
Towards a Catalog of Usability Smells∗

Diogo Almeida
Departamento de Informática,

University of Minho,
HASLab/INESC TEC

Braga, Portugal
diogoal20@gmail.com

José Creisssac Campos
Departamento de Informática,

University of Minho
& HASLab/INESC TEC

Braga, Portugal
jose.campos@di.uminho.pt

João Saraiva
Departamento de Informática,

University of Minho
& HASLab/INESC TEC

Braga, Portugal
jas@di.uminho.pt

João Carlos Silva
Dep. de Tecnologias/DIGARC,

Instituto Politécnico do
Cávado e do Ave

Barcelos, Portugal
jcsilva@ipca.pt

ABSTRACT
This paper presents a catalog of smells in the context of interac-
tive applications. These so-called usability smells are indicators of
poor design on an application’s user interface, with the potential
to hinder not only its usability but also its maintenance and evo-
lution. To eliminate such usability smells we discuss a set of pro-
gram/usability refactorings. In order to validate the presented us-
ability smells catalog, and the associated refactorings, we present a
preliminary empirical study with software developers in the context
of a real open source hospital management application. Moreover,
a tool that computes graphical user interface behaviour models, giv-
ing the applications’ source code, is used to automatically detect
usability smells at the model level.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation (e.g., HCI)]: User
Interfaces; D.2.8 [Software Engineering]: Metrics; D.2.9 [Software
Engineering]: Management: Software Quality Assurance

General Terms
Design, Languages, Verification

Keywords
Graphical User Interfaces, Code Smells, Empirical Studies

∗This work was partially funded by the ERDF - European Re-
gional Development Fund through the COMPETE Programme (op-
erational programme for competitiveness) and by National Funds
through the FCT (Portuguese Foundation for Science and Technol-
ogy), within projects reference FCOMP-01-0124-FEDER-020484
(J. Saraiva) and FCOMP-01-0124-FEDER-020554 (J. C. Campos).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SAC’15, April 13–17, 2015, Salamanca, Spain.
Copyright c© 2015 ACM ISBN/14/04...$15.00.
DOI string from ACM form confirmation

1. INTRODUCTION

As the complexity and diversity of systems increases, software
engineers need to adapt and improve the way they develop soft-
ware. In fact, popular consumer electronic devices, like for ex-
ample a smart TV, already run complex software systems consist-
ing of millions of lines of code. Mobile computing devices are
also changing the way we interact with software: smartphone and
tablets provide powerful usability experiences, which is one of the
main reasons of their success. The fact that application need to
be accessible on all these different platforms poses additional chal-
lenges on user interface designers and programmers.

To efficenty handle large and complex interactive software sys-
tems, the development of such systems should follow software en-
gineering good practices such as, software documentation, software
testing, software design patterns, software best practises, software
quality, so that the development time and cost is minimized. The
use of such good practices also makes it easier (or possible) to
maintain and evolve such complex systems. Although there are ad-
vanced interactive frameworks, like for example WebRatio1, Sym-
fony2, and outSystems3, and approaches like [7], [4], [15] and [23]
that provide powerful abstraction mechanisms to develop and test-
ing interactive applications, the reality is that poorly designed ap-
plications are still far too common. In [12] a survey of common bad
designs of interactive applications is presented. Techniques and
tools to quantify the complexity interactive applications are pro-
posed in [15, 23]. Techniques to eliminate detected anolamies are
defined in [5, 7]. These techniques, however, consider the running
application only, and not its source code.

In the past, the software and language engineering communities
have developed a shared understanding of which characteristics in
the source code of software applications might make its compre-
hension, maintenance and, thus, evolution more complex. Features
like long methods’ names or large sets of nested conditionals are
not necessarily errors in the application’s source code, but they
might indicate a weakness in the applications’s implementation.
Martin Fowler has captured this notion under the concept of source
code smells [9]. A large catalog of such bad smells for the Java

1http//www.webratio.com
2http://symfony.com
3http://www.outsystems.com

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/154274407?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http//www.webratio.com
http://symfony.com
http://www.outsystems.com

programming language was defined. In order to eliminate such bad
smells, a set of program transformations (program refactorings)
was introduced. A program refactoring is a source-to-source pro-
gram transformation that aims at improving program comprehen-
sion, and consequently maintenance and evolution, without chang-
ing the programs external behaviour. Thus, program refactorings
are usually used to eliminate bad smells.

