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ABSTRACT  Cathepsin D has garnered increased attention in recent years, 

mainly since it has been associated with several human pathologies. In partic-

ular, cathepsin D is often overexpressed and hypersecreted in cancer cells, 

implying it may constitute a therapeutic target. However, cathepsin D can 

have both anti- and pro-survival functions depending on its proteolytic activi-

ty, cellular context and stress stimulus. Therefore, a more detailed under-

standing of cathepsin D regulation and how to modulate its apoptotic func-

tions is clearly needed. In this review, we provide an overview of the role of 

cathepsin D in physiological and pathological scenarios. We then focus on the 

opposing functions of cathepsin D in apoptosis, particularly relevant in cancer 

research. Emphasis is given to the role of the yeast protease Pep4p, the vacu-

olar counterpart of cathepsin D, in life and death. Finally, we discuss how in-

sights from yeast cathepsin D and its role in regulated cell death can unveil 

novel functions of mammalian cathepsin D in apoptosis and cancer. 
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CATHEPSINS 

Cathepsins are members of a large protease family, which 
can be subdivided according to their structure and active-
site amino acid into cysteine (cathepsins B, C, F, H, K, L, O, S, 
V, W, and X), serine (cathepsins A and G), and aspartic ca-
thepsins (cathepsins D and E). While cathepsins B, L, H, C 
and D are ubiquitously expressed in human tissues, expres-
sion of cathepsins A, G, K, S, V, X and W is tissue and cell 
type specific [1-4]. In general, cathepsins are found in acid-
ic cellular organelles, lysosomes and endosomes. Initially, 
their function was thought to be limited to bulk degrada-
tion of proteins delivered to the lysosome by endocytosis 
or autophagocytosis. However, it was later demonstrated 
that cathepsins possess highly specific and directed proteo-
lytic activity, and that they can be found in other cellular 
compartments [5-10]. Numerous physiological functions of 
cathepsins have been uncovered, including a role in hor-
mone and antigen processing, bone and tissue remodeling, 
growth factor and proenzyme activation and, more recent-
ly, in the immune response [5, 6, 11-13]. Cathepsins also 
participate in apoptosis and are translocated from the ly-
sosomal lumen to the cytosol of mammalian cells through 
lysosomal membrane permeabilization (LMP) in response 

to a variety of apoptotic signals [14-16]. These lysosomal 
proteases can also be secreted from the cell and degrade 
extracellular matrix proteins such as collagen, fibronectin, 
proteoglycans and laminin [17]. 

In addition to their physiological function, cathepsins 
have also been associated with several pathologies such as 
cardiovascular diseases, osteoporosis, rheumatoid arthritis, 
atherosclerosis and cancer [6, 11, 17-19]. Elucidating the 
mechanisms underlying the involvement of cathepsins in 
the pathogenesis of these diseases, and how they can be 
modulated to develop new prevention and therapeutic 
strategies, has therefore taken center stage. Among ca-
thepsins, cathepsin D (CatD) has attracted increased atten-
tion in recent years due to its importance in the mediation 
of lysosomal cell death pathways and in cancer. In this re-
view, we will concentrate on both physiological and patho-
logical functions of CatD, as well as on yeast as a model 
system to study CatD pathophysiology. 

 

ROLE OF CATHEPSIN D IN CELLULAR PHYSIOLOGY AND 

PATHOLOGY 

CatD is a soluble aspartic endopeptidase found in the lyso-
somes of most mammalian cells. Like other cathepsins, 
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TABLE 1. Cellular roles of cathepsin D in physiological and pathological processes. 

Role Model References 

Limited proteolysis of proteins regulating cell growth and/or 
tissue homeostasis 

In vivo: CatD-deficient mice [43] 

Postnatal tissue homeostasis including tissue renewal, remod-
eling, aging and RCD 

In vivo: CatD-deficient mice; CatD-mutant mice [44-47] 

Neuronal ceroid lipofuscinosis in both animals and humans 
characterized by severe neurodegeneration, developmental 
regression, visual loss and epilepsy 

In vivo: CatD-deficient mice; CatD-mutant mice  
Human pathologies 
Animal diseases 

[45, 48-51] 

Wound healing, epidermal differentiation and pathological 
conditions such as psoriasis 

In vivo: CatD-deficient mice 
In vitro: normal and psoriatic keranocytes 
Human patients 

[52-54] 

Proliferation and regeneration in keratinocytes and possibly in 
skin regeneration 

