is delayed is fr. Using Chernoff-Hoeffding

bounds [32], the probability that a given particle x

is delayed more than qr rounds, f ≤ q ≤ 1, is at

most exp(−fr(q/f − 1)2/3). Using the union bound,

the probability that some particle is delayed more than

qr rounds is

Pr(∃x : x delayed > qr) ≤ n
(

2∆

exp((q − f)2/(3f))

)r
.

Assuming that 2∆ exp(1−q) ≤ exp((q−f)2/(3f)), and

replacing r ≥ rc/(1 − q) = 2 ln(n/ξ)/(Φ(G)2(1 − q))

defined in the statement of this lemma, we get that

Pr(∃x : x delayed > qr) ≤ n
(

1

exp(1− q)

) 2 ln(n/ξ)

(1−q)Φ(G)2

= n exp

(
−2 ln(n/ξ)

Φ(G)2

)
.

Given that ξ ≤ 1 and Φ(G) ≤ 1,

Pr(∃x : x delayed > qr) ≤ n exp(−2 lnn)

= 1/n.

Then, it remains to prove

2∆ exp(1− q) ≤ exp((q − f)2/(3f))

⇐ q2 + fq + f2 − f ln(2∆e)3 ≥ 0.

Which is true for q = f
(√

4 ln(2∆e)3/f − 3− 1
)
/2,

which is feasible because, for f ≤ 1/ ln(2∆e)3, such

value of q implies f ≤ q ≤ 1 .

Consider now the case 0 < f ≤ 1/(e(2∆e)e). Again,

using Chernoff-Hoeffding bounds, the probability that

a given particle x is delayed more than qr rounds, f ≤
q ≤ 1, is at most

(
(fe/q)q/ef

)r
. Using the union bound,

the probability that some particle is delayed more than

qr rounds is

Pr(∃x : x delayed > qr) ≤ n
(

2∆

ef

(
fe

q

)q)r
.

Assuming that 2∆(fe/q)q/ef ≤ 1/ exp(1 − q), and re-

placing r ≥ rc/(1 − q) = 2 ln(n/ξ)/(Φ(G)2(1 − q)) de-

fined in the statement of this lemma, we get as before,

Pr(∃x : x delayed > qr) ≤ 1/n.

Then, it remains to prove

2∆

ef

(
fe

q

)q
≤ 1

e1−q

⇐ 2∆e1−f ≤ (q/f)
q

⇐ 2∆e ≤ (q/f)
q
.

Which is true for f ≤ 1/(e(2∆e)e) and q = 1/e.

ut
The expected number of particles at each node

as a function of f . Analyzing a multiple random walk

of a set of particles, in Lemma 1 we obtained a bound on

the time that any particle takes to converge to a station-

ary uniform distribution. However, for any probability

of message loss f > 0 and for any round, there is a pos-

itive probability that some particles are located in the

edge buffers defined in the proof of such lemma. Hence,

the fact that each particle is uniformly distributed over

nodes does not imply that the expected average held at

the nodes has converged, because only particles located

at nodes are uniformly distributed. We bound the ex-

pected error in this section. The proof of the following

lemma is based on computing the overall expected ratio

of particles in nodes with respect to delayed particles.
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Lemma 2 Consider a multiple random walk modeling

MDFU under the conditions of Lemma 1. Then, with

probability at least 1−1/n, for any round r ≥ rc/(1−q),
the expected number of particles E(|S(r)

i |) in each node

i is (1− ξ)(1− f)|S|/n ≤ E(|S(r)
i |) ≤ (1 + ξ)|S|/n.

Proof We consider a multiple random walk of a set of

particles S over a directed graph V,E, with V and E

as defined in the model. A message loss in the edge

(i, j) ∈ E is modeled with a buffer on the edge (i, j)

where a particle is “delayed”. The following notation

will be useful. For any round r, S
(r)
X is the set of par-

ticles held at the set X (node set or edge-buffer set),

and S
(r)
i is the set of particles held at the node i. Let

pi =
∑
j∈Ni

1/(2Dij) for any node i. By linearity of ex-

pectation, at the end of round r, the expected number

of particles in all buffer-edges and the expected number

of particles in all nodes are

E(|S(r)
E |) =

∑
i∈V

E(|S(r−1)
i |)fpi + fE(|S(r−1)

E |) (2)

E(|S(r)
V |) =

∑
i∈V

E(|S(r−1)
i |)(1− fpi) + (1− f)E(|S(r−1)

E |).

