
Lightweight Specification and Analysis of
Dynamic Systems with Rich Configurations∗

Nuno Macedo
HASLab, INESC TEC and

Universidade do Minho
nfmmacedo@di.uminho.pt

Julien Brunel
DTIM, Université fédérale de

Toulouse, ONERA
julien.brunel@onera.fr

David Chemouil
DTIM, Université fédérale de

Toulouse, ONERA
david.chemouil@onera.fr

Alcino Cunha
HASLab, INESC TEC and

Universidade do Minho
alcino@di.uminho.pt

Denis Kuperberg
TU Munich

denis.kuperberg@gmail.com

ABSTRACT
Model-checking is increasingly popular in the early phases
of the software development process. To establish the cor-
rectness of a software design one must usually verify both
structural and behavioral (or temporal) properties. Unfor-
tunately, most specification languages, and accompanying
model-checkers, excel only in analyzing either one or the
other kind. This limits their ability to verify dynamic sys-
tems with rich configurations: systems whose state space is
characterized by rich structural properties, but whose evolu-
tion is also expected to satisfy certain temporal properties.

To address this problem, we first propose Electrum, an
extension of the Alloy specification language with tempo-
ral logic operators, where both rich configurations and ex-
pressive temporal properties can easily be defined. Two al-
ternative model-checking techniques are then proposed, one
bounded and the other unbounded, to verify systems ex-
pressed in this language, namely to verify that every desir-
able temporal property holds for every possible configura-
tion.

CCS Concepts
•Software and its engineering → Specification lan-
guages; Model checking;

Keywords
Model-checking, formal specification language

1. INTRODUCTION
∗Research partly funded by DGA/ANR project Cx (ref.
ANR-13-ASTR-0006) and fondation STAE (IFSE, BRIef-
caSE).

FSE 2016

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/123510.1145/1235

Software specification and verification is crucial at early
development phases, since it allows the developer to rea-
son about the system and its properties, and timely detect
design errors. Although a variety of frameworks has been
proposed to aid the developer in this task, the most success-
ful are lightweight in the sense that they are characterized
by two features: they provide a simple yet expressive and
flexible formal language – allowing the user to specify differ-
ent classes of systems and properties at different abstraction
levels – and are accompanied by tools that automate their
analysis – providing quick feedback regarding the correctness
of the specification. In fact, such frameworks have already
reached a level of maturity that enables their use in complex
real world scenarios [2020].

There are two classes of properties that are particularly
important to verify: structural (or static) properties, typi-
cally expressed in some variant of first-order logic, that spec-
ify when the system state is considered well-formed, and be-
havioral (or dynamic) properties, typically expressed in tem-
poral logic, that specify how the system is allowed to evolve.
Although not necessarily in equal measure, most interesting
systems will require the analysis of properties from both
these classes. The analysis of distributed computing algo-
rithms is a paradigmatic class, whose behavioral properties
should typically be checked for arbitrary network topolo-
gies within a range specified by specific structural proper-
ties. We denote such components of the system state, that
are initially arbitrary, but remain unchanged as the system
evolves, as configurations. Another related class of systems
is that of software product lines (SPLs), families of software
products where each valid product, specified by simple struc-
tural properties, amounts to a different configuration, each
of which should be checked for the behavioral properties.

Dynamic systems with rich configurations are the focus
of this work. Concretely, this class of systems exhibits the
following requirements:

R1 A clear distinction between the system configuration
and the system evolution;

R2 Configurations constrained by rich structural proper-
ties (like inheritance, complex relationships between
entities, or reachability properties);

R3 A declarative specification of the system evolution (the
possible actions affecting the state), possibly under dif-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/154274582?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
10.1145/1235

ferent idioms;

R4 The need to verify (temporal) safety and liveness prop-
erties.

Thus, to address this kind of problems, the specification
language should be sufficiently rich and flexible to support
defining both structural and behavioral properties, while
still promoting the separation of concerns. Moreover, this
language should be accompanied by effective tool support,
to allow the automatic model-checking of the desired tem-
poral properties for every possible configuration.

1.1 Motivating Examples
To further clarify the class of problems we intend to ad-

dress, this section presents two motivating examples where
all the above characteristics are manifest.

Hotel room locking system.
This example regards the specification of a hotel room

locking system that uses disposable electronic keys [1414]. Such
systems rely on recodable locks that either unlock the door
for the currently coded key combination, or for its succes-
sor, at which point the key combination in the lock is re-
coded, rendering the previous one obsolete. The front desk
issues new keys for the appropriate room when guests check-
in. Both the front desk and the locking systems are stand-
alone (no communication between them): the system works
properly because keys are generated using the same pseudo-
random generator, with the initial seed of each room lock
being synchronized with the front desk a priori.

To abstract away the details of key generation, we assume
that keys are a set over which a total order is defined (e.g.
a set of natural numbers), and that each room is assigned a
(disjoint) subset of such keys a priori : given the currently
coded key, the next valid one is the smallest among its suc-
cessors in the subset. The available rooms, keys, and possi-
ble guests, together with a valid assignment of keys to the
rooms, constitutes a possible configuration of this system.
These contrast with the dynamic components of the sys-
tem (e.g., the keys currently coded in each lock), remaining
constant as the system evolves (R1R1). Moreover, a valid con-
figuration is not arbitrary, but characterized by a precise
set of constraints (R2R2). The dynamic components evolve as
guests check in and out, or enter a room with a fresh key,
updating the currently coded key of that room lock. These
actions can easily be specified in a declarative manner, for
example relying on pre- and post-conditions (R3R3).

A safety property that is expected to hold (R4R4) is that
no guest can enter a room in which he is not currently reg-
istered. This property does not hold in some configurations,
as depicted in Fig. 11. Each state depicts the rooms (square
elements), guests (rounded corners) and the front desk (the
lower faceted rectangle). Bold typeface values are part of the
system configuration; non bold values change as the system
evolves, namely the key coded in each room, the key owned
by each guest, the last key assigned to each room, and the
guest currently checked in at each room. Values that are
modified at each step are underlined. Although this partic-
ular configuration leads to a counter-example, the problem
may go unnoticed if one is required to perform the analysis
for a specific (user-picked) configuration (e.g., where R1 was
assigned keys K1 and K2 and R2 the remaining ones).

Distributed spanning tree algorithm.
This example concerns a simple distributed spanning tree

algorithm, that runs on an arbitrary (but connected) net-
work topology, building on the one proposed in [2222]. Here, a
distinguished root node (possibly elected beforehand) starts
by assigning itself level 0. Nodes with assigned levels (i.e.
already in the spanning tree) broadcast their level to the
neighbors. When a node not yet in the spanning tree re-
ceives one such message, it sets its level to one plus the level
of the sender, and records it as its parent node. The details
of message passing are abstracted away by allowing the sys-
tem to evolve by selecting an arbitrary node to act, among
those not in the spanning tree but with neighbors already
so, and arbitrarily choosing one of the latter as parent.