In vitro: keratinocyte cell line HaCaT [38] 

Processing of proteins involved in Alzheimer disease pathogen-
esis, such as apolipoprotein E (apoE) and Tau protein 

Human patients 
Recombinant protein 

[55, 56] 

Post-partum cardiomyopathy resulting in heart failure In vivo: mutant mice [57] 

Autism pathogenesis  Autistic subjects [58] 

Innate immune responses and Parkinson disease 
In vivo: CatD-deficient mice  
Human patients  

[59, 60] 

Intracellular metabolism, transport of phospholipids and cho-
lesterol 

Human patients  [61] 

Atherosclerotic lesions associated with proCatD release from 
monocyte-derived macrophages 

Atherosclerosis patients 
In vitro: cultured atherosclerotic plaques 

[62] 

 

CatD is activated by proteolytic cleavage of the synthetized 
inactive zymogen (preproCatD), which is composed of an 
N-terminal signal peptide, a propeptide, and a catalytic 
domain [20-22]. The signal peptide directs the nascent 
chain to the endoplasmic reticulum, where it is cleaved in 
the lumen. ProCatD is then N-glycosylated and transported 
to the Golgi, where the N-glycan structures acquire man-
nose-6phosphate (Man-6P) residues that can bind to Man-
6P receptor(s) (Man-6PR), and the complex is directed to 
the lysosomal compartment [23]. In the acidic milieu, pro-
CatD (52 kDa) undergoes further proteolytic processing by 
cleavage of the proregion, resulting in the 48 kDa single 
chain intermediate active form. Finally, this chain is pro-
cessed into mature active CatD, composed of heavy (34 
kDa) and light (14 kDa) chains linked by non-covalent inter-
actions [24-26]. It has been shown that CatD processing 
involves cysteine cathepsins [26, 27] and, more recently, 
that it is independent of its own catalytic function and au-
to-activation but requires CatL and CatB [28]. Although 
proCatD and CatD are mostly intracellular, they can also 
localize in the extracellular matrix and synovial fluid of 
cartilage [29-31]. ProCatD/CatD are also found in human, 
bovine and rat milk [32-34], serum, sweat and urine [35, 
36], and extracellularly in macrophage-rich regions of ath-
erosclerotic lesions [37]. ProCatD secretion by human 
keranocytes [38], mammalian epithelial cells [39] and dif-
ferent types of cancer cells [18, 40] was also demonstrated. 

It is widely accepted that the major function of CatD is 
its involvement in general protein degradation and turno-
ver within the lysosomal compartment. However, CatD has 

also emerged as an important regulator and signaling mol-
ecule with numerous physiological functions. These include 
activation of enzymatic precursors, prohormones and 
growth factors, processing of brain-specific antigens, tissue 
homeostasis, and participation in apoptosis [18, 41]. CatD 
has also been associated with different pathological sce-
narios such as cancer progression and metastasis, Alz-
heimer’s disease, atherosclerosis and inflammatory disor-
ders [11, 12, 40, 42], and found to be a specific biomarker 
for several pathologies. The involvement of CatD in both 
physiological and pathological processes has been ad-
dressed in multiple studies, some of which are summarized 
in Table 1 [38, 43-62]. A more detailed description of the 
role of CatD in cancer is given below. 

 

THE ROLE OF CATHEPSIN D IN CANCER 

Numerous reports have demonstrated that CatD is overex-
pressed in several cancer types [18, 40, 42, 63-65], often 
correlating with poor prognosis. In particular, CatD is con-
sidered an independent prognostic marker in breast cancer 
associated with metastatic risk [66-68] and in colorectal 
cancer (CRC) [69, 70]. Mechanistically, the majority of re-
ports attribute its role in cancer to overexpression of pro-
CatD. As an example, transfection of rat tumor cells with 
human proCatD cDNA leads to increased proliferation, 
invasion and metastasis in vitro and in vivo [71]. According-
ly, anti-proCatD antibodies can inhibit tumor growth both 
in vitro and in vivo [72-74]. Overexpressed proCatD escapes 
normal targeting routes and is hypersecreted to the extra-
cellular milieu, where it can act in multiple fashions. On 
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one hand, it can exert an autocrine effect, inducing cancer 
cell growth by interacting with cell surface receptors [72, 
75-77]. This autocrine role has so far been observed in 
breast, prostate, ovarian and lung cancer cells [72-74, 78]. 
In addition, proCatD can play a crucial paracrine role in the 
tumor microenvironment by stimulating fibroblast out-
growth and tumor angiogenesis [71, 79], as well as inhibit-
ing anti-tumor responses [80]. When in the tumor micro-
environment, proCatD may also affect stromal cell behav-
ior and/or degrade components from the extracellular ma-
trix [81, 82], including the release of growth factors [83]. 
Although it has been suggested that proCatD can be pro-
cessed in the acidic extracellular space to catalytically ac-
tive CatD [84], the enzymatic activity of CatD is reportedly 
not required for its mitogenic role. Indeed, a proteolytically 
inactive mutant of CatD (D231N) is still mitogenic for fibro-
blasts [85], as well as for cancer cells both in vitro, in three-
dimensional matrices, and in athymic nude mice [71, 86]. 
Similarly, proCatD stimulates angiogenesis in tumor xeno-
grafts of athymic nude mice independently of its catalytic 
activity [85], also suggesting that CatD can signal through 
protein-protein interactions.  