(3)

Using that pi ≤ 1/2 in 2 and 3, we have

E(|S(r)
E |) ≤ (f/2)E(|S(r−1)

V |) + fE(|S(r−1)
E |)

E(|S(r)
V |) ≥ (1− f/2)E(|S(r−1)

V |) + (1− f)E(|S(r−1)
E |).

Then,

E(|S(r)
E |)

E(|S(r)
V |)

≤
(f/2)E(|S(r−1)

V |) + fE(|S(r−1)
E |)

(1− f/2)E(|S(r−1)
V |) + (1− f)E(|S(r−1)

E |)

≤ f

1− f
, because

1− f/2
1− f

≥ 1

2
.

Then, given that E(|S(r)
V |)+E(|S(r)

E |) = |S|, we have

E(|S(r)
V |) ≥ (1 − f)|S|. As proved in Lemma 1, with

probability at least 1− 1/n, for any round r ≥ rc/(1−
q), maxx∈S,i∈V |px(i) − 1/n| ≤ ξ/n, where px(i) is the

probability that particle x is located at node i and q as

defined in such lemma. Then, for any node i ∈ V , it is

(1− ξ)(1− f)|S|/n ≤ E(|S(r)
i |) ≤ (1 + ξ)|S|/n and the

claim follows.

ut
Based on the previous lemmas, the following theo-

rem shows the convergence time of MDFU.

Theorem 2 Consider any communication network of

n nodes running MDFU. For any 0 < f ≤
1/ ln(2∆e)3, let q = 1/e if f ≤ 1/(e(2∆e)e), or

q = f
(√

4 ln(2∆e)3/f − 3− 1
)
/2 otherwise, and let

rc = 2 ln(n/ξ)/Φ(G)2. Then, with probability at least

1−1/n, for any 0 < ξ < 1 and any round r ≥ rc/(1−q),
the expected average estimation at any node i ∈ V is

(1− ξ)(1− f)v ≤ E(e
(r)
i ) ≤ (1 + ξ)v, where Φ(G) is the

conductance of the underlying graph characterizing the

execution of MDFU on the network.

Proof From Lemmas 1 and 2, we know that, under the

conditions of this theorem, for any round r ≥ rc/(1 −
q) and any node i ∈ V , with probability at least 1 −
1/n the expected number of particles (of the multiple

random walk modeling MDFU) is (1−ξ)(1−f)|S|/n ≤
E(|S(r)

i |) ≤ (1+ξ)|S|/n. Then, multiplying by the value

of each particle the claim follows.

ut

4 Empirical Evaluation of MDFU

We evalutated MDFU in a synchronous network sim-

ulator, using an Erdős–Rényi [11] network with 1000

nodes and 5000 links (giving an average degree of 10).

The input values were chosen as when performing node

counting [20]; i.e., all values being 0 except a random

node with value 1; this scenario is more demanding,

leading to slower convergence, than uniformly random

input values. The evaluation aimed at: 1) comparing its

convergence speed under no loss with competing algo-

rithms; 2) evaluating its behavior under message loss;

3) checking its ability to perform continuous estimation

over time-varying input values.

4.1 Convergence Speed Against Related Algorithms

Under no Faults

To evaluate wether MDFU is a practical algorithm in

terms of convergence speed, we compared it against

three other algorithms: the original Flow-Updating [21,

22](FU), Distributed Random Grouping [7] (DRG), and

Push-Synopses [25]. Figure 1 shows the coefficient of

variation of the root mean square error as a function

of the number of rounds (averaging 30 runs), with

CV(RMSE) =
√∑

i∈V (ei − v)2/n/v.

It can be seen that MDFU is competitive, provid-

ing approximate estimates slightly faster than FU and

DRG and giving reasonably accurate results roughly in

line with them. It loses to them for very high precision

estimation and to Push-Synopses for all precisions (but

both DRG and Push-Synopses are not fault-tolerant).
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Fig. 1 CV(RMSE) over rounds in a 1000 node 5000 link
Erdos-Renyi network.