Here, a configuration consists of a set of nodes, a root
node among them, and a possible network topology, which
may take the shape of an undirected connected graph, while
the dynamic aspects of the system encompass the level and
parent components of the tree being computed (R1R1). The
specification of a valid topology requires a reachability con-
straint (R2R2). In general, the same topology may lead to sev-
eral different spanning trees, and this non-determinism can
be captured by declarative operations, where the selection of
the process to act, as well as its parent, is arbitrary within
the stated constraints (R3R3). Both a safety and a liveness
properties are expected to hold (R4R4): the algorithm never
introduces a cycle in the parent component, and a spanning
tree of the all network is eventually computed, respectively.
These properties should hold for every network topology:
each of these represents a different configuration over which
the temporal properties must be checked.

Figure 22 depicts a possible execution trace of the algo-
rithm for a specific configuration with four nodes (P1 to P4),
root node P2 (bold circle), and network topology depicted
with dashed lines. The changing elements of the specifica-
tion, namely, the level and parent of each node, are repre-
sented in the lower-half of the respective circle and by solid
arrows leaving from them, respectively. Again, the values
updated in each step are underlined.

Elevator system SPL.
This example models an elevator system SPL inspired by

the one proposed in [2121] and extended in [77]. The model con-
sists of a lift and a set of floors; at each floor there a button
that calls the lift, and inside the lift there is a button for each
of the floors. The base system answers button calls giving
priority to the current direction: it only changes direction
when there are no more calls for the succeeding floors. This
behavior is however modified as features are selected. For
instance, with a parking feature the lift moves to the first
floor when there are no button calls; an idle feature forces
the lift to open the door when there are no button calls; an
executive floor feature prioritizes calls to one of the floors
over the others. Multiple features, under some restrictions,
may be selected, which interfere with each other.

Here each configuration represents a valid product from
the SPL, that is, a selection of features, while the dynamic
component models the evolution of the system taking into
consideration those features (R1R1). The selection of these
features is restricted by a feature diagram that defines simple
dependencies/conflicts between the features, which can be
encoded as structural properties (R2R2). For instance, since
the idle and the parking features have conflicting behavior

Checkin(G1,R1,K2) Checkout(G1) Checkin(G2,R1,K3) Entry(G1,R1,K2)

R1
{K1,K2,K3}

K1

R2
{K4}

K4

G1

{}

G2

{}

R1 ↦ ∅

R2 ↦ ∅

R1 ↦ K1

R2 ↦ K4

R1 ↦ G1

R2 ↦ ∅

R1 ↦ K2

R2 ↦ K4

R1
{K1,K2,K3}

K1

R2
{K4}

K4

G1

{K2}

G2

{}

R1 ↦ ∅

R2 ↦ ∅

R1 ↦ K2

R2 ↦ K4

R1
{K1,K2,K3}

K1

R2
{K4}

K4

G1

{K2}

G2

{}

R1 ↦ G2

R2 ↦ ∅

R1 ↦ K3

R2 ↦ K4

R1
{K1,K2,K3}

K1

R2
{K4}

K4

G1

{K2}

G2

{K3}

R1
{K1,K2,K3}

K2

R2
{K4}

K4

R1 ↦ G2

R2 ↦ ∅

R1 ↦ K3

R2 ↦ K4

G2

{K3}

G1

{K2}

Figure 1: Execution trace for the hotel room locking system leading to a counter-example.

P2

∅

P3

∅

P1

∅

P4

∅

Act(P2) Act(P1) Act(P4) Act(P3)

P2

0

P3

∅

P1

∅

P4

∅

P2

0

P3

∅

P1

1

P4

∅

P2

0

P3

∅

P1

1

P4

2

P2

0

P3

2

P1

1

P4

2

Figure 2: Execution trace for the spanning tree algorithm.

their choice could be forced to be exclusive. The operations
must be sufficiently expressive to encode the behavior of the
system taking into consideration the selected features (R3R3).

There are several safety and liveness properties that are
to be checked over this specification (R4R4). For instance, the
most basic liveness property states that a pressed button
will eventually be answered. These must be checked over
every possible feature combination. While some of these are
expected to always hold, some fail under certain feature con-
figurations. For instance, the above property will fail with
the executive floor feature, as those calls will be prioritized.

1.2 Contributions
Unfortunately, most formal specification languages (and

accompanying model-checkers) are not optimized to analyze
problems such as these. For example, most standard model-
checkers only perform well with fixed configurations, while
languages more geared towards the analysis of structural
properties, namely without native support for some sort of
temporal logic, require the user to verify behavioral proper-
ties through ad hoc mechanisms.

This paper aims precisely to fulfill this niche, and proposes
a language and model-checker tailored for the lightweight
analysis of such dynamic systems with rich configurations.
Concretely, we propose:

• A formal specification language, inspired by Alloy [1414]
and TLA [1515] (two of the most popular specification
languages nowadays), that simplifies the specification
of systems exhibiting all four above requirements;

• Two model-checking techniques, one bounded and the
other unbounded, to verify systems expressed in such
language, namely to verify that every desirable tem-
poral property holds for every possible configuration.

The remainder of the paper is as follows. Section 22 ex-
plores related languages and techniques, and justifies why
they fall short when analyzing this class of problems. Sec-
tion 33 presents the proposed language, its semantics, and the

proposed model-checking techniques. Their performance is
then evaluated in Section 44. Finally, Section 55 draws con-
clusions and points directions for future work.

2. RELATED WORK
There are numerous approaches to the specification and

model-checking of systems. Here we focus on those whose
level of expressiveness and tool support come close to that
needed to handle systems with rich configurations, i.e., that
address some of the four requirements defined in Section 11.

Alloy [1414, ?, ?, 55] is a lightweight formal specification
language with an object-oriented flavor, which, paired with
its Analyzer, that provides support for automatic bounded
verification, has been increasingly adopted by software en-
gineering practitioners. The underlying formalism of Alloy
is relational logic, first-order logic enhanced with transitive
closure operations, that render the definition of structural
properties extremely simple. Thus, Alloy is naturally well-
suited to handle the R2R2 requirement.

However, Alloy is inherently static, thus the verification
of behavioral properties usually relies on well-known idioms
that have emerged due to the language flexibility. Nonethe-
less, such ad hoc specification is error-prone and verbose,
and forces the developer to be concerned with particularities
of the idiom rather than with the properties that he actually
wishes to verify, and as a consequence regular Alloy is not
well-suited to address R4R4. To overcome this limitation, con-
siderable research has been dedicated to enhance Alloy with
dynamic behavior [1111, 55, 1818, 2525, 88]. The main drawback
of these approaches is that they compromise the flexibility
that the Alloy users are accustomed to, introducing syntac-
tic extensions that force them to adhere to specific idioms,
and consequently breaking the R3R3 requirement. That is the
case, for instance, of DynAlloy [1111], an Alloy variant that
resorts to dynamic logic to specify behavior. Liveness prop-
erties, which comprise a large class of behavioral properties,
are also not expressible in DynAlloy [1212], and thus R4R4 is not
effectively addressed. Although expressible in regular Alloy

(via said idioms), verifying such properties with the Ana-
lyzer requires some insightfulness and care from the user,
to avoid the spurious counter-examples that usually occur
with a naive encoding of the bounded model-checking tech-
nique [2525, 88]. The technique from [1818] enhances Alloy with
imperative constructs, again undermining R3R3. In contrast,
the technique proposed in [55] extends the relational logic
of Alloy with CTL temporal logic. Unfortunately, the sys-
tem actions must be specified with a fixed idiom with an
imperative-flavor, and thus falls short on the R3R3 require-
ment. Moreover, it disregards the rich structural properties
introduced by the signature type system from regular Al-
loy, undermining its ability to address R2R2. Finally, even
though all these works attempt to enhance Alloy with dy-
namic properties, besides [1818] that distinguishes between
static and variable fields, none properly address R1R1, since
they do not distinguish between the system configuration
and the dynamic components that evolve over time.