Although a lot of research on program smells/refactorings has
been done [6, 11, 1] and on conducting empirical studies to val-
idate such refactorings [16, 13], the human computer interaction
community has not yet fully incorporated these results in order
to improve interactive applications. While typical approaches for
evaluating user interfaces are mainly concerned with their design
(consider, for example, the review on usability evaluation methods
in [8]), implementations aspects have been shown to be relevant to-
wards the quality (that is, the usability) of interactive system. See,
for example, [2] on software architectures and usability. This begs
the question of whether the idea of code smells might be transposed
to the analysis of user interfaces.

In this paper we describe how the notion of source code smell is
adapted to interactive applications. We propose a catalog of smells,
named Usability Smells, that define usability related anomalies in
the design of interactive applications. Our catalog is based on the
original catalog of source code smells defined by Fowler.

The catalog consists of a set of six smells (Middle Man, Shot-
gun Surgery, Inappropriate Intimacy, Feature Envy, Too Many Lay-
ers and Information Overload), that directly follow Fowler’s code
smells, and their respective refactorings. To validate our catalog
we present a qualitative empirical study with real software devel-
opers. To run the study we used a smelly usability application: an
open source interactive application that manages an hospital. Thus,
software developers were asked about ther selected usability smells
identified in that application, the severety of such smell/anomaly,
and how to solve it.

Finally, the paper presents a tool that supports the automated
analysis of interactive systems, which is used to automatically rea-
son about usability smells giving a model of the application’s be-
havior. The goal is to understand how behavioural models can be
used to detect the presence of usability smells.

The remainder of the paper is structured as follows: Section 2
presents our Usability Smells Catalog, Section 3 explains and dis-
cusses how we performed an empirical evaluation of the catalog,
Section 4 discusses the automated detection of usability smells, and
is followed by the concluding remarks in Section 5.

2. A CATALOG OF USABILITY SMELLS
In order to define a catalog of smells that indicate potential prob-

lems with the usability of software applications, we considered the
well-known catalog of Fowler’s source code smells [9] and adapted
it to the usability context. Because, Fowler’s catalog was defined
in the context of object oriented programming, we do not expect all
smells to necessarily have a correspondence in software usability.
For example, the Switch Statements, according to Fowler, this code
smell happens mainly in object oriented programming. This smell
is based on lacking switch statements. The switch statements typ-
ically appears duplicated on code and they are used in conditions
like "Test if A else do next test. Test if B else do next test." and
so one. Normally, these statements can be found scattered on code.
The problem appears when is necessary change a statement of one
switch, this change will obligate the programmer change the others
switch. In these cases the program must implement polymorphism
erasing the duplicate code of Switch Statements. This smell is im-
possible to define in the Usability Smells context because the idea

of switch statements is overtake by top bars, menus, links and other
components that allow the user browse in different pages.

Following the approach of Hermans et al. [10], we consider
those Fowler’s smells that are related to interdependencies of class/object
entities in the source code. Hermans et al. considered such depen-
dencies as inter-worksheet dependencies in a spreadsheet setting.
In this paper we consider those smells as defining interdependen-
cies between windows (or panes4) in interactive software applica-
tions. Thus, we start with a catalog of six smells that we organize
in three groups: implementation, design and domain.

Smells in the implementation group are related to the structure
of the application’s source code. This group is composed by two
smells:

• Shotgun Surgery — This smell addresses the fact that user
interfaces are subject to constant change and the structure of
the applications source code might impact negatively with
the ability to change parts of the user interface.

• Too Many Layers — This smell indicates that the user is
forced to go through a cascade of windows, thus providing
poor usability.

Smells in the design group capture features of the user interface
design. This group is composed by the following two smells:

• Middle Man — This smell happens when part of a dialog is
delegated to another window needlessly.

• Information Overload — This smell occurs when too much
information is presented at once.