4.2 Fault Tolerance: Resilience to Message Loss

To evaluate the resilience of MDFU to message loss, we

performed simulations using different rates of message

loss (0, 1%, 5%, 10%), where each individual message

may fail to reach the destination with these given prob-

abilities. We measured the effect of message loss on both

the CV(RMSE) and also on the maximum relative er-

ror. As can be seen in Figure 2, as long as there is some

message loss, they do not tend to zero anymore, but

converge to a value that is a function of the message

loss rate.

We also measured the behavior of the average of the

estimates over the whole network, and observed that

there is a deviation from the correct value (v, the aver-

age of the input values) towards lower values. Figure 3

shows the relative deviation from the correct value over

time, for different message loss rates. It can be seen

that this bias is roughly proportional to the message

loss rate (for these small message loss rates).

Relating these results with the theoretical analysis

of MDFU, we can see that this bias should not come

as a surprise. From Theorem 2, the expected value of

the estimation converges to a band between (1 − f)v

and v. The relative deviation of the lower boundary is

thus proportinal to the message loss rate. Figure 3 also

shows this boundary for the different message loss rates.

This kind of bias was not present in the original FU,

in which the average of the estimates tends to the cor-

rect value. In MDFU the message loss rate limits the

precision that can be achieved, but it does not impact

convergence, contrary to classic mass distribution al-

gorithms where, given message loss, the more rounds

pass, the more mass is lost and the more the estimates

deviate from the correct value, failing to converge.
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Fig. 2 Coefficient of variation of the RMSE and maximum
relative error for MDFU in a 1000 node 5000 link Erdos-Renyi
network.

5 MDFU with Linear Prediction

The explanation for the behavior of MDFU under mes-

sage loss lies in that only the estimate converges, but

flows keep steadily increasing over time. This can be

seen in the formula: Fout(j) ← Fout(j) + ei/ (2Dij)

where the flow sent to some neighbor increases at each

round by a value depending on the estimate and their

mutual degrees. What happens is that during conver-

gence, the extra flow that each of two nodes send over a

link tend to the same value, and the extra outgoing flow

cancels out the extra incoming flow. We can say that

it is the velocity (rate of increase) of flows over a link

that converge (to some different value for each link).

This means that, even if the estimate had already

converged to the correct value, given a message loss,

the extra flow that should have been received is not

added to the estimate, implying a discrete deviation

from the correct value. This discrete deviation does not

converge to zero; thus, we have a bias towards lower

values and the relative estimation error is prevented

from converging to zero given some message loss rate.



Fault-Tolerant Aggregation 9

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0  20  40  60  80  100  120  140

Bi
as

 o
n 

th
e 

Av
er

ag
e

Rounds

f=0.01
f=0.05
f=0.10

MDFU (1% loss)
MDFU (5% loss)

MDFU (10% loss)

Fig. 3 Bias on the average estimation over rounds in a 1000
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Algorithm 2: MDFU-LP. Pseudocode for node i.

ei is the estimate of node i. Fin(j) is the cumula-

tive inflow from node j. Fout(j) is the cumulative

outflow to node j. V (j) is the velocity of incoming

flow from node j. R(j) is the number of rounds

since the last message received from node j.

// initialization

ei ← vi1

foreach j ∈ Ni do2

Fin(j)← 03

Fout(j)← ei/ (2Dij)4

V (j)← 05

R(j)← 16

foreach round do7

// communication phase

foreach j ∈ Ni do8

Send j message 〈i, Fout(j)〉9

// computation phase

foreach 〈j, F 〉 received do10

V (j)← (F − Fin(j))/R(j)11

R(j)← 012

Fin(j)← F13

ei ← vi +
∑
j∈Ni

(Fin(j) + V (j)×R(j)− Fout(j))14

foreach j ∈ Ni do15

Fout(j)← Fout(j) + ei/ (2Dij)16

R(j)← R(j) + 117

Here we improve MDFU by exploring velocity con-

vergence. We keep, for each link, the velocity (rate of

increase) of the flow received. If a message is lost, we

predict what would have been the flow received, given

the stored flow, the velocity and the rounds passed since

the last message received over that link, i.e., we perform

a linear prediction of incoming flow. When a message is

received we update the flow and recalculate the velocity.

This algorithm is presented in Algorithm 2.

