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Abstract. In this paper we propose a knowledge based system (KBS), based on 

smart objects and a data fusion model to support industrial management decision 

making applied to a clothes manufacturing enterprise. The management 

processes cover factory-production levels to higher decision-making levels. 

Therefore, the proposed KBS contributes to solving different kind of decision 

problems, including factory supervision, production planning and control, 

productivity management, real-time monitoring, and data acquisition and 

processing. The web access via different middleware devices and tools at 

different process levels, along with the use of integrated algorithms, decision 

methods, and smart objects, promote an optimized use of knowledge and 

resources. In this paper the proposed KBS is introduced and an example of its 

use is illustrated with an example of a clothes manufacturing resources selection, 

using the embedded dynamic multi-criteria fusion model.  

Keywords: Knowledge based system, industrial management decision making, 

dynamic multi-criteria decision model, manufacturing resources selection. 

1   Introduction 

Nowadays, manufacturing enterprises are facing many challenges to respond to higher 

levels of production quality requirements, such as products quality requisites, 

manufacturing processes optimization and the manufacturing management processes 

itself, because globalization is forcing enterprises to promptly and accurately respond 

to requests arising from all over the world. An example is the necessity to accurately 

plan manufacturing resources usage, as the industrial manufacturing environment is no 

longer working isolated for satisfying its own manufacturing orders, but they also have 

to satisfy production needs from other outside orders. Therefore, industrial companies 

have to form strategic relationships with business partners to increase their 

responsiveness to market changes and to share resources more effectively and 

efficiently, through reliable decision support systems for supporting manufacturing 

management [1-4].  

                                                           

 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/154274559?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:leonilde@dps.uminho.pt


Manufacturing management, at its higher level, involves defining strategies to connect 

people, processes, data (information), knowledge and decision-making.  Further, in the 

current context of globalised markets, big quantities of more or less complex data has 

to be acquired and processed, to accurately make decisions in a daily basis, considering 

not just in-door information but also out-door one. Therefore, it becomes of utmost 

importance and necessity to integrate technology and knowledge for enabling accurate 

and timely responses to market requests [5-12].  

In this paper we propose a knowledge-based system (KBS) for supporting 

manufacturing management decision-making, which includes a dynamic multi-criteria 

decision-making model (DMCDM) and a Data Fusion algorithm (FIF) [13-16] to 

ensure taking in consideration today´s spatial-temporal global environments.  

Moreover, the proposed KBS is linked with a set of smart objects, for collecting data 

at the machines and factory level, along with appropriate middleware technology and 

tools for supporting appropriate data storage and processing, thus improving decision-

making processes. The concept of “Smart Objects” is well known and comes back from 

the late 1990’s [17]. The main focus of the concept is on modelling interactions of smart 

virtual objects with virtual humans, agents, in virtual worlds”. 

This paper is organized as follows. In section 2 an overview of dynamic decision-

making and data fusion models is presented. Section 3 briefly describes the proposed 

KBS, including a general view of the integrated data acquisition and processing 

module, based on smart objects. Section 4, presents an industrial application example 

of the usage of the KBS for selecting manufacturing resources in a clothes 

manufacturing company. In section 5 a brief literature review about related work is 

presented, and finally, section 6 presents some conclusions and planned future work.  

2   Background Context 

In the literature, many interesting works can be found related to manufacturing 

management frameworks and approaches [1-12]. The research project in [1] addresses 

the emergence of interactive manufacturing management at three levels: sector, system 

and enabling technologies. More details about characteristics and capabilities of 

manufacturing frameworks will be further discussed on the description of the proposed 

KBS, section 3.  

As mentioned above, the KB System includes an embedded Dynamic Multi-criteria 

Decision Making model and Data Fusion algorithm. Classical MCDM is a technique 

widely used for selection problems [18] [19-21] that assumes a fixed time frame where 

knowledge from past or future information is not employed to support more informed 

decisions.  