Though less extensive, there are also examples of CatD 
roles in cancer cells that are not attributed to proCatD. For 
instance, intracellular CatD can stimulate cancer cell 
growth by inactivating secreted growth inhibitors [87, 88]. 
Moreover, mature CatD released into the cytosol as a con-
sequence of the reportedly higher susceptibility of cancer 
cells to LMP [15, 89] may interact with and/or degrade pro- 
and anti-apoptotic proteins, modulating cell death [41].  

Targeting CatD is a promising strategy in the clinic, but 
requires further detailed elucidation of its mechanisms of 
action. In the following section, we focus on the role of 
CatD in the apoptotic process, which is of particular rele-
vance for cancer research. These studies may however also 
offer clues into the function of CatD in other physiological 
and pathological scenarios. 

 

OPPOSING FUNCTIONS OF CATHEPSIN D IN APOPTOSIS 

In recent years, multiple studies have shown that CatD is a 
central player in the apoptotic response, both under physi-
ological and pathological conditions. In fact, depending on 
the cell type and context, CatD can induce or inhibit apop-
tosis, acting through different mechanisms [41]. On one 
hand, CatD can directly induce apoptosis triggered by sev-
eral stimuli such as staurosporine [90], etoposide, 5-
fluorouracil and cisplatin [91], as well as resveratrol [92] 
and others, possibly mediated by intrinsic or extrinsic 
pathways [41]. In the intrinsic pathway, the role of CatD is 
linked to the release of mature 34 kDa CatD into the cyto-
sol and cleavage of Bid to form tBid, triggering insertion of 
the pro-apoptotic protein Bax into the mitochondrial 
membrane [15]. Subsequent mitochondrial outer mem-
brane permeabilization leads to the release of pro-
apoptotic molecules such as cytochrome c and apoptosis 
inducing factor (AIF) to the cytosol [15]. For instance, it has 
been shown that CatD mediates cytochrome c release and 
caspase activation in human fibroblasts undergoing stauro-

sporine-induced apoptosis [90], and cleaves Bid and pro-
motes apoptosis via oxidative stress-induced LMP in hu-
man neutrophils [93]. In addition, Pepstatin A and/or 
knockdown of CatD expression by RNA interference pre-
vent resveratrol toxicity, impeding Bax oligomerization, 
mitochondrial membrane permeabilization, cytochrome c 
release and caspase 3 activation in DLD1 and HT29 CRC cell 
lines [92]. One study also reports that CatD mediates selec-
tive release of AIF in T lymphocytes entering the apoptosis 
early commitment phase through activation of Bax in a Bid-
independent manner [94]. This shows that CatD can be 
involved in caspase-independent apoptosis by activating 
Bax independently of Bid cleavage. Other studies strongly 
suggest that cytosolic CatD may have an additional role 
involving protein-protein interactions. As examples, it has 
been shown that overexpression of either catalytically ac-
tive or inactive CatD by cancer cells enhances apoptosis-
dependent chemo-sensitivity [95], and that stress-induced 
apoptosis is not affected in fibroblasts synthesizing a cata-
lytically inactive CatD [96]. Additionally, microinjection of 
inactive proCatD into the cytosol of both human fibroblasts 
and HeLa cells induces apoptosis [97]. Interestingly, one 
report also indicates that cytosolic mature CatD may reach 
the nucleus during cell death [98]. 

