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ABSTRACT 

AlSi7Mg investment cast test bars were produced using low-pressure die casting and 

ultrasonically refined during cooling. The microstructure and mechanical properties of the 

samples at different distances from the acoustic radiator were characterized for 650ºC pouring 

temperature. The combined technique lead to cast samples free from gas porosities and 

solidification defects, promoted the formation of small -Al globular grains, modified the 

eutectic silicon, dispersed and decreased the size of intermetallic phases. The alloy mechanical 

properties were improved, increasing the ultimate tensile strength, yield strength and strain. 
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1. Introduction 

Investment casting is a valuable technique to obtain complex small-sized products with high 

dimensional and geometrical accuracy. However, traditional tilt pouring and turbulent flow 

promote gas entrapment, oxide formation and erosion of the mould wall which may promote the 

formation of porosities and inclusions  in castings. These problems can be avoided by adapting 

the low-pressure die casting process to investment casting. According to Campbell (2003), by 

using pressure differential the melt will rise smoothly into the mould cavity avoiding pickup of 

dross from the surface and middle regions of the crucible, ensuring high and consistent castings 

quality avoiding oxide films, inclusions, shrinkage and porosity.  

Duse to the intrinsic low cooling rates in ceramic moulds, Al based castings are prone to 

chemical heterogeneity and microstructure usually consists of coarse dendritic -Al solid solution 

phase, acicular eutectic silicon and complex intermetallic phases that according to Backerud et 

al. (1990) may precipitate in the interdendritic and intergranular regions. Garcia-Garcia et al. 

(2007) found that such microstructure is strongly detrimental to the mechanical behaviour of this 

alloy, decreasing tensile properties, thus ductility. Chirita et al. (2009) studied the  effect of  and 

other microstructure features in the fatigue life of AlSi based alloys and reported that it strongly 

depends on the  SDAS, the amount and morphology of Al-Si eutectic and the presence and 

morphology of intermetallic phases. Thus, casting defects control and microstructure 

refinement/modification are imperative to achieve high mechanical performance in Al castings, 

as reported by Gruzleski et al (1990). 

Grain refinement is directly related to the number of active nuclei in the melt. The traditional 

approach to increase nucleation is by adding master alloys like Al-Ti-B, which release large 

quantities of TiAl3 and TiB2 particles in the melt, that are easily enveloped by the -Al phase 

during cooling, promoting heterogeneous nucleation. However, chemical refinement presents 

several drawbacks, namely inability to avoid dendritic structures, no effect over intermetallic 
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phases besides better distribution and inability to decrease the grain size to values below 200 m, 

as demonstrated by Sigworth and Kuhn (2007) and Spittle (2006). Eutectic Si modification is 

crucial to achieve high mechanical properties, as demonstrated by Garcia-Hinojosa et al. (2003). 

Gruzleski and Closset (1990) even consider it much more important than grain refinement itself. 

Na based fluxes are usually used to change Si morphology from acicular to a fine fibrous 

structure increasing the alloy ductility, as reported by Garcia-Hinojosa et al. (2003), but 

according to the research and reports of Miresmaeili et al. (2005) and Mcdonald et al. (2004) it 

may increase the amount of porosities in castings and generate great amount of dross and smoke. 

An alternative approach to carry out microstructure refinement is ultrasonic vibration. Several 

models and mechanisms explaining the effect of ultrasonic vibration on grain refinement have 

been proposed. Eskin (1998) and Abramov (1998) proposed dendrite fragmentation as one of the 

mechanisms that may induce grain refinement. Liu et al. (2007) and Qian et al. (2009)  consider 

that dendrite fragmentation may occur during ultrasonic vibration, but suggest that cavitation-

enhanced heterogeneous nucleation is the most probable mechanism to promote grain 

refinement. According to Eskin and Eskin (2014), when a liquid metal is submitted to high 

intensity ultrasonic vibrations, the alternating pressure above the cavitation threshold brings 

about numerous tiny bubbles in the liquid metal, which start growing, pulsing on a continuous 

expansion/compression regime and finally collapse.  During expansion, bubbles absorb energy in 

the melt, undercooling the liquid at the bubble-liquid interface, resulting in nucleation on the 

bubble surface. When bubbles collapse acoustic streaming develops in the melt, distributing the 

nuclei into the surrounding liquid producing a significant number of nuclei in the molten alloy, 

thus promoting heterogeneous nucleation. The main objective of this work is to study the 

capability of the counter gravity pouring technique combined with ultrasonic vibration of the 

melt during cooling, to eliminate traditional soundness related defects and simultaneously 

promote the development of ultra refined microstructures. 
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2. Experimental technique 