Finally, the domain group consists of smells that relate to poten-
tial problems in the user interface that are related to the applica-
tion’s domain:

• Inappropriate Intimacy — This smells occurs when concep-
tually distinct windows are grouped together.

• Feature Envy — This smell happens when some part of the
interface steals information or functionality that logically be-
long somewhere else in the interface.

This last group of smells appears on windows with the same do-
main that is, windows that contain related information. For exam-
ple, imagine that we have two windows: the first one displays cars’
information while the second one allows editing some car’s details.
As both windows show cars’ information, they belong to the same
domain.

Next, we discuss in detail each of these smells.

2.1 Shotgun Surgery
According to Martin Fowler, Shotgun Surgery appears when mak-

ing a single change to a system requires changing many classes in
the system. This is an implementation smell that we believe exists
most of the time because code is re-used. For example, when a pro-
grammer develops an application, it is normal to re-use some pieces
of code in different places. If the same block of code is used in 10,
100 or more places, at some point it becomes impossible for the
programmer to remember all the places where that block of code
was used. Problems appear when changes to the logic of the reused
4For simplicity sake, in what follows we will use the term window
although the same concepts and ideas can be applied to any user
interface structuring element.

code are needed, because all the places where the code is used need
to be change.

The same happens in interactive applications. We have observed,
for example, that it is normal for programmers to use the same basic
form in different windows. As the amount of reuse increases so
does the programmer’s difficulty to remember all the places where
that has happened. One solution to this is to refactor the definition
of the form into a single class or method. If the different windows
where the form is used belong to the same domain, the possibility
of redesigning the user interface so that a single window/form pair
is used (i.e. grouping all the windows into one) should also be
considered.

2.2 Too Many Layers
Too Many Layers is the second smell in the implementation group.

This smell occurs when an application has too many windows and,
to perform one task, end-users need to pass through four, five or
even more windows. The need to go through all of these windows
severely affects user performance in accomplishing the task.

One possibility to eliminate the Too Man Layers smell is for the
programmer creates a common menu to all windows with links for
each one and for example, in interactive applications, when one
window open the previous close. Another possibility is get together
all the windows with common information and structure. With this
last possible solution the user does not need course more than nec-
essary windows to complete their objectives. This possible refac-
toring helps users travel more easily in the interface without excess
of information and a better structure.

2.3 Middle Man
The Middle Man smell occurs when there are at least two win-

dows, and the first window mistakenly delegates information or
behavior to the second window. The anomaly occurs when this
information can be displayed (or the behavior performed) by the
first window with advantage, but for some reason it was decided to
delegate it to the other window.

Martin Fowler presented a good example of this smell: imagine
an employer and an employee. The employer orders the employee
to do something that he can do himself. If for any reason the em-
ployee is dismissed and the employer needs something that he has
always delegated to him, he will do not know how to do that. This
will happen because all the experience was in the employee and
not on the employer. For this reason, if we think in classes, the em-
ployer class is an empty class without logic, an unnecessary class.

We adopt this smell by mapping classes to windows or panes.
The attributes of the class become the information in the page/pane,
and the methods become available actions. To understand this map-
ping, imagine a page with a form. For some reason the user did not
fill a field of the form and then, when the user try to submit, a new
window appears and shows a message about the error. The first
window delegates the presentation of this message to the second
window. The anomaly appears when it is possible to perform a task
without needing to delegate it to another window.

Our idea of refactoring is firstly understand if the window who
delegates the task can perform it or not so, if the window can per-
form it, this task should be kept there. So the user will not be
distracted by another window and he main focus will continue in
the first one.

2.4 Information Overload
Excess of information is the most typical Usability Smell. This

smell occurs when programmers introduce more information that
is required. We can see this smell in many websites, for example,

in mobile applications normally programmers implement public-
ity systems to win some money. This publicity affects the system
usability and usually forces end-users see other sites just for per-
forming some tasks in its application. Another example is when
in some applications we see information we do not need or useless
components like buttons or links that do nothing.

2.5 Inappropriate Intimacy
We included Inappropriate Intimacy into the domain group be-

cause it does not change directly the code structure but it affects the
usability application and occurs into the windows that belong to the
same domain.