The first step in the classical MCDM [18] is to identify the available alternatives, 

selecting relevant criteria to evaluate each alternative and develop the decision matrix 

based on the level satisfaction of each alternative for each criterion. This phase is 

usually called knowledge elicitation. The next phase is to aggregate the satisfaction 

values of criteria for each alternative to achieve a final per alternative (rating) so they 

can be ranked. Further, in the classic MCDM there is only one matrix reflecting the 

current status of the system, while in the Dynamic MCDM (DMCDM) model [15] at 



least two matrices must be considered, the historic matrix, which represents the 

situation in the past, and the current matrix, which represents the current status. At each 

period (time or iteration) the 2 matrices are combined and the result stored (updated 

historic data) for the next iteration. Details about the mathematical formulations for this 

dynamic decision making model can be seen in [13-15]. Here, we follow the idea from 

[14] of extending this dynamic model [15] with a “future knowledge matrix” 

representing the estimated future values for certain criteria to evaluate the alternatives 

of the current situation. The past status includes historical data and the future or 

predicted knowledge can be calculated either by using a forecasting model or using 

experts’ knowledge. The future or predicted information could also be generated by 

negotiation and estimation [14].  In summary our approach will consider three different 

matrices: past, present and future, as suggested in [14]. 

To perform the calculations and obtain a final score of aggregating the three matrices 

we follow the data fusion process (FIF algorithm) described in [13] [16]. This data 

fusion process includes 5 steps: 1) normalize the criteria using fuzzification [8]; 2) filter 

uncertainty; 3) define criteria weights; 4) fusing information by aggregating criteria; 5) 

final ranking. The mathematical details of the combined models behind the five steps 

can be seen in [13] [14] [15].  

3 Proposed KBS and Integrated Technologies 

In this work we propose the integration of different manufacturing management 

functions, varying from the administration scope down to the operational level, passing 

through the production planning and control, as illustrated in Figure 1. 

 

 
Fig. 1. Manufacturing management functions considered in the proposed KBS. 

 



To manage the complexity of the management functions in real decision making 

problems there are different types of strategies to simplify the problem [19-21]. The 

common strategy is to consider the situation time-independent and model the problem 

in a static situation. In this case, many important factors will be disregarded and in some 

cases it will result in erroneous decisions. Furthermore, most tactical and strategic 

decision in companies require some thought and time, sometimes even undergoing 

internal negotiations between departments, to reach a final decision, i.e. these types of 

decisions are spatial-temporal dependent. 

Although at the operational level there is the capability of gathering real data from 

the shop floor, through smart objects, in terms of strategic and even tactic planning, it 

is of upmost importance to be able to consider manufacturing scenarios and strategies, 

based on future data/ information predictions, namely regarding information that arises 

from the outside of the factory, namely ad-hoc requests for using manufacturing 

resources or machines. These increasingly complex manufacturing management 

scenarios require using dynamic multi-criteria decision-making models, as many 

different kinds of information have to be considered. Therefore, in this work we 

consider a Dynamic Multi Criteria Decision Model (MCDM) [14] [15] along with a 

data fusion method [13] within the proposed KBS.  

 

The proposed KBS and integrated technologies are mainly based on supervision 

equipment, data acquisition and processing devices and tools, including smart objects, 

as illustrated in Figure 2.  

Regarding past and current data it can be either collected automatically, through the 

smart objects interacting with manufacturing resources or manually through MR 

managers. This data is further inserted in the KBS and processed and analysed through 

the underlying DSS, which integrated the MCDM implementation. 

The matrices related to past, present and future data about MRs is updated each time 

some decision is made. Moreover, it is updated in a continuous, for instance daily and 

also in a real-time basis, regarding the information that is gathered automatically from 

manufacturing resources connected through the underlying network, within the local 

factory and the associated factories or outdoor collaborating businesses integrating the 

extended enterprise environment. 

Future data can be predicted at different confidence levels through prevision models 

appropriate for each kind of information. Moreover, it can also be inserted manually, 

for instance, regarding new information received directly by local resource managers. 

The three matrices regarding past, present and future information are associated 

through the MCDM in a dynamic and iterative way, as each iteration of this model, 

considers information arising from these three matrices, which is further merged and 

processed, based on the underlying data fusion method [13]. 

This KBS is intended to act as a “System-as-a-Service” (SaaS), integrating the 

services for real-time data acquisition from the equipment through the embedded 

intelligent information devices, which are smart objects in a clothes factory 

environment. The proposed KBS, should enable better decision-making support and 

enhance human-human and human-machine interactions, by means of the integration 

of information and its processing functions.  