In contrast with the multiple studies showing CatD is 
pro-apoptotic, other studies describe an anti-apoptotic 
function of CatD. Most of these suggest it plays an anti-
apoptotic role in cancer cells. For example, CatD down-
regulation sensitizes human neuroblastoma cells to doxo-
rubicin-induced apoptosis, while CatD overexpression has 
the opposite effect [99]. Accordingly, inhibition of CatD 
with pepstatin A induces caspase-dependent apoptosis in 
neuroblastoma cell lines [100]. Moreover, overexpression 
of intracellular CatD in mouse xenografs using rat-derived 
cell lines inhibits apoptosis [71], and expression of wild 
type or a catalytic mutant of CatD promotes survival and 
invasive growth of CatD-deficient fibroblasts [85]. Another 
study in glioblastoma cells proposes that CatD stimulates 
autophagy induction, inhibiting apoptotic cell death under 
genotoxic conditions [101]. More recently, we showed that 
inhibition of CatD in CRC cells with small interfering RNA 
(siRNA) or pepstatin A enhances acetate-induced apoptosis 
associated with a decrease in mitochondria degradation 
independently of autophagy [102, 103]. An anti-apoptotic 
role of CatD has also been described under physiological 
conditions using CatD-deficient mice [43-45]. Indeed, mu-
tant mice developed apoptosis in the thymus, thalamus 
and retina. 

In summary, it is well documented that CatD plays an 
important role in apoptosis regulation, both with and 
without involvement of its proteolytic activity. However, 
the exact role of CatD in apoptosis, particularly what de-
termines whether this protease plays an anti- or pro-
apoptotic function remains poorly understood. In this re-
gard, a simpler model system would be particularly useful 
to offer additional clues into this dichotomy. 
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YEAST VACUOLAR PROTEASES 

The versatility of the yeast Saccharomyces cerevisiae to 
study several conserved cellular functions such as cell me-
tabolism, cell cycle, cell death and organelle biogenesis has 
justified the attractiveness of this system to study more 
complex mammalian physiological and pathological pro-
cesses [104-108]. Like other organelles, the yeast vacuole is 
functionally similar to its higher eukaryote counterpart, the 
lysosome. It harbors seven characterized proteases, name-
ly three aminopeptidases, three serine proteases and one 
aspartyl protease. Among these, two are endopeptidases: 
proteinase A (Pep4p), ortholog to human CatD, and pro-
teinase B (Prb1p). Five are exopeptidases: carboxypepti-
dase Y (CPY), ortholog to human CatA, carboxypeptidase S 
(CPS1), aminopeptidase I (Ape1) and Y (Ape3), and dipepti-
dylaminopeptidase B (Dap2).  

More recently, Hecht et al. reported an eighth vacuolar 
protease, a transmembrane metalloprotease (Pff1) [109], 
but although evidence of Pff1 vacuolar localization was 
shown, its proteolytic activity has yet to be demonstrated.  

The endopeptidases are responsible for the majority of 
bulk protein degradation, including of plasma membrane 
proteins. They are also fundamental for activation of the 
vacuolar proteolytic cascade, particularly Pep4p, since it is 
involved in proteolytic activation of Prb1p, CPY and Ape1 
[110, 111]. Prb1p, in turn, participates in the activation of 
Pep4p, CPY, CPS1, Ape1 and Ape3. Both carboxypeptidases 
and Ape1 are involved in peptide and glutathione degrada-
tion, respectively, but are not required for zymogen activa-
tion [111, 112].  

Substrates for the vacuolar proteases are mostly im-
ported via endocytosis (extracellular and cell surface pro-
teins) or autophagy (cytoplasmic material and organelles). 
Autophagy is activated under nutrient deprivation condi-
tions, and both Pep4p and Prb1p are implicated in the dis-
solution of autophagic bodies [113, 114].  

In addition, vacuolar proteases play a role in sporula-
tion. While absence of Prb1p activity alone results in partial 
reduction of sporulation, absence of Prb1p activity in a 
mutant lacking both CPY and CPS1 leads to almost com-
plete loss of sporulation ability [115]. In addition to ensur-
ing protein homeostasis under physiological conditions, 
vacuolar proteolysis therefore also appears to be a stress-
responsive process, particularly under nutrient stress con-
ditions and during sporulation. However, additional roles 
for vacuolar proteases have emerged in recent years, in 
particular for Pep4p. 