In contrast, temporal model-checkers are developed pre-
cisely to address the R4R4 requirement. Among the most suc-
cessful formalisms is the temporal logic of actions (TLA) [1515],
a variant of temporal logic that introduces the notion of ac-
tion to model the evolution of the system. Actions are es-
sentially predicates that relate two consecutive states, spec-
ifying the acceptable steps that allow the system to evolve.
Thus, the TLA+ specification language, built over this logic,
naturally handles R3R3, and has proven to be well suited to
specify systems with rich temporal properties. Moreover,
TLA+ is accompanied by a set of effective tools, including
TLC, a model-checker that has proven effective on the ver-
ification of complex TLA+ systems. However, in order to
be manageable by TLC, some additional restrictions are im-
posed over the TLA+ language, namely over the action pred-
icates, reducing its compliance with the R3R3 requirement.

Unlike most other model-checkers, TLA+ does support
the specification of first-order logic properties, thus address-
ing R2R2 to some extent. However, unlike Alloy [?], it lacks a
type system with inheritance, that simplifies a lot the spec-
ification of complex entities and their relationships. More-
over, due to the nature of the model-checking procedure, rich
structural properties may severely hinder the performance
of TLC since the first step of the procedure involves calculat-
ing every possible initial state. While TLA+ does provide a
simple mechanism to separate the system configuration from
its evolution (by allowing the distinction between variable
and constant parameters), TLC requires constant parame-
ters to be fixed a priori by the user, limiting its ability to
automatically explore all possible configurations and thus
fully address R1R1. To circumvent this problem, configura-
tions must be encoded in normal variable parameters and
then (artificially) constrained in the specification to remain
constant throughout the system evolution.

Thus, although both Alloy and TLA+ exhibit powerful
but simple languages associated with effective and auto-
mated tools, they excel in the verification of different classes
of systems, and none addresses all four requirements iden-
tified above11. The number of available model-checking lan-
guages and tools is too large to allow for an exhaustive com-

1An in-depth comparison of TLA+ and Alloy, using the ho-
tel room locking system as running example, can be con-
sulted in [1616]. The specification of the running examples
of this paper in both those languages can also be found at
https://github.com/haslab/electrum/wikihttps://github.com/haslab/electrum/wiki.

parison here, but in general they are not better than Alloy
or TLA+ at dealing with dynamic systems with rich config-
urations. Most of them, namely SPIN or the various SMV
variants, don’t even support first-order logic, making it very
difficult to specify complex structural properties. This re-
lated work focus mainly on Alloy and TLA+ because we
believe they are quite close to excel at handling such sys-
tems, and, in fact, the language we propose here combines
the best aspects of both.

An alternative perspective to the problem of model-chec-
king multiple configurations arises from the study of SPLs,
a set of software products that share common base func-
tionalities. The variability between the products is defined
through the selection of features; acceptable feature com-
binations (i.e., products) are defined through feature dia-
grams that specify simple dependencies and conflicts be-
tween them. Model-checking an SPL involves checking the
properties for every acceptable product. Under our perspec-
tive, each of these products represents a configuration of the
system, restricted by the (rather basic) structural proper-
ties imposed by the feature diagram, that are to be checked
for the temporal properties. There exist several techniques
that are able to model-check SPLs. Most, however, are
not accompanied by high-level specification languages that
allow both the modeling of the SPL and the feature dia-
gram. One such language, with support for model-checking,
is fSMV [2121, 77], an extension to SMV. It follows a compo-
sitional approach, in the sense that each feature is imple-
mented through modifications to the base system. Feature-
Alloy, an extension to Alloy following a similar approach,
has also been proposed [11]. In contrast, in annotative ap-
proaches the SPL is represented by a single system whose
behavior is defined by guards over the selected features. One
such language is fPromela [66], an extension to the Promela
language of SPIN. These approaches suffer from the expres-
siveness problems of the languages they extend that have
already been exposed previously in this section.

3. THE ELECTRUM FRAMEWORK
Considering the presented state-of-the-art, this work pro-

poses an extension of the Alloy specification language with
temporal logic operators – denoted Electrum – and associ-
ated model-checking tools, that address all four characteris-
tics identified in Section 11.

3.1 Language
This section describes the Electrum language and its for-

mal semantics in several steps. We start by providing an
informal overview of Electrum in Section 3.1.13.1.1. To ease
the presentation of the semantics, we then introduce in Sec-
tion 3.1.23.1.2 an abstract syntax for a representative subset of
Electrum, whose semantics is expressed in terms of a trans-
lation to a first-order temporal logic. For the sake of read-
ability, we describe this logic in Section 3.1.33.1.3, before the
translation itself in Section 3.1.43.1.4.

3.1.1 Overview
This section presents the proposed Electrum language, the

concrete syntax of which is presented in Fig. 33. The language
is inspired both by Alloy for its structural concepts and by
TLA for the ability to freely define actions as predicates with
primed variables.

https://github.com/haslab/electrum/wiki

Likewise Alloy, structure in Electrum is introduced throu-
gh the declaration of signatures which specify sets of uninter-
preted atoms. Hierarchical signatures can be introduced by
extension, in which case the sub-signatures must be disjoint,
or through inclusion, in which case sub-signatures may over-
lap with each other. Abstract signatures are comprised only
of the elements of their sub-signatures. Finally, signatures
may be attached with multiplicities that restrict the number
of elements that they may contain. Signature declarations
may also introduce fields with arbitrary, finite arity, that
represent relations between the various signatures. These
constructs are essentially those provided by the standard
Alloy language.

Contrary to Alloy, however, both signatures and fields
may be additionally tagged as variable, meaning that their
valuation may evolve in time. In contrast, non-variable sig-
natures and fields are assumed to be static, meaning that
their valuation remains fixed throughout the evolution of
the system. Thus, Electrum provides a clear distinction be-
tween the configuration of the system (static constructs) and
its evolution (variable constructs) (R1R1).

Additional restrictions are introduced through the defini-
tion of paragraphs: facts (axioms) impose restrictions on the
specifications and assertions denote properties that are to be
checked over the specification. Predicates and functions are
essentially reusable formulas and expressions, respectively.