2.1 Materials  

Table 1 presents the chemical composition of the AlSi7Mg alloy used on this work and the 

equivalent standard alloy. 

 

Table 1 - Chemical composition of the AlSi7Mg0.5 alloy used on this work and the equivalent 

standard alloy 

 

2.2 Ceramic moulds 

The ceramic moulds, with the shape presented in Figure 1 (7) were produced by the traditional 

investment casting process, using colloidal silica as a binder and SiO2 grain as stucco to make a 

shell wall with 7 layers. The mould consisted of a vertical runner and four cylindrical shaped 

lateral segments with 12 mm in diameter and 120 mm long, which where the cast samples 

themselves.  

2.3 Experimental set-up and procedure 

 

An electrical melting furnace equipped with a SiC crucible of 15 kg capacity was adapted to 

carry out the low-pressure investment casting  process. The melting chamber is fully sealed by a 

removable top steel plate that also supports the ceramic mould in inverted position. The mould 

has a top atmospheric riser at the top of the traditional runner, as presented in Figure 1. The plate 

has a central hole to allow, on a first stage, the introduction of a tubular acoustic radiator to 

perform melt degassing (Figure 2a) and, on a second stage, the introduction of the ceramic pipe 

Alloy Chemical composition (wt %) Ref. 

Si Fe Mg Cu Mn Zn Ti Al Res. 

AlSi7Mg 6.5-7.5 0.6 0.20-0.45 0.25 0.35 0.35 0.25 Bal. 0.15 (1) 

Used 7.44 0.2 0.32 0.07 0.07 0.05 0.11 91.53 0.21 (2) 

(1) Aluminum Association, Inc. (2) Composition of the used alloy obtained by optical emission spectrometry 
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that allows the liquid metal to rise into the mould (Figure 2b). The ultrasonic device (Fig. 2) used 

to perform degassing and grain refinement consisted of a novel ultrasonic power supply unit, a 

high power ultrasonic converter (1200 W) and :  

(a) Degassing: 35 mm diameter and 270 mm long acoustic waveguide made of Ti6Al4V and the 

acoustic load itself, which consists of a 60 mm diameter and 600 mm long Sialon acoustic 

radiator and the liquid metal. 

 (b) Refinement: a 35 mm diameter and 270 mm long acoustic waveguide made of Ti6Al4V and 

the acoustic load itself, which consists on a 20 mm diameter and 90 mm long Ti6Al4V acoustic 

radiator and the liquid metal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 - a) Experimental set-up for the low-pressure investment casting process : (1) Melting 

chamber; (2) Argon inlet; (3) Moulding box to stand the ceramic shell; (4) Liquid column cutting 

plate; (5) Ceramic shell; (6) Feeder to insert the refinement acoustic radiator; (7) Wax mould 

b) Geometry of the cast samples with indication of the positions S1 and S2, and positioning of the 

refining ultrasonic radiator at the top of the sprue. 

a) b) 
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The Al7Si0.3Mg alloy was melted at 650ºC and held at that temperature for 30 minutes for 

homogenization . US degassing vibration was applied for 9 minute, using 20.1±0.1 kHz 

frequency and 1000W electric power. Reduced Pressure Test (RPT) and the apparent density 

measurement method were used to evaluate the alloy density before and after 9 minute 

degassing. Six samples were collected to perform density measurement before and after 

degassing. 

The degassing acoustic radiator was removed, the ceramic mould was positioned over the 

furnace sealing plate inside a molding box filled with self-set sand. Five ceramic shells were then 

poured on the conditions described below. 