Under no message loss MDFU-LP is the same as

MDFU and the theoretical results on convergence speed
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Fig. 4 Coefficient of variation of the RMSE and maximum
relative error for MDFU-LP in a 1000 node 5000 link Erdos-
Renyi network.

also apply to MDFU-LP. Under message loss the ve-

locities are still expected to converge over time and

the prediction will be increasingly more accurate when

compensating for lost messages. Therefore, message loss

should not cause discrete deviations in the estimate,

as they are compensated by the current prediction, al-

lowing the estimation error to converge to zero. Next,

we confirm experimentally that this compensation can

mask the limitation that message loss derived on con-

vergence.

We have evaluated MDFU-LP for the same net-

work as before, but now with a wide range of message

loss rates. We have observed that the behavior under

message loss rates below 50% is almost indistinguish-

able from the behavior under no message loss. Figure 4

shows the CVRMSE and maximum relative error for

0%, 60%, 70%, and 80% message loss rates. It can be

seen that even for 60% loss rate, after 60 rounds we

have basically the same estimation errors as under no

message loss.
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6 Continuous Estimation Over Time-Varying

Input Values

Up to thus point we have considered that the input

values vi are fixed throughout the computation. In most

practical situations this will not be the case and input

values will change along time. The common approach

in MD algorithms is to periodically reset the algorithm

and start a new run that freezes the new input values

and aggregates the new average. Naturally, resets are

inefficient and mechanisms that can adapt the ongoing

computation have the potential to adjust the estimates

in a much shorter number of rounds.

Without any further modifications, MDFU (and

MDFU-LP) share with FU the capability of adapting

to input value changes, since vi is considered in the

computation of the local estimate ei, and this regulates

how much the outgoing flows are to be incremented. If

vi decreases, ei decreases in the same proportion and

node i will share less through its flows to the neigh-

bours. The converse occurring when vi increases. The

overall effect is convergence to the new average, even if

multiple nodes are having changes in their input values.

In Figure 5 we show an example of how MDFU

handles input value changes. In this setting, starting

at round 50 and during 50 rounds, we increase by 5%

in each round the input value in 500 nodes (a random

half of the 1000 nodes). In the following 50 rounds, the

same 500 nodes will have its value decreased by 5% per

round. Initial input values are chosen uniformly at ran-

dom (from 25 to 35) and the run is made with message

loss at 10%. In Figure 5 one can observe that individual

estimates2 closely follow the global average, with only

a slight lag of some rounds.

Notice that the lag could never be zero, since we

are updating the new global average (black line) in-

stantaneously and even the fastest theoretical algorithm

would need information that takes diameter rounds to

acquire.

7 Conclusions

In this article we presented two distributed aggrega-

tion protocols, MDFU and MDFU-LP, that converge to

correct values even under stochastic message loss. Un-

like previous Mass-Distribution algorithms, where un-

detected message loss causes convergence to the wrong

value, Flow Update based protocols are resilient to

these omission faults and can adapt to input value

changes. Here we present the first convergence proof of a

FU-based algorithm and establish convergence bounds.

Experimental evaluation, in Erdős-Rényi random net-

works, shows that MDFU/MDFU-LP are even competi-

tive with MD algorithms in lossless settings. Under mes-

sage loss, where competing algorithms fail, both algo-

rithms can still quickly converge. In particular, MDFU-

LP depicts an extreme tolerance to message loss, show-

ing almost no perturbation up to a message failure

probability of 60%.

In our simulations with representative inputs,

MDFU-LP removed a bias in the error of MDFU,

whereas the experimental evaluation of MDFU verified

such one-side dependency on the failure rate proved in

the analysis. The practical behavior of MDFU-LP in

the average case is promising, but it is not enough to in-

dicate worst-case behavior. Indeed, given that MDFU-

LP involves a linear prediction of flows, arbitrary oscil-

lations could render such prediction always incorrect.

Unfortunately, the theoretical analysis of MDFU-LP

has been elusive. A markovian analysis as in MDFU

does not seem feasible because MDFU-LP decisions are

based on history. A seemingly feasible approach is to

use network characteristics to show that flows cannot

oscillate arbitrarily, yielding the prediction of MDFU-

LP sound. Such study is left for future work.
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