All these paragraphs are comprised of logical formulas
that borrow their expressiveness from Alloy (supporting uni-
versal and existential quantifications, as well as transitive
closure operations) and from TLA (supporting classical tem-
poral operators as well as primed expressions), and thus al-
low both the definition of rich structural properties over the
specifications (R2R2), the definition of actions in a flexible
manner (R3R3) and the verification of rich temporal proper-
ties (R4R4). Note that we do not keep the semantics of primed
expression from TLA, which makes TLA formulas invariant
under stuttering (for compositionality purposes), but use in-
stead the semantics of the classical “next” operator of tem-
poral logic, which allows to specify behaviors that may not
be invariant under stuttering.

Verification commands (to be model-checked) are inte-
grated in the specification file (again, inspired by Alloy).
They are described in more detail in Section 3.2.13.2.1.

Figure 44 presents the hotel room locking system speci-
fied in Electrum. Rooms, guests and keys are introduced by
static signatures, meaning that their valuation remains fixed
all along the system evolution. There is also a singleton sig-
nature FD representing the front desk. There is only one
static field keys, that represents the set of keys assigned to
each room; this distribution is constrained to be a partition
by fact DisjointKeys. Every other field, denoting the key
currently coded for a room, and the registry of occupants
and assigned keys at the front desk, is variable. Actions are
declared as regular predicates that refer to the post-state
by priming variable expressions. Finally, the fact traces
restricts the acceptable states of the system: a state is ei-
ther the initial one or obtained from the application of the
actions. Over this specification, the assertion NoBadEntry
verifies whether there are unwanted room entries. This as-
sertion is referred by the check command immediately below
that instructs the model-checker to test the assertion for a
scope of at most 3 elements per signature, as well as a scope
of 5 time instants if the analysis is performed by a bounded

spec ····= module qualName [[name,+]] import∗ paragraph∗

import ····= open qualName [[qualName,+]] [as name]
paragraph ····= sigDecl | factDecl | funDecl | predDecl
| assertDecl | checkCmd

sigDecl ····= [var] [abstract] [mult] sig name,+

[sigExt] { varDecl,∗ } [block]
sigExt ····= extends qualName | in qualName [+ qualName]∗

mult ····= lone | some | one
decl ····= [disj] name,+ : [disj] expr
varDecl ····= [var] decl
factDecl ····= fact [name] block
assertDecl ····= assert [name] block
funDecl ····= fun name [[decl,∗]] : expr { expr }
predDecl ····= pred name [[decl,∗]] block
expr ····= const | qualName | @name | this | unOp expr
| expr binOp expr | expr arrowOp expr | expr [expr,∗]
| expr [! | not] compareOp expr
| expr (=> | implies) expr else expr

| quant decl,+ blockOrBar | (expr) | block
| { decl,+ blockOrBar } | expr’

const ····= none | univ | iden
unOp ····= ! | not | no | mult | set | ∼ | * | ^
| eventually | always | after

binOp ····= || | or | && | and | <=> | iff | => | implies
| & | + | - | ++ | <: | :> | . | until

arrowOp ····= [mult | set] → [mult | set]
compareOp ····= in | =
letDecl ····= name = expr
block ····= { expr∗ }
blockOrBar ····= block | | expr
quant ····= all | no | mult
checkCmd ····= check qualName [scope]

scope ····= for number [but typescope,+] | for typescope,+

typescope ····= [exactly] number qualName
qualName ····= [this/] (name/)∗ name

Figure 3: Concrete syntax of the Electrum language (addi-
tions w.r.t. the Alloy syntax are underlined).

model-checker (otherwise this bound is simply ignored).
The flexibility of the language allows the adoption of var-

ied specification idioms that could prove to be cumbersome
in more rigid specification languages. For instance, in the
event idiom, actions are embodied by model elements rather
than by predicates. This allows the developer to define a hi-
erarchy of actions, allowing the sharing of parameters (e.g.,
in the room locking system, every action has a guest param-
eter) and of constraints (e.g., in the front desk actions, the
frame condition on the room coded keys is shared), resulting
in simpler and more manageable specifications.

Figure 55 depicts an excerpt of the hotel room locking sys-
tem specified with the event idiom in Electrum, where each
action is embodied by a variable signature: the presence
of an event atom in an instant denotes the occurrence of
that action. This excerpt is an alternative to the three ac-
tion predicates specified in Fig. 44. The multiplicity one of
the abstract Event signature, from which the concrete events
inherit, forces the existence of exactly one event at each in-
stant, although this element may vary (this also simplifies
the fact traces, that will only be required to enforce the
init constraint). Parameters of the actions are embodied
by the event-signature fields: since all the actions in the ho-
tel room locking system have a guest parameter, this field
is defined at the top-level event signature. Another abstract
signature FDEvent represents every action that occurs at the
front desk, enforcing the frame condition on the door locks’
coded keys. The concrete event signatures then define the
specific constraints that restrict their occurrence at each in-
stant. Note how, in the check-in action presented in Fig. 55,

open util/ordering[Key] as ko

sig Key {}

sig Room {
keys: set Key,
var currentKey: one keys }

fact DisjointKeySets {
keys in Room lone → Key }

one sig FD {
var lastKey: Room → lone Key,
var occupant: Room → Guest }

sig Guest {
var gKeys: Key }

fun nextKey[k: Key, ks: set Key]: set Key {
min[k.nexts & ks] }

pred entry[g: Guest, r: Room, k: Key] {
k in g.gKeys
k = r.currentKey or k = nextKey[r.currentKey, r.keys]
r.currentKey’ = k
all rr: Room - r | rr.currentKey’ = rr.currentKey
gKeys’ = gKeys
FD.lastKey’ = FD.lastKey
FD.occupant’ = FD.occupant }

. . .

pred init {
no Guest.gKeys
no FD.occupant
all r: Room | FD.lastKey[r] = r.currentKey }

fact traces {
init
always | some g: Guest, r: Room, k: Key |
entry[g, r, k] or checkin[g, r, k] or checkout[g] }

assert NoBadEntry {
always | all r: Room, g: Guest, k: Key |
entry[g, r, k] and some FD.occupant[r] =>
g in FD.occupant[r] }

check NoBadEntry for 3
but 5 Time // Time scope only for bounded verification

Figure 4: Hotel room locking system under Electrum.

one var abstract sig Event {
g: Guest }

var abstract sig FDEvent extends Event { } {
currentKey’ = currentKey }

var sig Checkin extends FDEvent {
r: Room,
k: Key } {
g.gKeys’ = g.gKeys + k
no FD.occupant[r]
FD.occupant’ = FD.occupant + r → g
FD.lastKey’ = FD.lastKey ++ r → k
k = nextKey[FD.lastKey[r], r.keys]
all gg: Guest - g | gg.gKeys’ = gg.gKeys }

Figure 5: Excerpt of the hotel room locking system under
Electrum in the event idiom.

the constraint is identical to the one defined in the predi-
cate idiom in Fig. 44 (modulo the frame condition), and thus
no additional burden was imposed on the developer. The
remainder operations would be defined in a similar manner.