 



Our illustrative example for the proposed integrated KBS, implements an application 

in the context of a clothes factory in Portugal. Figure 2 illustrates the general view about 

the principal entities and corresponding main interactions considered for data 

acquisition and processing within the clothes manufacturing environment, where the 

manufacturing resources in the production line of the clothes factory play a fundamental 

role. The Manufacturing Resources (MR) can be any provider of any service, machine 

tool type, human agents as service providers (designers, managers, machine operators, 

planners, schedulers, drivers, vendors, and others), computing resources, software, 

among others. The MR receives the orders from internal or external ‘clients’ and then 

negotiations are triggered (for example via chat, video conferencing, or email). After 

the approval of the order, the Resource establishes direct relationship with the client 

and executes the production order. As stated above, the Resource may give permission 

for the client to see the production order to be executed and may allow the client to 

control the use of distance (when the resource is a machine, a computer, or software), 

either from the control room, the PC, or from a mobile device, and even remotely 

operated [12]. 

Fig. 2. Integrated technologies in a clothes factory environment. 

 

In general, the integrated technologies include equipment for interactive monitoring 

systems and product design services that integrate four environments: 1) computer 

aided design, 2) product data repository with embedded system for decision making 

(for accessing all relevant data, such as current, historic or forecasted data as well as 

data analysis) from the equipment in use, and equipment operation services that 

integrate the following environments [9]:  

1) Real-time equipment data that provides all relevant data, actual and historic as 

well as forecasted data and corresponding data analysis and suggestions, necessary for 

the production management;  

2) Management environment information for monitoring, planning, scheduling and 

controlling production activities; 

3) An interactive environment for supporting management – services;  

4)  A ‘Cloud’ infrastructure, necessary to provide: (a) infrastructure for the 

manufacturing system applications – of all three types of resources: material, 

manufacturing resources, information processing and other resources (i.e. 



computational resources), and knowledge resources – in the form of IaaS - 

Infrastructure as a Service; (b) platform for the manufacturing system applications in 

the form of PaaS - Platform as a Service; (c) manufacturing system software ‘business’ 

applications in the form of SaaS - Software as a Service. 

The KBS has been implemented in Visual Basic (VB) language to prototype the 

clothes application for this paper. The VB language enables easy development; as well 

as user friendly interfaces for data visualization and processing. Data and corresponding 

processing approaches and applications are managed in different places, which is of 

particularly importance in the context of a decentralized manufacturing scenario. For 

instance, if these globally distributed manufacturing environments have their own 

schedulers developed by different IT stakeholders; their schedules cannot be visualized 

by a common viewer without particular adapting programs. This actually causes a huge 

effort on a system’s implementation, and both the cost and the risk of the system, which 

will be increased. Using interfaces developed through Visual Basic enables end users 

to have a personalized scheduling viewer, among other interfaces for supporting 

decision making, within a whole networked environment.   

Figure 3 illustrates the system’s interface for the clothes industrial application, which 

aims at enabling integrated and automatic processes and routines, along with 

corresponding data acquisition and processing, in a real-time basis.  

 

 
 

Fig. 3. KBS interface for supporting manufacturing management. 

 

 

Specifically, Figure 3 depicts the interface for supporting manufacturing resources 

evaluation and selection, using the described dynamic multi criteria decision model 



(DMCDM) [14]. This interface provides flexibility for visualizing distributed plans 

everywhere through the Internet. Therefore, the proposed data representation and 

processing model can be seen as a general modelling schema, for problem data 

specification and processing for enabling to better supporting decisions at different 

decision levels intra and/or inter factories and stakeholders. 

Moreover, one important aspect of the proposed KBS is its capability for enabling 

to acquire real data from the machines and other manufacturing resources, at the factory 

level, through smart objects technology, in a precisely and real-time basis [17], [22]-

[25]. The smart objects have the capability to collect and store data in real time, to 

identify themselves and to make decisions, in a automatic and autonomous way, thus 

they play a crucial role in terms of real-time management functions, for supporting 

manufacturing, as they enable to update data to the second, instead of the traditional 

reports, which take sometimes days or even more time periods to enable to use updated 

data for manufacturing decision-making support.  