According to Martin Fowler and Felinne Hermans the smell oc-
curs when a class give more importance and has more dependences
and details from other classes.

Inappropriate Intimacy occurs when two or more windows be-
long to the same domain and the path to them are different and they
have at least one task that depends of another window. Our idea of
refactoring is first of all validate that all the windows belong to the
same domain, if this validation occurs the programmer must group
all the windows into one to facilitate end-users perform the tasks
they contain accessing only one path.

2.6 Feature Envy
Besides Inappropriate Intimacy, Feature Envy is another domain

smell. Fowler’s consider that Feature Envy appears when a class
has more dependences and details of implementation from other
classes becoming more closed.

This smell occurs when a window has at least one task that be-
longs to another window. Imagine two windows: the first one is
used to manager bank accounts and second one shows clients in-
formation. The second window has the possibility to introduce new
clients. This task does not belong to this window because its pur-
pose is to show information not managing clients’ accounts. Our
solution for this smell is trying to understand the domain and trans-
fer the wrong task to its proper place. In the example given, the
solution is transferring the possibility to introduce new clients to
first window, where end-users can manage bank accounts.

3. EVALUATION
In this section we explain how we evaluated our smells with real

programmers. This preliminary evaluation consist in getting some
reactions and answers to some questions like:

1. What is the opinion of the programmers about these smells?

2. Usability Smells affect the application usability?

3. What kind of refactoring they present to change these smells?

4. Which are the best refactoring for these Usability Smells?

To answer these research questions, we performed one quantitative
evaluation. In order to do that, we use five programmers and ask
them to look at one application and execute some tasks. We use
an application called OH-Open Hospital found on Sourceforge: an
open source applications repository. OH has the purpose to support
the management and the activities of the St. Luke Hospital in An-
gal (Uganda). The following subsections describe the results about
each one of these smells, except Feature Envy which was not found
in the case study.

3.1 Results
In general, all participants understood what usability smells are,

and agreed that all the smells are serious anomalies and that they

Figure 1: Example of Middle Man Usability Smell

hamper the application usability. When asked about how they could
change the anomalies, participants suggested solutions easily. All
participants agreed and liked our solutions to refactor the smells.
Finally, in this paper we will not present results of the Feature Envy
smell since it was not found in the OH application

Middle Man: In this smell we started by asking participants to
try edit one element without selecting it in the table. In this case,
a new window appeared showing them an error message, see fig-
ure 1. We considered this example a Middle Man smell because
there are two windows where the first one delegates to the other a
task, which in this case is showing a message. Some participants
stated that for a sporadic end-user this smell is not serious, how-
ever for a regular end-user this will be boring and will affect task
performance. In the evaluation, when ask their opinion about the
use of pop-up windows to show information, 83% of the partici-
pants disagreed. 50% agreed that information should be presented
in the same window, the other 50% refrained . According to them,
closing one window every time something is wrong is boring. The
majority of the participants stated that they prefer seeing error mes-
sages in the same window where the error occurs. They preferred
to see error messages in red and in the low right corner. However if
in a form, this red message should be to the right of where the error
occurs. In the case of messages that are informative and/or large,
then appearing in a new window was considered acceptable.

According to these responses, our refactoring is: if the results of
the task that was delegated to another windows can be fit and ad-
justed to the delegating window, they should be transferred there.
If this task is to show a message, it can appear on same window if it
is an error, or in a different window if it is information. In case the
message is informative and it is necessary to help end-users com-
plete some specific task, this informative message can be presented
in the same window too. When asked about the adequacy of our
Refactoring all participants agreed to them. Additionally some of
the participants indicated that the application become more intu-
itive and better structured.