Figure 66 depicts an excerpt of a possible specification of
the elevator SPL in Electrum to illustrate its potential to

abstract sig Feature {}
one sig FIdle, FExecutive, FPark extends Feature {}

sig Product in Feature {} {
FIdle + FPark not in this }

sig Floor {} {
one b: LandingButton | b.floor = this
one b: LiftButton | b.floor = this }

abstract sig Button { floor: one Floor }
sig LandingButton, LiftButton extends Button {}

var one sig Current in Floor {}
var lone sig Open, Up {}
var sig Pressed in Button {}

. . .

pred prop {
always { all f: Floor | floor.f&LiftButton in Pressed =>

eventually { current = f && some Open } } }

check { FIdle = Product => prop } for 6 but 10 Time

Figure 6: Excerpt of the of the elevator SPL under Electrum.

handle systems with variability (the actions are omitted).
Here, features are simply declared as static signatures, a
product being simply a subset of those features. Conflicts
between the features are enforced through constraints over
products. The floors and the respective buttons — one land-
ing and one lift button per floor — are also static and defined
by structural constraints. The remainder signatures depict
the variable components of the model. At each instant, one
floor marks the current position of the elevator; “lone” vari-
able signatures act as temporal Boolean variables, that de-
note whether the elevator is open and moving in the upward
direction; finally, a set of buttons is selected as pressed at
each moment. Properties can then be checked for arbitrary
products or certain configurations, e.g., the check command
in the excerpt checks if calls from lift buttons are eventually
answered for products that only implement the idle feature.
The full specification of these examples can be found here22.

3.1.2 Electrum Kernel
Following the approach of [1414, App. C], we simplify the

presentation of the semantics of our framework by consid-
ering a stripped-down language, dubbed Electrum Kernel,
focusing only on formulas and relational terms. The ab-
stract syntax of Electrum Kernel is shown in Fig. 77. For
constraints and relational expressions, the translation from
Electrum is relatively straightforward and follows that of
Alloy (namely, in formulas, the dual logical operators and
connectives may be defined in the obvious way).

In Electrum Kernel, the main concept is that of relations:
we consider that we have a set R of potentially-variable
relations, which are declared with their arity. Signatures
and fields that are declared in Electrum are translated into
relations in Electrum Kernel (unary relations in the case of
signatures). We also assume the existence of a set Var of
first-order variables.

All the information that can be expressed in the declara-
tion of signatures and fields in Electrum (multiplicities, the
fact that some signatures and fields are not variable, signa-
ture extension) need to be specified by formulas in Electrum

2https://github.com/haslab/electrum/wikihttps://github.com/haslab/electrum/wiki

https://github.com/haslab/electrum/wiki

formula ····= not formula | after formula
| always formula | eventually formula
| formula until formula | formula and formula
| term in term | all decl | formula

term ····= x ∈ V ar | r ∈ R | ^term | ∼term
| term & term | term × term | term . term

| term’ | { decl+ | formula }
decl ····= x : term

Figure 7: Electrum Kernel abstract syntax.

Kernel (in our prototypes, we use more a efficient encoding).
In order to illustrate the translation from Electrum to

Electrum Kernel, let us consider the following example:

abstract sig A { r: some A }
var sig B,C extends A {}

In the corresponding Electrum Kernel specification, three
relations with arity 1 and one relation with arity 2 are de-
clared.

Relations: A(1), B(1), C(1), r(2)

The fact that A is not a variable signature is expressed by
the formula always A’ = A.

The fact that B and C extend A, which is abstract, can be
expressed by the formula always (A = B + C and no B & C).

Now, the typing and the multiplicity constraint related to
the field r are expressed as follows:

always r in A → A

always all a: A | some a.r

3.1.3 FOLTL
The semantics of Electrum Kernel is expressed via a trans-

lation into First-Order Linear Temporal Logic (FOLTL) [1313,
33]. Here we briefly describe its syntax and semantics.

Definition 1. Given mutually-disjoint sets V and P of (resp.)
variables and predicates (with their arity), the syntax of
FOLTL formulas is given as follows33:

ϕ ····= P (x1, . . . , xk) | x1
.
= x2

| ¬ϕ | ϕ ∧ ϕ | ∀x.ϕ | Xϕ | Gϕ | Fϕ | ϕU ϕ

with xi ∈ V and P ∈ P (of course, P (x1, . . . , xk) is a formula
only if the arity of P is k).

Derived constructs (∃, ∨,⇒) can be defined in the obvious
way. Xϕ (read “next ϕ”) means that ϕ is true in the next
instant, Gϕ (read “always ϕ”) means that ϕ will always be
true, Fϕ (read “eventually ϕ”) means that ϕ will eventually
be true and ϕ U ψ (read “ϕ until ψ”) means that ϕ is true
and remains true until ψ becomes true.

FOLTL is provided with both unbounded and bounded
semantics. For the unbounded semantics, time is interpreted
over the set N of non-negative integers. Each first-order
variable is interpreted over the domain D.

Definition 2. A model for FOLTL is a pair M = (D, ρ)
where: (1) the set D is the domain of first-order variables
and (2) ρ maps each predicate P ∈ P at each instant i ∈ N
to a relation ρ(P, i) ⊆ Dk, where k is the arity of P .

The satisfaction of a formula by a model is then defined
as follows.

3The symbol
.
= stands for equality in FOLTL in order to

avoid notation clashes.

Definition 3. Given a model M, a formula ϕ, an instant
i ∈ N, and an environment σ, mapping each free variable
x to an element in the domain D, the satisfaction relation
M, σ, i |= ϕ is defined inductively as follows.

M, σ, i |= x
.
= y if σ(x) = σ(y)

M, σ, i |= P (x1, . . . , xn) if (σ(x1), . . . , σ(xn)) ∈ ρ(P, i)
M, σ, i |= ¬ϕ if M, σ, i 6|= ϕ
M, σ, i |= ϕ ∨ ψ if M, σ, i |= ϕ or M, σ, i |= ψ
M, σ, i |= ∀x.ϕ if for all a ∈ D,M, σ[x 7→ a], i |= ϕ
M, σ, i |= Xϕ if M, σ, i+ 1 |= ϕ
M, σ, i |= Gϕ if for each j ≥ i,M, σ, j |= ϕ
M, σ, i |= Fϕ if there is j ≥ i s.t. M, σ, j |= ϕ
M, σ, i |= ϕU ψ if there exists j ≥ i s.t. M, σ, j |= ψ,

and for all i ≤ k < j,M, σ, k |= ϕ.

A formula ϕ without free variables is satisfiable if and only
if there exists a model M such that M, ∅, 0 |= ϕ, which is
simply denoted by M |= ϕ.

The bounded semantics of FOLTL can be derived from the
unbounded one following the standard technique described
in [22]. In (bounded) models of size k (denoting traces with
k states), ρ is partial function, with domain {0 . . . k− 1}. If
such trace has a loop, i.e., the value of ρ(s, k − 1) is equal
to the value of ρ(s, l) for all s and some 0 ≤ l < k − 1, then
the semantics is the same as in the unbounded case, after
unrolling the model to be defined over N. If the trace has no
loop, then the semantics has to be slightly adjusted, as such
traces cannot be considered valid models of (invariant) for-
mulas of type Gϕ (as there could be a state after k−1 that
violates ϕ), and only of formulas of type Fϕ (as discussed
in [22], G and F are no longer duals in a bounded semantics,
hence the inclusion of both in the language kernel).