The pressure inside the furnace was then increased over the atmospheric pressure to make the 

melt rise into the mould cavity, according to the experimental conditions presented in Table 2 

and Figure 3. These conditions have been former established by the authors on the aim of 

previous works, as reported by Puga et al (2016). The pressurization curve was controlled by a 

Figure 2 (a) - Experimental set-up for US degassing; (b) Experimental set-up for US refinement: 

(1) Moulding box to support the ceramic shell; (2)  Ceramic shell; (3) Wax mould; (4)  US 

refinement unit; (5) Furnace cover.  

a) b) 
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specially designed set of electromagnetic and pneumatic valves using LabView software. Melt 

temperature was controlled within an accuracy of ±5 ºC. 

Table 2. Parameters of the pressure-time (p-t) curves used for mould filling. 

Pressure 

curve 

M1 

(0 – 5 s) 

M2 

(5 – 10 s) 

M3 

(10 – 15 s) 

M4 

(15– … s) 

(1) 600 Pa/s 400 Pa/s 800 Pa/s 0 

 

 

 

 

 

 

 

 

After pressure stabilization, the acoustic radiator for melt refinement was deep 10 mm inside the 

melt through the top feeder of the ceramic mould and ultrasound was supplied to the metal until 

temperature reached 600ºC at sensor #1, using 19,5±0.4 kHz frequency and 400 W electric 

power. The casting was then allowed to solidify to room temperature. For the sake of comparison 

experiments were also carried out without ultrasonic vibration. 

2.4  Samples characterization 

Samples for microstructure characterization were taken from the vertical sprue by sectioning it 

perpendicularly to its longitudinal axis at the intersection points between the sprue and the lateral 

cylinders - around 30 and 120 mm from the radiator. They were ground using 1200 SiC paper 

Figure 3 - Average pressure  and melt velocity registered in sensor S#1 during cavity filling 
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and polished up to 1 m. Samples for optical microscopy characterization were etched using 

Keller's reagent to reveal the microstructure. Shape and grain size of constituents were evaluated 

by optical microscope (OM) with quantitative metallographic analysis capability. Phase 

identification and chemical composition were evaluated by quantitative EDS analysis using a 

high resolution FEI Quanta 400 FEG E Scanning Electron Microscope coupled to an EDAX 

Genesis X4M X-Ray Energy Dispersive Electron Spectrometer. The error associated to elements 

quantification was 0.2 at%. 10 keV potential and 100 s acquisition time were used for every 

evaluation. The grain size was evaluated in three 500x400 m fields using 200x magnification. 

Each grain was delimited by a contour line using Image Pro Plus software in order to determine 

its area. Average grain size was then calculated according to ASTM Standard E112-10.  

For tensile testing, the specimens were machined from the cylindrical as-cast samples according 

to EN10002-1(2006). 20 specimens were tested and the results from the upper bars separated 

from the results of the down bars. Tensile tests were carried out at room temperature and a strain 

rate of 0.5 mm/min on a INSTRON testing machine - Model 8874, to obtain yield strength, 

ultimate tensile strength and strain. 

3.  Results and discussion  

3.1 Microstructure of AlSi7Mg0.5 samples without ultrasonic processing 

D.G. Eskin and Eskin (2004) suggested that the cavitation is the main mechanism responsible by 

reduction of hydrogen in melts processed by acoustic energy and the consequent increase of the 

alloys density. Besides, with decreasing of temperature of melt the viscosity increases and the 

generation of cavitation is more difficult as been shown by Puga et al. (2009). Thus, according to 

this evidence, the density steady-state plateaus only was achieved after 9 minutes of degassing 

and the average value recorded was 2.64±0.02, when compared with an average of density 

2.48±0.02 before degassing. Furthermore, for longer degassing times the density tends to 
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remains constant, and the difference/balance to the theoretical alloy density may be only due to 

solidification defects. 