Too Many Layers: In this case we asked participants to create
a new type of Exam. To carry out this task, participants had to go
through the four windows in figure 2. We asked participants what
they thought about going through all of these windows to realize
one task. All participants found it unappropriated. Some partici-
pants said "it is boring going through all these windows to do that",
"at some point I will not know where am I". Besides that, almost all
participants (84%) claimed that this smell could be avoided if there
was a top menu with all these options. Another solution pointed
by participants was using shortcuts and breadcrumbs to help them
know where they are in the application. The majority of partici-

Figure 2: Example of To Many Layers Usability Smell

pants (83%) believed this is a serious smell that really affects the
application usability. According to these answers, we define the
refactoring to this smell as joining all windows in a top single menu
helping end-users realize a task with less clicks and adding bread-
crumbs and shortcuts. With these changes, end-users always know
where they are and fewer steps are required to realize the tasks.
To validate the refactoring we showed our solution to participants.
According to 92% of them our refactoring helps the application by
creating a better organized and a cleaner interface.

Shotgun Surgery: In order to explain this smell to participants,
we asked them to perform five tasks. Each task guided them to five
similar windows and each one of them had one table and four but-
tons (Edit, New, Delete, Close), see figure 3. The only difference
between these windows was the table contents. Firstly, we asked
participants what they thought about the windows and all of them
answered: "for me all the windows are the same one". Secondly,
we asked if they could find some useful information in these win-
dows and some of them answered: "No, to find some information I
need to travel through all these windows". 91% of the participants
agree the windows disposition and the way that users need to find
information affected the productivity and efficiency of the tasks.
The next question was what the participants thought about joining
all these windows into one. Almost all of them (82%) agreed that
this grouping should be done and some of the participants pointed
out that that would simplify the search. After this, we explained
that, hypothetically, in all these five windows the programmers re-
used parts of code. Then, we asked participants if they felt that
having re-used the same code in ten or more places in an applica-
tion, they would remember all the places where they had done it.
75% of the participants agreed that it would be very difficult to re-
member all the places where they had re-use the code. Finally we
asked what they would change or do to resolve this anomaly. We
gather many ideas to resolve this. However, all of them said that,
if all the windows had the same domain or were equal, they could
be joined into one and that would help end-users navigate through
all of them. Some participants suggested using windows divided
into two or more views and some components like Combo Boxes
or Drop down menus to select and show all these windows. With
these answers we define our refactoring to this smell as: if pro-
grammers have re-use code in multiple windows which are in the
same domain, then joining the windows should be considered. Fi-
nally, we presented our refactoring to participants. All agreed that
identical windows should be united. If programmers re-use lots of
code in different places, another possible solution to help them re-
member all of the places is creating an application structure map.
This map must have all windows’ structures, re-use code and all the
information programmers find useful.

Figure 3: Example of Shotgun Surgery Usability Smell

Figure 4: Example of Inappropriate Intimacy Usability Smell

Inappropriate Intimacy: This Usability Smell was explained to
participants by showing them two different windows, see figure 4.
In the first one they could create, edit and delete information about
all types of vaccines in the system. In second window, participants
could manage all patients who received the vaccines. These two
windows were in different places and were accessed with different
paths. Firstly, we asked participants if they thought that these two
windows belonged to same domain; 92% of participants agreed.
However, they added that it was difficult to understand the win-
dows’ domain because they were separated and in different places
in the application. 83% of participants agreed that joining these
two windows in the same menu would help them to more easily
understand where they were and what their purpose was, increas-
ing tasks productivity. When asked what they would change, the
answers were: "joining windows in the same domain is a good so-
lution" and "using shortcuts really helps". The majority of par-
ticipants (66%) considered that this is a serious anomaly and for
25% this smell is indifferent. With these answers, we define our
refactoring to Inappropriate Intimacy as: if two windows have the
same domain, they should be together if that increases application
usability. Some solutions are: joining windows into the same win-
dow, assigning them the same path in the application menu and
use components like Shortcuts in both windows, helping end-users
travel between them. When we showed our solution to participants
92% of them agreed that the refactoring increases application us-
ability helping them navigate in the interface.