The proposed KBS enables either to insert information about past, present and future 

data predictions regarding manual entries or directly in the database through automatic 

data insertion, namely data that is driven from the execution of the dynamic decision 

making model, once decisions are made. For this purpose the KBS includes some 

production rules that enable to filter relevant information, regarding positive decisions 

that are made, each time some manufacturing resource or business is selected for 

accomplishing a given manufacturing order. An illustrative example is provided in 

Figure 4 representing a production rule’s pseudo-code from the KBS, which enables to 

store the data associated to MRs that have Production Costs (PC) that are half the value 

of a given product’s price and which have a Quality Score (QS) higher than 70% or a 

Number Of Complains (NOC) which is less than 4.  

 

 

 

 

 
Fig. 4. Pseudo-code example of a production rule for automatic knowledge acquisition. 
 

Through this kind of production rules the KBS is able to "learn" or update the past, 

present and future data matrices based on current selection of the manufacturing 

resources. This means that each time a MR (or business) is selected, and this decision 

is evaluated by the KBS, the KBS will automatically update its knowledge based on 

several distinct production rules, such as the one illustrated above, according to each 

specific context and requirements. This step is actually a very vital characteristic of the 

KBS, which enables it to capture data and support decision-making on a dynamic basis. 

Another important form through which the KBS can learn from the data is related to 

the manual data entries, for instance, regarding information that is gathered and 

introduced by system operators, each time new information arises, namely regarding 

data updates or previsions from stakeholders, for instance, each time future production 

and/or service prices’ tables are announced or predicted by the manufacturing resources 

or services providers managers. 

Furthermore, the smart objects are programmed with the proposed functions in order 

to enable to manage, in real time, machines and products, sending accurate, timely and 

If PC < 0,5Price 

   and QS > 70% or NCO < 4 

then Store MRi’s data 



reliable information, to workers responsible for production planning and control, 

machining, assembling and maintenance. The functions are included in the modules, 

where each one represents a type of data that a smart object can capture. Moreover, 

there is a higher level requirement about a need to distribute the whole data by the 

existing hierarchical levels in the enterprise, since each job title requires singular 

responsibilities and decision making, and the smart objects’ architecture allows 

crossover through different technological levels. 

4   Industrial Application Example of the MCDM Module 

Here we present and illustrative example of selecting a manufacturing resource for 

producing a given product, which is an adaptation from the example in [14]. 

 Let us consider six alternative manufacturing resources (MR1, MR2, ..., MR6) 

available from different factories, which can be used for producing a given set of 

products. Six criteria were chosen for both past and future data evaluation, and a 

different set of five criteria was chosen for present data evaluation, as shown in Table 

2 and Table 1, respectively. 

The present criteria are the following: Production Cost (PC); Estimated Delivery Time 

(EDT); Lead Time (LT), which refers to the amount of days needed before the product 

processing starts (quoted); Remote Operation Capability (ROC), and Distinct Product 

Batches (DPB). The DPB criterion provides information about how flexible a given 

resource is, based on its processing potential, in terms of enabling different kind of 

products to be processed simultaneously in the same resource, at the same time or 

within the same production order.  The historical and future information is evaluated 

by the six criteria: Production Cost, per hour (PC); On-time Delivery (OD); Daily Delay 

Penalization (DDP), based on the number of days orders were delayed; Quality Score 

(QS), about work delivered; Number of Complains per Order (NCO); and Portfolio 

Score (PS).  

 

Table 1. Present data about candidate manufacturing resources 

Manufacturing 

Resources 

Production 

Cost, PC 

Estimated 
Delivery 

Time, 

EDT 

Lead 

Time, 
LT 

Remote 
Operation 

Capability, 

ROC 

Distinct 

Product 
Batches, DPB 

Resource 1 - MR1 325 4 2 1 8 

Resource 2 - MR2 560 3 3 0,95 7 

Resource 3 - MR3 450 5 2 0,9 4 

Resource 4 - MR4 375 2 4 1 6 

Resource 5 - MR5 290 6 3 0,8 3 

Resource 6 - MR6 340 6 2 0,9 7 

 

 

 

 

 

 



Table 2. Past and future data about candidate manufacturing resources * 

Manufacturing 
Resources 

Production 

Cost, PC 

On-time 
Delivery, 

OD 

Daily Delay 
Penalization, 

DDP 

Quality 

Score, QS 

Number of 

Complains 

per Order, 
NCO 

Portfolio 

Score, PS 

past future past future past future past future past future past future 

MR1 60 0,95 10 0,85 2 0,9 60 0,95 10 0,85 2 0,9 

MR2 55 0,85 8 0,95 1 0,9 55 0,85 8 0,95 1 0,9 

MR3 45 0,9 4 0,96 1 0,85 45 0,9 4 0,96 1 0,85 

MR4 60 0,75 12 0,9 3 0,95 60 0,75 12 0,9 3 0,95 

MR5 65 0,9 16 0,98 1 0,95 65 0,9 16 0,98 1 0,95 

MR6                         
 

* there is no past data for MR6 and therefore no future data also. 