 

Pep4p PROTEASE - THE YEAST CATHEPSIN D 

Yeast CatD (Pep4p), like its lysosomal counterpart, is syn-
thesized as an inactive zymogen, traveling via the endo-
plasmic reticulum and Golgi to the acidic vacuoles, where it 
is activated through proteolytic removal of the inhibitory 
propeptide [116]. Although Pep4p is mainly located in the 
vacuole, different cell death stimuli can lead to its release 
to the cytosol, involving a selective vacuolar membrane 
permeabilization (VMP) typical of apoptotic death.  

Mason et al. were the first to report that Pep4p trans-
locates from the vacuole to the cytosol [117]. These au-
thors observed an increase in nuclear permeability associ-
ated with increased accumulation of reactive oxygen spe-
cies (ROS) during H2O2-induced cell death, and found that 
Pep4p is released into the cytosol and degrades nucleo-
porins during this process. However, Pep4p did not affect 
resistance to H2O2-induced cell death, probably because it 
migrates out of vacuoles after cells are effectively unviable. 
They further showed that the release of a Pep4p-EGFP 
(Enhanced Green Fluorescent Protein) fusion from the vac-
uole in H2O2-treated cells was not associated with major 
rupture of the vacuolar membrane, as cells maintained a 
vacuolar lumen morphologically distinct from the cytosol. 
Other authors reported that Pep4p is involved in protein 
degradation and removal of oxidized proteins during H2O2-
induced oxidative stress, but also did not ascribe a role for 
this protease in cell death induced by H2O2 [118].  

Another study showed that stabilization of the actin cy-
toskeleton caused by lack of the actin regulatory protein 
End3p leads to loss of mitochondrial membrane potential, 
accumulation of ROS, increase in VMP and consequent 
migration of Pep4p to the cytosol, as well as apoptotic cell 
death [119]. In that study, Pep4p-EGFP was visualized ex-
clusively in the vacuole lumen in wild type cells, but dis-
tributed throughout the entire cell in an END3-deficient 
strain. Again, no role was attributed to this protease in 
actin-stabilized dying cells.  

Pep4p is also involved in programmed nuclear destruc-
tion during yeast gametogenesis [120]. Using cells co-
expressing Pep4p-mCherry and Vma1-GFP, a GFP-tagged 
vacuolar membrane protein, Pep4p was shown to translo-
cate from the vacuole into the ascal compartment of early 
postmeiotic cells during sporulation, with preservation of 
vacuolar integrity.  

These observations show that VMP seems to mimic 
LMP in human cells. However, they do not indicate wheth-
er yeast vacuolar proteases play a role in cell survival and 
regulated death.  

In this regard, it has been shown that Pep4p has a pro-
survival role during chronological aging, since a Pep4p-
deficient mutant has a shortened lifespan associated with 
higher levels of carbonylated proteins [118]. Carmona-
Gutiérrez et al. further showed that deletion of PEP4 re-
sults in both apoptotic and necrotic cell death during 
chronological aging [121]. Using a panel of Pep4p mutants, 
they conclude that Pep4p plays a dual pro-survival role 
composed of both anti-apoptotic and anti-necrotic func-
tions, conferred by its proteolytic activity and its proteolyt-
ically inactive propeptide, respectively. We also previously 
found that Pep4p-EGFP translocates to the cytosol during 
acetic acid-induced apoptosis involving selective VMP in S. 

cerevisiae W303 cells, with preservation of both vacuolar 
and plasma membrane integrity [122]. Moreover, we 
demonstrated that Pep4p is required for increased cell 
survival and for efficient autophagy-independent mito-
chondrial degradation in response to this acid in a manner 
depending on its catalytic activity [122, 123]. This suggests 
that VMP associated with Pep4p release may act as an 
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alternative mitochondrial degradation process, delaying 
cell death. In contrast, we recently demonstrated that ab-
sence of PEP4 resulted in increased resistance to acetic 
acid in S. cerevisiae BY4741 cells [124]. This prompted the 
hypothesis that Pep4p plays a dual function in acetic acid-
induced cell death depending on the genetic background, 
providing an interesting tool to explore the molecular de-
terminants of CatD function. 

 

YEAST AS A TOOL TO EXPLORE THE ROLE OF CATHEP-

SIN D IN APOPTOSIS AND CANCER 

It is widely established that the process of regulated cell 
death (RCD) involves a genetically encoded molecular ma-
chinery [125]. Core components of this machinery are con-
served in yeast, which can undergo RCD exhibiting typical 
markers of apoptosis, autophagy and necrosis [126-128]. 
Thus, this eukaryotic organism has been used extensively 
to study the molecular mechanisms of RCD pathways, re-
viewed elsewhere [126-129]. These studies encompass not 
only analysis of yeast endogenous death pathways but also 
heterologous expression of human proteins involved in 
apoptosis, such as caspases, Bcl-2 family proteins, PKC 
isoforms and the p53 tumor suppressor protein [130, 131]. 