3.1.4 From Electrum Kernel to FOLTL
The essence of the interpretation of Electrum Kernel into

FOLTL comes to getting rid of relational terms so that we
end up with formulas only. This is a standard approach
when embedding the relational logic of Alloy into FOL, see
e.g. [1010, 99]. Thus, the main operation consists in removing
all membership and inclusion statements present in Elec-
trum Kernel formulas and replacing them with correspond-
ing FOLTL subformulas. Hence the semantic map (denoted
J−K) relies on a function [− ∈ −] which, given a pair of a tu-
ple of variables and a term, yields a formula stating that the
former is a member of the latter. For the sake of readability,
we write tuples as vectors, denote their concatenation by
juxtaposition and use | · | to stand for their length.

Definition 4. The formal semantics of Electrum Kernel
formulas into FOLTL formulas is defined by structural in-
duction in Fig. 88.

3.2 Verification
While Electrum supports the definition of both rich spec-

ifications and properties to be checked over them, it is only
useful if accompanied by effective model-checking techniques.
Fitting the dual nature of the problem at hand, two distinct
approaches to the model-checking of Electrum specifications
were explored: one bounded and another unbounded. Before
detailing these, we first describe the commands provided by
Electrum for formal analysis.

Jnot fK = ¬JfK
Jafter fK = XJfK

Jalways fK = GJfK
Jeventually fK = FJfK

Jf1 until f2K = Jf1K U Jf2K
Jf1 and f2K = Jf1K ∧ Jf2K

Jt1 in t2K = ∀~x.[~x ∈ t1]⇒ [~x ∈ t2]

where ~x are fresh variables;

Jall x : t | fK = ∀x.[x ∈ t]⇒ JfK
[x ∈ y] = x

.
= y

[~x ∈ r] = r(~x)

[〈x1, x2〉 ∈ ^t] = there are y1, . . . , yn such that

y1
.
= x1 ∧ yn

.
= x2 ∧

∧
i<n

[〈yi, yi+1〉 ∈ t]

[〈x1, x2〉 ∈∼ t] = [〈x2, x1〉 ∈ t]
[~x ∈ t1 & t2] = [~x ∈ t1] ∧ [~x ∈ t2]

[~x ∈ t1 × t2] = [~y ∈ t1] ∧ [~z ∈ t2]

with ~x = ~y~z

[~x ∈ t1.t2] = ∃u.[~yu ∈ t1] ∧ [u~z ∈ t2]

where ~x = ~y~z, and u is a fresh variable,

[~x ∈ t′] = X[~x ∈ t]

[~x ∈ {~y : ~t | f}] =
(∧

16i6|~x|

[xi ∈ ti]
)
∧ Jf{~y ← ~x}K

where f{~y ← ~x} is the usual substitution.

Figure 8: From Electrum Kernel to FOLTL (cf.. Def. 44).

3.2.1 Commands and scopes
As explained in Sect. 3.1.13.1.1, an Electrum specification also

comes with verification commands. Check commands are
passed an assertion and scopes for the (static and variable)
signatures and instruct the model-checker to try to prove the
assertion. Run commands, on the other hand, instruct the
model-checker to yield an example instance of the specifica-
tion if there is one (this way, it also shows whether the spec-
ification is indeed consistent). The scopes bound the max-
imum number of elements that a top-level signature will at
least contain. Remark that the model-checking techniques
are expected to explore every valid valuation of signatures
and fields up to the given bound44. It should be noticed that,
for a variable signature, the scope bounds the total num-
ber of its instances over the complete life of the modeled
system55.

The difference between both verification approaches lies
in the way time is handled. In the bounded verification ap-
proach, time is internally handled as a signature and is thus
bounded the same way as others. In the second approach,
time is left unbounded.

Then, given an Electrum model and a scope, every sig-
nature or field is instantiated depending on the bound of

4This contrasts with TLC configuration files which assign
concrete valuations to the constant parameters.
5As time may be unbounded, this is a way to retain decid-
ability while remaining faithful to the successful bounded
verification practice of Alloy.

signatures. The model and the “run” (or “check”) command
give rise to a formula ϕM and a formula ϕr (or ϕc), re-
spectively. Finally, if the command is a “run”, the formula
ϕM ∧ ϕr is checked for satisfiability ; otherwise we check
whether ϕM ⇒ ϕc is valid. In the following, we detail how
these verification problems translate in practice.

3.2.2 Bounded model-checking
The bounded semantics of FOLTL described in Sect. 3.1.33.1.3

can be directly encoded into Alloy itself, as described in [88].
Our bounded model-checker is implemented using this al-
ternative encoding, and deployed as a new version of the
Alloy Analyzer, to minimize the adoption time by Alloy
practitioners. This Analyzer not only generates a single
counter-example (depicted visually), but allows the user to
iterate over all possible counter-examples (within the spec-
ified bounds) that broke the specified properties, thus pro-
viding the user with a wider perception of what may be
the problems of the specification. Note that this bounded
model-checking procedure is iterative, checking the proper-
ties for increasing trace sizes up to the specified scope on
Time, stopping along the way if a counter-example is found.

3.2.3 Unbounded model-checking
This technique is implemented in a prototype called the

Electrum Analyzer. It relies on a direct embedding into the
nuXmv tool66 which implements various algorithms perform-
ing unbounded model-checking [44] (we currently rely on the
so-called “k-liveness” algorithm). Its free-software predeces-
sor, NuSMV, can also be used but it is far less efficient on
the examples we have studied so far.

The principle of the translation proceeds as described be-
fore, chaining a translation from Electrum to Electrum Ker-
nel, then to FOLTL and finally to LTL. Compared to the
semantics presented in this paper, several simple optimiza-
tions are also implemented (smarter optimizations are left
for future work).

Now, nuXmv expects a description of a transition system
and a formula to check on the latter, whereas an Electrum
model is essentially a formula specifying a set of transition
systems (that satisfy it). Hence the generated SMV model
does not contain an explicit transition system: (i) signatures
and fields give rise to “frozen” or plain variables depending
on their status (static or variable) ; (ii) various formulas re-
lated to the typing and inclusion of signatures and fields are
combined to form an “invariant” section in the file. This is
important as it allows to constrain and reduce the size of
the state space. A possible improvement would be to infer a
(non-deterministic) transition system and add a correspond-
ing SMV “assign” section, restricting the state space further.

Then, a so-called SMV “LTL specification” is produced
that represents the formula to be verified77.

Finally, it should be remarked that the present approach
allows to perform verification on an unbounded time hori-
zon, but it does not allow to perform scenario exploration,
namely iterate over counter-examples, the same way the
bounded approach does. Therefore, regardless of practical
performance results, both approaches are complementary.

6Available at https://nuxmv.fbk.euhttps://nuxmv.fbk.eu.
7This formula is in practice dualized (w.r.t. the description
in Sect. 3.2.13.2.1) as nuXmv expects specifications expressed as
validity problems rather than as satisfiability ones.

https://nuxmv.fbk.eu

4. EVALUATION
This section presents the empirical evaluation of our lan-

guage and the proposed checking techniques. Concretely, we
aim to assess how the performance of the proposed bounded
and unbounded checking techniques compare with each other
and with other existing, similar approaches.