Information Overload: The last Usability Smell that we ana-
lyzed was Information Overload. In this case, we asked participants
to open the Pharmaceuticals Stock window. This window aims to

Figure 5: Example of Information Overload Usability Smell

help end-users manager and search all medicines in the hospital.
In this window we can see lots of unnecessary information, such
as unnecessary titles - for example, explaining end-users that a ta-
ble is a table, or that buttons are buttons (see figure 5) - and quite
complex advanced search dialogue. In the first case, all participants
were asked what was the purpose of explain that a table is a table
or a group of buttons is a group of buttons. All stated that the ti-
tles are unnecessary. In the second case, lots of possibilities in the
advanced search dialog makes it difficult for the end-users to un-
derstand how they can execute a search. We observed that almost
all participants initially payed more attention to areas with more
components, forgetting others. Indeed, they stated that they did
not understand the purpose of these components because they were
too many. When ask about the excess of information in the ap-
plication, 92% agreed that it affected productivity and application
readability. For 50% of the participants Information Overload is
a serious anomaly that really affects application usability, and only
25% disagree with this sentence. In our opinion, excess of informa-
tion may be caused by misuse of the components of the tools that
the programmer uses. Our refactoring to Information Overload is:
understand if an application has excessive information and remove
it. To help the programmer find this excess of information usabil-
ity tests can be carried out. If not feasible, programmers might ask
others to help them identifying these excesses.

4. SMELLING GUI BEHAVIOUR MODELS
WITH GUISURFER

In the previous sections we presented both a catalog of usability
smells and an empirical study with software developers to validate
it. Although programmers may relate the usability smells to the
source code of the application, we wish to automate this process.
Thus, we extended a tool that extracts GUI behaviour models given
the source code of an interactive application, so that it identifies
in the GUI model usability smells. By identifying the smells at a
behaviour model level rather than at source code level, we provide
a more concise and abstract view of the usability smell. Our idea is
to further extend this tool with a set of program/model refactorings
that the user can select in order to eliminate the smell: the selected
refactoring is performed both at model and source code level.

The GUISURFER framework [20] provides libraries and tools
that support the automated analysis of interactive systems. The
tool uses advanced software language engineering techniques, like
strategic programming [17], program slicing, model-driven engi-
neering [19] and model-based testing [18], to extract realistic GUI
behaviour models from the source code of an interactive applica-
tion.

In this paper we extend the GUISURFER tool in order to identify
usability smells of our catalog, in the generated behavior model.
This is our first step in providing a full usability refactoring frame-
work for interactive applications.

The GUISURFER was developed following a traditional modu-
lar approach as shown by its architecture displayed in Figure 6:
It consists of a language dependent front-end (Figure 6: left col-
umn), which includes different parsers for different languages: cur-
rently supporting Java, Wx/Haskell [14] (a portable and native GUI
library for Haskell programming language), and GWT [21] (an

Figure 6: The GUISURFER Architecture (left and center) and generated smelly GUI behavioural model (right).

open source set of tools that allows web developers to create and
maintain complex JavaScript front-end applications in Java). The
language dependent front-end uses a generic abstract syntax tree
(AST) implementation that is able to represent any programming
language [22]. This generic AST is then traversed by generic strate-
gic traversal functions that slice out the language dependent GUI
aspect of the source code (Figure 6: top left column).

The back-end of GUISURFER is independent of the applications
programming language, and it computes GUI behavior models from
the GUI aspects produced by the language dependent front-end
(Figure 6: center column). These graph-based models abstract all
the interface widgets and their relationships. It also automatically
generates finite state machine, modeling the interface. These mod-
els are illustrated through state diagrams in order to make them
visually appealing [19].

In order to identify usability smells in the generated GUI be-
havioral models, we apply different graph based metrics and algo-
rithms to the inferred graph-based models which are able to com-
pute such smells (6: bottom center column). As a result, GUISURFER
generates GUI smelly models, that is to say that it produces models
with the usability smells identified marked in red in the visual rep-
resentation of model (Figure 6: right column). Moreover, we ex-
tended the generated models so that when the user selects a red re-
gion, a notification identifying the smell is automatically displayed.

To detect usability smells in the generated models, we use dif-
ferent metrics/algorithms. For example, the pagerank link analysis
algorithm is used to represent the probability that users randomly
executing events will arrive at any particular state [3]. We use this
analysis to compute the relative importance of the model states.
Larger nodes define window internal states with higher importance
within the overall application behavior. With this analysis we are
able to identify the Middle Man smell (cf. section 2.3): This smell
occurs in such a model when there are at least two windows, and
the first window delegates its information or behavior to the sec-
ond window. In fact, the GUI smelly model displayed in Figure 6
(right) displays the automatically generated behavior model for the
hospital management system used in the empirical study, where the
middle man smell is marked in red.