Fig. 4 (a) and (b)  show optical micrographs of the non-ultrasonically refined samples at 30 and 

120 mm from the acoustic radiator, respectively. In both cases, the microstructure exhibits fully 

developed primary -Al dendrites with branch lengths that in some cases reach 850 m, with 

average SDAS of 40±15 m, as well as the traditional coarse acicular eutectic Si with lamellae 

that reach 50 m length. Besides -Al and silicon plates, SEM analysis revealed the co-existence 

of other intermetallic phases. According to the chemical composition obtained by EDS (Table 3), 

those phases seem to be the -type Al5FeSi, -Al8Mg3Si6Fe and Mg2Si type phases, which is in 

agreement with reports of Bakerud et al. (1990).  

 

 

 

 

 

 

 

 

 

Table 3 -  Chemical composition of the intermetallic phases present in the as-cast AlSi7Mg0.5 

without US treatment. 

Zone 
Composition (% at.) 

Suggested type 
Mg Al Si Mn Fe Cu 

Z1 0.40 64.74 20.70 <0.20 13.88 <0.20 -Al5FeSi 

Z2 18.06 49.43 27.29 <0.20 4.57 <0.20 -Al8Mg3FeSi6 

Z3 65.67 5.03 29.01 <0.20 <0.20 <0.20 Mg2Si 

Figure 4 - Microstructure of AlSi7Mg0.5 investment cast samples without ultrasonic treatment at: (a) 

30 mm from the acoustic radiator; (b) 120 mm from the acoustic radiator. 

(a) (b) 
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Although the melt was ultrasonically degassed the as-cast samples reveal the presence of few 

porosities in a volume fraction of 1.62±0.8 which is almost constant at both distances from the 

acoustic radiator. The resultant porosity is mainly due to shrinkage, identified by its irregular 

shape and interdendritic location. The porosity size is quite heterogeneous, with average area of 

240 ±25 m
2
. Round shaped gas porosities have not been detected, confirming the high 

efficiency of ultrasonic degassing. 

3.2 Microstructure of AlSi7Mg0.5 samples with ultrasonic processing 

Fig. 5 (a) and (b) present the microstructure of the cast samples submitted to acoustic energy at 

30 and 120 mm from the acoustic radiator. At 30 mm from the sonotrode, the microstructure 

consists of globular -Al grains with average size of 60 ±5 m, which changes to a mix of some 

small rosette like and globular -Al grains with average size around 110±10 m at 120 mm from 

the sonotrode. Moreover, ultrasonic treatment decreased the size of the eutectic lamellae to 

around 20 ±4 m at 30 m from the sonotrode as well as the spacing between lamellae, 

confirming the reports of Puga et al. (2013) for AlSi9Cu3 alloys, which present the same 

behavior. 

 

 

 

 

 

 

 

 

Figure 5 - Microstructure of AlSi7Mg0.5 investment cast samples submitted to ultrasonic treatment at: 

(a) 30 mm from the acoustic radiator; (b) 120 mm from the acoustic radiator. 

(a) (b) 
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These results show that grain refinement tends to be less significant with increasing distance to 

the acoustic radiator. Not only the grain size tends to increase with increasing distances to the 

radiator, their circularity also tends to decrease. This can be explained by the decrease of sound 

pressure at higher distances to the sonotrode, as reported by Eskin (1998). Figure 6 presents the 

difference in -Al grain size and length of Si lamellae at different distances to the acoustic 

radiator in as-cast and ultrasonically processed samples. 

 

 

 

 

 

 

 

 

SEM characterization suggests the presence of  well distributed and extensively refined 

intermetallic phases that EDS analysis suggest to be -Al15(Mn,Fe)3Si2 , Mg2Si and -Al5FeSi 

with branch arms much shorter than those detected in the microstructure of non US treated 

samples (Table 4). Porosity was almost absent in the analyzed samples, as it can be seen in figs. 

5 (a) and (b) and only the presence of extremely scarce gas pores of very low size (less than 5 

m) was detected in 2 samples. 

  

Figure 6 - -Al grain size and Si lamellae length at 30 and 120 mm from the acoustic radiator in as- 

cast and US processed samples  
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Table 4 -  Chemical composition of the intermetallic phases present in the as-cast AlSi7Mg0.5 

submitted to ultrasound. 