To answer these questions, a detailed evaluation of the
proposed techniques under the two examples from Section 1.11.1
is presented, as well as a summary of the results for an ad-
ditional specification with rich configurations.

Regarding the hotel room locking system, two versions are
considered: Hotel (1) checks the desired safety property
and thus leads to counter-examples, and Hotel (2) checks
the same property, but with an additional constraint that
prohibits any other action to occur between a guest check-
ing in and entering a room, and, as a result, is correct. Re-
call nonetheless that the counter-example in Hotel (1) does
not occur with every configuration. In these examples, the
size of the model n denotes the number of keys, rooms and
guests available in the universe. For the spanning tree algo-
rithm, we consider the following verification goals: Span (1)
checks the liveness property without enforcing fairness, thus
producing counter-examples; Span (2) checks for the live-
ness property but with fairness enforced, and thus is correct;
and Span (3) checks for the safety property and does not
generate counter-examples. Here model size n denotes the
number of processes and tree levels in the universe. For the
SPL example we consider two check commands: Elevator
(1) tests the liveness property for products implementing
only the idle feature, which holds; Elevator (2) tests the
property for arbitrary products which does not hold. Here
n denotes the exact number of floors.

Additionally we explore another distributed algorithm over
arbitrary topologies that is packaged with the Alloy An-
alyzer, whose specification was quite simplified with Elec-
trum. Concretely, we consider a distributed algorithm for
the election of a leader in a network with ring topology, in-
spired by the specification presented in [1414]. This specifica-
tion is checked for two temporal properties: that at least one
leader is eventually elected (a liveness property) and that at
most one leader is elected (a safety property). Different ver-
sions of the specification were considered: Ring (1) checks
the specification for liveness without fairness enforced, Ring
(2) checks for liveness with fairness, and Ring (3) checks
for safety, which holds.

As has already been stated in Section 22, the two existing
techniques that we believe are best suited to model-check
specifications with rich configurations are Alloy and TLA+.
Since our bounded technique actually relies on Alloy, we will
focus on comparing the performance of our two techniques
with that of TLA+/TLC.

All tests were run multiple times using Alloy 4.2 with the
MiniSat solver and nuXmv 1.0.1, on a 1,8 GHz Intel Core
i5 with 4 GB memory running OS X 10.10. TLC 2.05 was
used for the TLA+ tests.

Note that, for the unbounded approach, we pre-process
Electrum files to replace every command by all possible com-
binations of the said command with exact scopes. Then we
generate as many corresponding SMV files, and run nuXmv
in parallel on all CPU cores using GNU parallel [2323], start-
ing with the smallest scopes and stopping immediately if a
property is refuted.

4.1 Results
Figures 9a9a and 10a10a present the performance for the hotel

room locking system and the spanning tree algorithm for a
fixed size n = 4 and increasing trace length t. Labels Hn
and Sn stand for the Hotel (n) and Span (n) scenarios
respectively, and Bnd and Ubd stand for the bounded and
unbounded techniques.

In the unbounded technique the properties are checked
for arbitrary trace lengths, and thus their performance is
depicted by a constant function in these graphs. Note also
that in the bounded scenario, each trace length aggregates
the time spent verifying the smaller traces, i.e., the time
spent to assess that a property holds for t = 4 includes
checking the property for lengths 1, 2 and 3. In the scenar-
ios where there are counter-examples to be found, the per-
formance of the bounded technique stabilizes at the t value
where that counter-example finally occurs (e.g. 5 for Hotel
(1)). This is due to the iterative nature of the technique:
once a counter-example is found, the procedure is stopped
and not run for larger t values. In contrast, when no counter-
examples occur, the technique must be run for every trace
length value and keeps increasing with t. The performance
of the unbounded approach is also better when there are
counter-examples to be found due to the parallelization of
the procedure that stops as soon as a counter-example is
found. For the scenarios without counter-examples the pro-
cedure must check the properties for every launched process.
The bounded technique outperforms the unbounded one for
smaller trace lengths, but their performance starts to con-
verge as the t value increases. This reinforces the common
policy of relying on bounded techniques to quickly discard
trivial counter-examples, and move on to unbounded tech-
niques only when the confidence level is high enough.

In contrast, Figs. 9b9b and 10b10b present the performance of
the model-checking techniques for increasing model size n
and fixed trace length t = 20 (for the bounded technique).
Again, for the bounded scenario the results aggregate the
time spent for in the trace lengths up to 20. At such trace
length, the performance of the two model-checkers is almost
similar for the considered examples, although the bounded
technique still outperforms the unbounded one. For Hotel
(1) and Span (1), the performance of the bounded tech-
nique improves at n = 3 and n = 2, respectively, because
these are the sizes where counter-examples first appear, and
for smaller sizes the properties must be checked for every
trace lengths.

Table 11 summarizes the evaluation for the explored ex-
amples and reinforces the conclusions discussed above. It
also presents the number of valid configurations for each of
the scenarios. Note how the hotel room locking system al-
ready has 18960 valid configurations for n = 4. The Alloy
Analyzer has a powerful symmetry breaking algorithm that
infers an equivalence class within the search space, highly re-
ducing the number of explored models. For example, in the
same example, the number of non-symmetric configurations
is only 520. By performing the bounded model-checking of
Electrum via an embedding into Alloy we take advantage
of this mechanism, hence the quite positive results for this
technique. This also points for interesting possible optimiza-
tions of the unbounded model-checking technique, namely
parallelization of the verification technique based on unique
non-symmetric configurations.

For the comparison with TLC, we encoded the three con-

(a) Fixed n = 4 and increasing t. (b) Fixed t = 20 and increasing n.

Figure 9: Performance tests for Hotel (1) and Hotel (2).

(a) Fixed n = 4 and increasing t. (b) Fixed t = 20 and increasing n.

Figure 10: Performance tests for Span (1), Span (2) and Span (3).

Spec. n #Cfg (sym) Type Holds Bnd (s) Ubd (s)

Hotel (1) 4 18960 (520) S × 0.2 47.5
Hotel (2) 4 18960 (520) S X 31.2 3844.2
Span (1) 4 216 (16) L × 0.0 14.5
Span (2) 4 216 (16) L X 35.1 803.9
Span (3) 4 216 (16) S X 36.4 125.8
Ring (1) 3 40 (9) L × 0.0 3.4
Ring (2) 3 40 (9) L X 2.0 156.9
Ring (3) 3 40 (9) S X 31.9 35.2

Elevator (1) 3 1 (1) L × 0.0 12.3
Elevator (2) 3 48 (48) L X 21.1 2246.8

Table 1: Summary of the performed tests (for t = 20 for the
bounded scenarios); S is for “safety”, L is for “liveness”.

sidered examples in TLA+. In general, our model-checkers
outperform TLC when there are counter-examples to be
found. For instance, for Hotel (1) with n = 4, TLC takes
545.2 seconds to generate a counter-example. In contrast,
TLC outperforms our unbounded technique when there are
no counter-examples. For instance, for Hotel (2) TLC
takes 256.6 seconds to check that the specification is correct.
Note that our unbounded technique, unlike TLC which im-
poses constraints on how actions can be specified, can handle
actions specified in a very liberal declarative style. Nonethe-
less, our experiments show that TLC is heavily affected by
the number of valid configurations (worsened by the fact
that it is not able to explore symmetry), since these affect
the number of initial states that must be explored. In fact,
in the hotel scenarios, for model sizes higher than n = 4,
TLC runs out of memory when calculating the initial states.
Our unbounded model-checker is still able to terminate in
such scenarios.