As discussed above, the role of the lysosome-like vacu-
ole in the regulation of RCD has been investigated in yeast, 
where it has been shown to play a role similar to lysosomes 
[132, 133]. However, the use of this model organism to 
study lysosomal cell death pathways in general and ca-
thepsin function in particular is still underexplored. So far, 
only translocation of Pep4p to the cytosol during yeast 
apoptosis has been clearly demonstrated by different au-
thors [117, 119, 122]. One other study shows that the 
RNase T2 family member Rny1p is also released from the 
vacuole into the cytosol during oxidative stress, with 
preservation of vacuolar membrane integrity, directly 
promoting cell death [134]. The need for a comprehensive 
analysis of the VMP process and the vacuolar proteins re-
leased in response to different stimuli is therefore evident.  

Another approach that has not been sufficiently ex-
ploited is the heterologous expression of cathepsins in 
yeast. Two studies have shown that rat cathepsin L and D 
precursor polypeptides are recognized by mechanisms 
similar to those involved in the intracellular sorting of vac-
uolar proteins in yeast cells [135, 136]. We therefore 
sought to further explore this tool to understand the func-
tion of human CatD. As mentioned above, we previously 

 
 

 

FIGURE 1: Survival of S. cerevisiae cells expressing Bax during acetic acid treatment. The wild type W303-1A and pep4Δ mutant strains 
transformed with the empty vector (PYES2) and PYES2-Bax alpha were incubated with 120 mM acetic acid for up to 360 min. (A) Cell surviv-
al of W303-1A strain and (B) W303-1A pep4Δ strain for up to 360 min was determined by standard dilution plate counts and expressed as a 
percentage of c.f.u. in relation to time 0. Data represents means ± S.D. (n=2). (C) Cell survival at time 360 min was determined by standard 
dilution plate counts and expressed as a percentage of c.f.u. in relation to time 0. Data represents means ± S.D. (n=2). *P < 0.05, **P < 0.01, 
***P < 0.001. 
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showed the parallel between the role of human and yeast 
CatD in acetate/acetic acid-induced apoptosis and in the 
degradation of damaged mitochondria, which render 
CRC/yeast cells more resistant to apoptosis induced by 
acetate/acetic acid [102, 122]. We now found that heterol-
ogous expression of human CatD in yeast PEP4-deficient 
cells reverts their sensitivity to acetic acid-induced apopto-
sis and delays mitochondrial degradation [103], as previ-
ously observed for wild type Pep4p [122, 123]. These re-
sults provide evidence that the role of CatD in both apop-
tosis and mitochondrial degradation is conserved through 
evolution. Further elucidation of the molecular mecha-
nisms underlying the involvement of CatD in apoptosis and 
in mitochondrial degradation will now be crucial to devel-
op novel strategies to specifically inhibit this protease in 
apoptosis deficiency-associated diseases, such as cancer.  

Taking into account the multiple functions of CatD, one 
caveat of using CatD inhibitors could be a negative effect 
on Bax activation, release of cytochrome c and down-
stream caspase activation. To address this question, we 
exploited the well-established system of heterologous ex-
pression of Bax in yeast, which lacks obvious orthologs of 
the Bcl-2 family, and allows studying how absence of yeast 
CatD affects Bax activity without interference from other 
Bcl-2 family members. Using yeast cells heterologously 
expressing a cytosolic inactive form of human Bax, which 
was activated by exposure to acetic acid, we could discard 
this hypothesis since absence of Pep4p enhanced Bax-
induced cell death (Figure 1). It will be interesting to fur-
ther exploit this system with heterologous co-expression of 
Bax and human CatD, in order to dissect the role of this 
lysosomal protease in the regulation of Bax activity inde-
pendently of Bid. 

As a final conclusion, it becomes apparent that the ap-
proaches with yeast have already provided and can further 
offer new perspectives for an increased understanding of 
the role of CatD in mammalian apoptosis, and its implica-
tions in cancer. Indeed, studies with yeast further reinforce 
the use of this eukaryotic organism as a valuable model to 
identify and characterize novel RCD processes, and open 
the door to new clinical opportunities, with a substantial 
impact in public health. 
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