 

Using the values associated with each criterion for the three types of matrices (past, 

present and future) we performed the data fusion process with FIF algorithm [13], 

described in section 2 (see also the steps in the interface, Figure 3): 1) normalize the 

criteria using fuzzification; 2) filter uncertainty; 3) define criteria weights; 4) fusing 

information by aggregating criteria; 5) final ranking. Illustrating, Table 4 displays the 

results obtained for the historical matrix by performing the initial data preparation 

process.  

Table 3. Normalized historical data with corresponding relative importance*  

Criterion  PC OD DDP QS NCO PS 

Weights fuij L(fuij) fuij 

 

L(fuij)   fuij L(fuij)   fuij L(fuij)   fuij L(fuij)   fuij L(fuij) 

VI I I Av I Av 

MR1 0,25 0,699 0,9 0,96 0,455 0,781 0 0,479 0 0,479 0,248 0,489 

MR2 0,5 0,799 0,412 0,764 0,612 0,844 0,558 0,658 0,2 0,543 0,248 0,489 

MR3 1 1 0,614 0,845 0,95 0,98 0,613 0,676 0,2 0,543 0 0,419 

MR4 0,25 0,699 0 0,599 0,301 0,719 0,282 0,569 0 0,479 0,9 0,672 

MR5 0 0,599 0,614 0,845 0 0,599 0,85 0,752 0,2 0,543 0,9 0,672 

MR6                         

 

* Legend of Table 3: (a) fuij are the normalized and filtered values from Table 2 for each criteria 

(step 1 and 2 of FIF algorithm); (b) L(fuij)) – are the criteria relative importance (Step 3 of FIF), 

which depend on the satisfaction level of the criteria and on the assigned relative importance  (see 

3rd line on Table 3very important (VI); important (I); Average importance (Av)). For details on 

how to calculate Table 3 values see [13],[14].  

 

After normalizing, filtering and determining the relative importance for each 

criterion we can calculate the rating for each criteria, per alternative. Illustrating, to 

determine the rating for criteria PC of alternative MR1 with past/historical information 

from Table 3 we have:  

a) first we get the rating for each criterion, such as exemplified for PC: 

R(PC): 0.25 *0.699/3.887 = 0.045 

where,   

Sum(L(fuij)) = 0.699 + 0.960 + 0.781 + 0.479 + 0.479 + 0.489 = 3.887 



b) second we calculate the rating for alternative MR1 ,  

R(MR1) = 0.045 + 0.2223 + 0.0914 + 0 + 0 + 0.0312 = 0.389 

 

After obtaining the ratings for each matrix, past, present and future, the dynamic 

spatial-temporal process can be used [13], [14] for obtaining the final rating for all 

candidate businesses at time t by aggregating the three matrices. Table 4 illustrates the 

final rating of the dynamic process using, again, the weighted average aggregation with 

weighting functions [13] where the relative weights depend on the values satisfaction. 

The last column of Table 4 contains the final vector ratings for all candidate 

alternatives.  

 
Table 4. Final ratings 

Manufacturing 

Resource 

Historical Present Future 
Final 

rating 
rating 

Weight 

(I) rating 

Weight 

(VI) rating 

Weight 

(Av) 

MR1 0,39 0,68 0,891 0,946 0,318 0,581 0,586 

MR2 0,446 0,7 0,604 0,802 0,529 0,649 0,53 

MR3 0,666 0,779 0,377 0,689 0,421 0,614 0,498 

MR4 0,309 0,651 0,76 0,88 0,361 0,595 0,51 

MR5 0,467 0,707 0,391 0,696 0,301 0,576 0,392 

MR6 0 0,539 0,564 0,782 0 0,479 0,245 

 

Illustrating again for MR1, we determined the final score for each alternative using 

the dynamic model [13], [14] as follows, 

 

Sum(L(uij)) = 0.680+0.946+0.581=2.207 

Final score = (0.680/2.207)*0.390 + (0.946/2.207)*0.891 + (0.581/2.207)*0.318 = 

= 0.12 + 0.382 + 0.0837 = 0.586 

 

After analysing the final scores obtained we can conclude that the products 

processing task should be assigned to the top ranked candidate manufacturing resource, 

“MR1”, which displayed a final score of 0.586.   