In this paper, and mainly due to space limitations, we presented

the definition of a single smell of our catalog in terms of the gen-
erated behavior model. The current version of GUISURFER im-
plements the detection of smell in the models, only. We are now
implementing the corresponding catalog of usability refactorings
so that users can select which refactor to perform in order to elimi-
nate the smell in the model. In such an implementation, the source
code will co-evolve too.

5. CONCLUSION
Considering interactive systems, two perspectives on quality can

be considered. A first one related to the implementation, where
programmers are typically more focused on the quality attributes of
the code being produced. And a second one where main concerns
focus the quality of the interaction between users and systems.

This paper introduced usability smells that are indicators of poor
design on an application’s user interface. A catalog of six usability
smells has been defined and structured in three groups: implemen-
tation, design an domain. For each usability smell we associated
a usability refactoring. Using the defined catalog we detected 5
usability smells in the context of a real open source hospital man-
agement application.

To validate our usability smells catalog, and the associated refac-
torings, we presented a preliminary empirical study with software
developers in the context of the hospital management application.
Although the small number of participants in the study does not al-
low a relevant statistic analysis of the results, a qualitative analysis
of the study provides interesting results: Firstly, most participants
agreed with the detected smells, pointing out refactoring ideas that,
for the most part, were aligned with our own proposed refactor-
ings. Secondly, the users agreed with the refactorings suggested
for each Usability Smell. Lastly, the GUISURFER tool has been
used to support the detection of usability smells from behavioral
models. Dialogue models have been used to detect the presence of
likely usability smells.

Our objective has been to define a catalog of usability smells and
associated refactorings. After validating this study through an em-
pirical study we believe this style of approach can fill a gap between

the analysis of code quality via the use of metrics or other tech-
niques, and usability analysis performed on a running system with
real users. The automated detection of usability smells through
GUISURFER seems to be a promising approach allowing us to eas-
ily visualize usability smells. One potential interesting follow up
on this work is to combine smell detection with model-based test-
ing in order to improve the quality of the testing process by using
smells as guide to relevant features to test.

6. REFERENCES
[1] R. Abreu, J. Cunha, J. P. Fernandes, P. Martins, A. Perez, and

J. Saraiva. Smelling faults in spreadsheets. In 2014 IEEE
International Conference on Software Maintenance and
Evolution (ICSME), pages 111–120. IEEE Computer
Society, Sept 2014.

[2] L. Bass, B. E. John, N. Juristo, and M.-I. Sanchez-Segura.
Usability-supporting architectural patterns. In Proc. 26th Int.
Conf. on Software Engineering, ICSE ’04, pages 716–717.
IEEE Computer Society, 2004.

[3] P. Berkhin. A survey on pagerank computing. Internet
Mathematics, 2:73–120, 2005.

[4] W.-K. Chen and J.-C. Wang. Bad smells and refactoring
methods for gui test scripts. In T. Hochin and R. Y. Lee,
editors, SNPD, pages 289–294. IEEE Computer Society,
2012.

[5] W.-K. Chen and J.-C. Wang. Bad smells and refactoring
methods for gui test scripts. In Software Engineering,
Artificial Intelligence, Networking and Parallel Distributed
Computing (SNPD), 2012 13th ACIS International
Conference on, pages 289–294, Aug 2012.

[6] J. Cunha, J. P. Fernandes, H. Ribeiro, and J. Saraiva. Towards
a catalog of spreadsheet smells. In Proceedings of the 12th
International Conference on Computational Science and Its
Applications - Volume Part IV, ICCSA’12, pages 202–216,
Berlin, Heidelberg, 2012. Springer-Verlag.

[7] B. Daniel, Q. Luo, M. Mirzaaghaei, D. Dig, D. Marinov, and
M. Pezzè. Automated gui refactoring and test script repair. In
Proceedings of the First International Workshop on
End-to-End Test Script Engineering, ETSE ’11, pages
38–41, New York, NY, USA, 2011. ACM.