Zone 
Composition (% at.) 

Suggested type 
Mg Al Si Mn Fe Cu 

Z1 0.44 68.29 17.07 <0.20 13.72 <0.20 -Al5FeSi 

Z2 15.06 53.48 25.93 <0.20 5.01 <0.20 -Al8Mg3FeSi6 

Z3 64,03 8,31 27,43 <0,20 <0,20 <0,20 Mg2Si 

 

The -Al5FeSi phase shows lamellar morphology with average length of 13 ±4m and appears 

on a volume fraction of 0.18%, while the -Al8Mg3FeSi6 phase represents a volume fraction of 

0.21%, in the form of polyhedra with about 30 ±2 m
2
 average area and, occasionally, in the 

lamellar form, reaching 30 m long. The Mg2Si phase appears in the form of polyhedra with an 

average size of 20±2 m
2
 emerging however, occasionally in the form of polyhedra with average 

area less than 6 m
2
, representing a volume fraction of 0.09%.  

Although the refinement of -Al grains by ultrasound is now quite well understood as referred in 

section 1, the refinement mechanism of intermetallic phases still needs more research. It is 

known that intermetallic compounds present in this alloys crystallize at temperatures below 

600ºC, as reported by Backerud et al (1990), which is the temperature at which the supply of 

acoustic energy was stopped. This suggests that the refinement mechanism of intermetallics is 

not the ultrasonic vibration itself, but the phenomena that occur as a consequence of the 

ultrasonic vibration. A possible explanation can be attributed to the formation of great number of 

-Al globular grains and consequent reduction of the intergranular space, which may have 

limited the growth of the intermetallic phases, as suggested by Puga et al. (2011) and Kalifa et al. 

(2010) for other Al-Si based alloys. 
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Fig. 7 shows the cooling curves obtained for samples without and with US treatment during 

solidification.  

 

 

 

 

 

 

 

 

 

Precipitation of proeutectic -Al starts at higher temperature in the sample submitted to US 

when compared to that solidified without US supply. This is in agreement with the refinement 

effect on this phase observed by comparing microstructures of Figures 4 and 5.  In what concerns 

to the eutectic reaction of the sample processed by ultrasound, it also starts at higher temperature 

and has a duration time shorter than that observed for the non US treated sample. The differences 

detected in solidification curves and the resultant microstructures, clearly suggest that US supply 

worked as germinator of solidification nuclei both on the beginning of proeutectic precipitation 

(detail A) and the beginning of the eutectic reaction (detail B), revealing its effect in the 

refinement of a-Al grains and and eutetic Si lamellae. 

3.3 Mechanical properties  

Fig. 8 presents the mechanical properties obtained for samples with and without ultrasonic 

treatment at different distances from the acoustic radiator. The ultrasonic treatment clearly 

Figure 7 - Cooling curves obtained for samples without and with ultrasonic treatment  

suggesting the refinement of -Al (detail A) and eutectic Si phase (detail B). 
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improved the alloy mechanical properties, especially in what concerns to ductility. It is evident 

that the ultimate tensile strength, yield strength  and elongation increased significantly with 

ultrasonic processing.  

 

 

 

 

 

 

 

 

 

It is well known that mechanical properties of Al-Si alloys depend on several factors, with 

particular emphasis to the microstructure morphology and the presence of Fe-rich intermetallic 

compounds, as reported by Garcia-Garcia et al (2007) and Ceschini et al (2009). Ammar et al. 

(2008) and Teng et al. (2009) reported that the presence of porosities and their size and 

distribution are also highly detrimental to the mechanical properties of Al based alloys. 

Moreover, the morphology of eutectic silicon is determinant to the mechanical properties, as 

demonstrated by Garcia-Hinojosa et al. (2003) and Gruzleski and Closset (1990). Although, the 

size and morphology of the primary aluminum phase also play a significant role in the alloy 

mechanical behavior , as reported by Sigworth and Kuhn (2007) and Spittle (2006). Moreover, in 

the particular case of Al-Si-Mg alloys, Li et al. (2004)(1) reported that the sharp ends of the 

brittle -Al5FeSi acicular phase can act as stress concentrators, decreasing ductility. 