5   Related work and contribution 

In recent years, the rapid development in information technology and in particular 

regarding internet technology turns the complex interaction and interoperability 

problems quite simpler to solve. However, despite the many advantages arising from 

these recent technologies, there are still some issues that have to be overcome 

particularly regarding collaboration levels integration and corresponding information 

processing and decision-making support that has to be assured within distributed 

manufacturing networks, which require dynamic and real-time decision making 

capabilities. Therefore, it is necessary to propose and develop frameworks, 



architectures, and methods by combining them with the current collaborative network 

models to compete within the global market scenario.  

In this direction, during the last decade, the rapid development of NICT (New 

Information and Communication Technologies), with special emphasis on the 

advancement of RFID technology, Bluetooth and Wi-Fi, allowed the development of 

new production systems tools with traceability, visibility and interoperability in real 

time facilitating planning and shop floor control [26-28]. This means that any manual 

activity, time consuming and prone to errors associated with data collection and 

processing is able to be reduced or even eliminated, since the capture and processing of 

information that takes place in real time, thus allowing a more rapid and accurate 

decision-making [26]. 

The concept of smart object plays a key role in this new generation production 

systems to explore the integration of physical objects with the technologies outlined 

above, in order to "acquire" a set of said "smart" properties.  

That is, a product throughout the supply chain, is not only a physical good, but a key 

element in the information infrastructure, through interaction with other products, 

processes and stakeholders in this same chain. To offer companies a new paradigm of 

interaction with their products and manufacturing resources are expected significant 

gains in operational efficiency. Automatic monitoring and context perception enable 

one best performance of information systems, such as Supply Chain Management, the 

Enterprise Resource Planning and Warehouse Management Systems, as they are no 

longer fed by outdated information [21]. 

Frequently, the major problem associated with the interaction of the smart objects is 

that sometimes they use different communication protocols, raising problems of 

compatibility and synchronization of information [27]. 

There is a variety of interesting and more or less closely related decision-making 

tools available, for instance [26-28].  Although, our proposed decision-making system 

provides some extensions, regarding the integration of several distinct technologies, 

among which are also included, smart objects for local and remote data collection and 

processing directly from manufacturing resources or managers. Moreover, our 

proposed system is based on a dynamic MCDM, which enables to integrate and process 

past, present and future information, regarding a variable set of criteria, according to 

each particular request arising in the context of different manufacturing management 

decision levels and requests as described before through an example of use occurring 

in the context of a clothes manufacturing environment where the system is being 

implemented and tested. 

6  Conclusion 

This paper described a knowledge based system (KBS) for supporting industrial 

management decision making in a clothes factory. The proposed KBS integrates a set 

of technologies which enable to directly interact with machines and equipment in the 

shop floor for data acquisition and its subsequent processing for supporting industrial 

management decision making (IMDM). One important tool for this IMDM is a module 

that integrates a combined dynamic multi criteria decision model (DMCDM) and data 



fusion model (FIF algorithm) for supporting evaluation and selection of manufacturing 

resources (MR), from a pool of MRs put available either locally in the clothes factory 

shop floor or in another associated factory. An illustrative example of the application 

of the MCDM plus FIF was presented in the paper for clarifying its utility for the 

proposed KBS.  

Moreover, the effectiveness of the integrated technologies and approaches was 

briefly described and illustrated through the application example provided, namely 

regarding smart objects, which play a very important role in the proposed KBS, namely 

at the shop floor level for the data acquisition and local data processing. An important 

aspect of the KBS is that data can be generated and visualized by computers and other 

devices, including the smart objects, in appropriate and distinct ways and it is also 

important to notice that the data representation schema is general for distinct kind of 

manufacturing requisites.  

For being able to fully implement the overall characteristics of the proposed KBS, 

there is still some need of further work to implement additional functionalities, as for 

instance for fully implementing the data fusion algorithm (FIF) and then tests and 

validation on the complete KBS also have to further continuing to take place.  
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