[8] A. Dix, J. E. Finlay, G. D. Abowd, and R. Beale.
Human-Computer Interaction (3rd Ed). Prentice-Hall, 2003.

[9] M. Fowler. Refactoring: Improving the Design of Existing
Code. Addison-Wesley Professional, 1999.

[10] F. Hermans, M. Pinzger, and A. van Deursen. Detecting and
visualizing inter-worksheet smells in spreadsheets. In Proc.
34th Int. Conf. on Software Engineering, ICSE ’12, pages
441–451. IEEE Press, 2012.

[11] F. Hermans, M. Pinzger, and A. van Deursen. Detecting and
refactoring code smells in spreadsheet formulas. Empirical

Software Engineering, pages 1–27, 2014.
[12] J. Johnson. GUI Bloopers 2.0. Morgan Kaufmann, 2007.
[13] M. Kim, T. Zimmermann, and N. Nagappan. An empirical

study of refactoring challenges and benefits at microsoft.
IEEE Transactions on Software Engineering, 40(7), July
2014.

[14] D. Leijen. wxhaskell: A portable and concise gui library for
haskell. In Proceedings of the 2004 ACM SIGPLAN
Workshop on Haskell, Haskell ’04, pages 57–68, New York,
NY, USA, 2004. ACM.

[15] A. Miniukovich and A. De Angeli. Quantification of
interface visual complexity. In Proceedings of the 2014
International Working Conference on Advanced Visual
Interfaces, AVI ’14, pages 153–160, New York, NY, USA,
2014. ACM.

[16] G. H. Pinto and F. Kamei. What programmers say about
refactoring tools?: An empirical investigation of stack
overflow. In Proceedings of the 2013 ACM Workshop on
Workshop on Refactoring Tools, WRT ’13, pages 33–36,
New York, NY, USA, 2013. ACM.

[17] J. Silva, J. C. Campos, and J. Saraiva. Combining formal
methods and functional strategies regarding the reverse
engineering of interactive applications. In Interactive
Systems, volume 4323 of Lecture Notes in Computer
Science, pages 137–150. Springer, 2007.

[18] J. Silva, J. Saraiva, and J. Campos. A generic library for GUI
reasoning and testing. In SAC ’09: Proc. ACM Symp. on
Applied Computing, pages 121–128. ACM, 2009.

[19] J. C. Silva, J. C. Campos, and J. Saraiva. Models for the
reverse engineering of Java/Swing applications. In 3rd Int.
Wksp on Metamodels, Schemas, Grammars, and Ontologies
for Reverse Eng., number 1/2006 in Mainzer Informatik-
Berichte. Johannes Gutenberg-Universität Mainz, 2006.

[20] J. C. Silva, C. Silva, R. D. Gonçalo, J. Saraiva, and J. C.
Campos. The GUISurfer tool: Towards a language
independent approach to reverse engineering GUI code. In
Proc. 2nd ACM SIGCHI Symp. Eng. Interactive Computing
Systems, EICS ’10, pages 181–186. ACM, 2010.

[21] A. Tacy, R. Hanson, J. Essington, and A. Tökke. GWT in
Action. Manning Publications Co., 2nd edition, 2013.

[22] M. G. T. Van den Brand, H. A. de Jong, P. Klint, and P. A.
Olivier. Efficient annotated terms. Softw. Pract. Exper.,
30(3):259–291, Mar. 2000.

[23] M. Zen and J. Vanderdonckt. Towards an evaluation of
graphical user interfaces aesthetics based on metrics. In
M. Bajec, M. Collard, and R. DeneckÃĺre, editors, IEEE 8th
International Conference on Research Challenges in
Information Science, RCIS 2014, Marrakech, Morocco, May
28-30, 2014, pages 1–12. IEEE, 2014.

	1 Introduction
	2 A Catalog of Usability Smells
	2.1 Shotgun Surgery
	2.2 Too Many Layers
	2.3 Middle Man
	2.4 Information Overload
	2.5 Inappropriate Intimacy
	2.6 Feature Envy

	3 Evaluation
	3.1 Results

	4 Smelling GUI Behaviour Models with GUISurfer
	5 Conclusion
	6 References