Figure 8 - Ultimate Tensile Strength, Yield Strength and elongation at different 

distances from the sonotrode, in as-cast and ultrasonic treated AlSi7Mg samples 
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Taking into consideration the above mentioned, the UTS increase verified in our research can be 

attributed to the combined effect of the globular shape and small size of the -Al grain, the 

reduction of the volume fraction of -Al5FeSi, the fine and short eutectic silicon fibers and the 

elimination of porosities. 

Since both processing routes included the same degassing process, it is expected that the level of 

microporosity due to the presence of hydrogen is similar in every sample, which can be 

confirmed by comparing figures 4 and 5. Thus, the grain size and morphology are the main 

contributors to the performance of the bulk material in terms of mechanical properties, 

confirming findings of Eskin and Eskin (2014) and Puga et al.(2011). 

4. Conclusions 

The main conclusions can be drawn from the developed study: 

 The developed technique (low-pressure pouring combined with ultrasonic refinement of 

the cast alloy directly in the ceramic mould) proved to be an extremely efficient way to 

obtain high integrity Al-Si based castings, free from porosities and with fully refined 

microstructure; 

 Ultrasonic processing not only avoids/decreases the development of gas porosities but 

also leads to a significant decrease in solidification defects like shrinkage; 

 Direct ultrasonic processing fully refines microstructure, leading to the formation of -Al 

globular grains, fibrous eutectic silicon phase and well dispersed intermetallic phases 

with small dimensions; 

 The combined technique promotes the increase of mechanical properties, namely ultimate 

tensile strength, yield strength and elongation to failure.   
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Figure Caption 

Figure 1 (a) - Experimental set-up for the low-pressure investment casting process : (1) Melting 

chamber; (2) Argon inlet; (3) Moulding box to stand the ceramic shell; (4) Liquid column cutting 

plate; (5) Ceramic shell; (6) Feeder to insert the refinement acoustic radiator; (7) Wax mould 

 (b) - Geometry of the cast samples with indication of the positions S1 and S2, and positioning of 

the refining ultrasonic radiator at the top of the sprue. 

Figure 2 (a) - Experimental set-up for US degassing; (b) Experimental set-up for US refinement: 

(1) Moulding box to stand the ceramic shell; (2)  Ceramic shell; (3) Wax mould; (4)  US 

refinement unit; (5) Furnace cover.  

Figure 3 - Average pressure  and melt velocity registered in sensor S#1 during cavity filling 

Figure 4 - Microstructure of AlSi7Mg0,5 investment cast samples without ultrasonic treatment 

at: (a) 30 mm from the acoustic radiator; (b) 120 mm from the acoustic radiator. 

Figure 5 - Microstructure of AlSi7Mg0,5 investment cast samples submitted to ultrasonic 

treatment at: (a) 30 mm from the acoustic radiator; (b) 120 mm from the acoustic radiator. 

Figure 6 - -Al grain size and Si lamellae length at 30 and 120 mm from the acoustic radiator in 

as-cast and US processed samples  

Figure 7 - Cooling curves obtained for samples without and with ultrasonic treatment  suggesting 

the refinement of -Al (detail A) and eutectic Si phase (detail B). 

Figure 8 - Ultimate Tensile Strength, Yield Strength and elongation at different distances from 

the sonotrode, in as-cast and ultrasonic treated AlSi7Mg samples 
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Table Caption 

Table 1 - Chemical composition of the AlSi7Mg0,5 alloy used on this work and the equivalent  

Table 2. Parameters of the pressure-time (p-t) curves used for mould filling. 

Table 3 -  Chemical composition of the intermetallic phases present in the as-cast AlSi7Mg0,5 

without US treatment. 

Table 4 -  Chemical composition of the intermetallic phases present in the as-cast AlSi7Mg0,5 

submitted to ultrasound. 

 

 