5. CONCLUSION
This work proposed a language, Electrum, mixing the best

aspects of both Alloy and TLA+, currently two of the most
popular formal specification languages, and that we believe
hits the sweet spot for the specification of dynamic systems
requiring rich declarative specifications (both of structural
aspects, namely configurations, and dynamics). Two model-
checking tools for this language were also developed, one
bounded and the other unbounded, that our preliminary
evaluation already showed to be competitive, performance
wise, with existing model-checkers, in particular TLC. The
bounded model-checker is useful at early analysis stages,
namely excelling at founding and iterating over counter-
examples, while the unbounded one, naturally slower, should
afterwards be used for further confirmation of the results.

In the future we intend to improve the Electrum frame-
work in two key aspects: first, building on our previous work
on scenario exploration [1919, 1717], we intend to improve the
counter-example generation and iteration features, by allow-
ing the user to parameterize the tool to prioritize certain as-
pects, for example, showing first counter-examples similar to
those found in previous versions of the specification; second,
we intend to improve the efficiency of the unbounded model-
checking technique in order to take advantage of symmetry
breaking, namely explore a “hybrid” verification approach
where a bounded analyzer would compute in advance (bun-
dles of) non-symmetric static configurations, to be used to
optimize the LTL specifications passed to each (parallel) un-
bounded checking process.

6. REFERENCES
[1] S. Apel, W. Scholz, C. Lengauer, and C. Kästner.

Detecting dependences and interactions in
feature-oriented design. In ISSRE 2010, pages
161–170. IEEE, 2010.

[2] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu.
Symbolic model checking without BDDs. In TACAS
1999, volume 1579 of LNCS, pages 193–207. Springer,
1999.

[3] T. Braüner and S. Ghilardi. First-order modal logic.
Handbook of modal logic, 3:549–620, 2007.

[4] R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio,
A. Mariotti, A. Micheli, S. Mover, M. Roveri, and
S. Tonetta. The nuXmv symbolic model checker. In
CAV 2014, volume 8559 of LNCS, pages 334–342.
Springer, 2014.

[5] F. S. Chang and D. Jackson. Symbolic model checking
of declarative relational models. In ICSE 2006, pages
312–320, 2006.

[6] A. Classen, M. Cordy, P. Heymans, A. Legay, and
P. Schobbens. Model checking software product lines
with SNIP. STTT, 14(5):589–612, 2012.

[7] A. Classen, M. Cordy, P. Heymans, A. Legay, and
P. Schobbens. Formal semantics, modular
specification, and symbolic verification of product-line
behaviour. Sci. Comput. Program., 80:416–439, 2014.

[8] A. Cunha. Bounded model checking of temporal
formulas with Alloy. In ABZ 2014, pages 303–308,
2014.

[9] A. Cunha, A. Garis, and D. Riesco. Translating
between Alloy specifications and UML class diagrams
annotated with OCL. Software & Systems Modeling,
14(1):5–25, 2015.

[10] A. A. El Ghazi and M. Taghdiri. Relational reasoning
via SMT solving. In FM 2011, pages 133–148, June
2011.

[11] M. F. Frias, J. P. Galeotti, C. L. Pombo, and
N. Aguirre. DynAlloy: upgrading Alloy with actions.
In ICSE 2005, pages 442–451, 2005.

[12] M. F. Frias, C. L. Pombo, J. P. Galeotti, and
N. Aguirre. Efficient analysis of DynAlloy
specifications. ACM Trans. Softw. Eng. Methodol.,

17(1), 2007.

[13] I. Hodkinson, F. Wolter, and M. Zakharyaschev.
Decidable fragments of first-order temporal logics.
Annals of Pure and Applied Logic, 106(1–3):85 – 134,
2000.

[14] D. Jackson. Software Abstractions: Logic, Language,
and Analysis. MIT Press, revised edition, 2012.

[15] L. Lamport. Specifying Systems, The TLA+ Language
and Tools for Hardware and Software Engineers.
Addison-Wesley, 2002.

[16] N. Macedo and A. Cunha. Alloy meets TLA+: An
exploratory study. Manuscript available at
http://alfa.di.uminho.pt/˜nfmmacedo/publications/tlalloy15.pdfhttp://alfa.di.uminho.pt/˜nfmmacedo/publications/tlalloy15.pdf,
2015.

[17] N. Macedo, A. Cunha, and T. Guimarães. Exploring
scenario exploration. In FASE 2015, volume 9033 of
LNCS, pages 301–315. Springer, 2015.

[18] J. P. Near and D. Jackson. An imperative extension to
Alloy. In ABZ 2010, pages 118–131, 2010.

[19] T. Nelson, S. Saghafi, D. J. Dougherty, K. Fisler, and
S. Krishnamurthi. Aluminum: principled scenario
exploration through minimality. In ICSE 2013, pages
232–241. IEEE/ACM, 2013.

[20] C. Newcombe, T. Rath, F. Zhang, B. Munteanu,
M. Brooker, and M. Deardeuff. How Amazon Web
Services uses formal methods. Commun. ACM,
58(4):66–73, 2015.

[21] M. Plath and M. Ryan. Feature integration using a
feature construct. Sci. Comput. Program.,
41(1):53–84, 2001.

[22] I. Shlyakhter, M. Sridharan, and D. Jackson.
Analyzing distributed algorithms with first-order logic.
available at
http://sdg.csail.mit.edu/pubs/alloy-distalg.pdfhttp://sdg.csail.mit.edu/pubs/alloy-distalg.pdf, 2002.

[23] O. Tange. Gnu parallel - the command-line power tool.
;login: The USENIX Magazine, 36(1):42–47, Feb 2011.

[24] E. Torlak and D. Jackson. Kodkod: A relational
model finder. In TACAS 2007, volume 4424 of LNCS,
pages 632–647. Springer, 2007.

[25] A. Vakili and N. A. Day. Temporal logic model
checking in Alloy. In ABZ 2012, pages 150–163, 2012.

http://alfa.di.uminho.pt/~nfmmacedo/publications/tlalloy15.pdf
http://sdg.csail.mit.edu/pubs/alloy-distalg.pdf

	Introduction
	Motivating Examples
	Contributions

	Related Work
	The ELECTRUM framework
	Language
	Overview
	Electrum Kernel
	FOLTL
	From Electrum Kernel to FOLTL

	Verification
	Commands and scopes
	Bounded model-checking
	Unbounded model-checking

	Evaluation
	Results

	Conclusion
	References

