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Mutations in early B cell factor 3 (EBF3) were recently described in patients with

a neurodevelopmental disorder (NDD) that includes developmental delay/intellectual

disability, ataxia, hypotonia, speech impairment, strabismus, genitourinary abnormalities,

and mild facial dysmorphisms. Several large 10q terminal and interstitial deletions

affecting many genes and including EBF3 have been described in the literature.

However, small deletions (<1MB) affecting almost exclusively EBF3 are not commonly

reported. We performed array comparative genomic hybridization (aCGH) (Agilent 180K)

and quantitative PCR analysis in a female patient with intellectual disability. A clinical

comparison between our patient and overlapping cases reported in the literature was

also made. The patient carries a de novo 600Kb deletion at 10q26.3 affecting the

MGMT, EBF3, and GLRX genes. The patient has severe intellectual disability, language

impairment, conductive hearing loss, hypotonia, vision alterations, triangular face, short

stature, and behavior problems. This presentation overlaps that reported for patients

carrying EBF3 heterozygous point mutations, as well as literature reports of patients

carrying large 10qter deletions. Our results and the literature review suggest that

EBF3 haploinsufficiency is a key contributor to the common aspects of the phenotype

presented by patients bearing point mutations and indels in this gene, given that deletions

affecting the entire gene (alone or in addition to other genes) are causative of a similar

syndrome, including intellectual disability (ID) with associated neurological symptoms and

particular facial dysmorphisms.

Keywords: EBF3, intellectual disability, syndrome, 10qter deletion, hypotonia, movement disorder

INTRODUCTION

Intellectual disability (ID) affects nearly 1–2% of the population and is the most common
neurodevelopmental disorder (NDD). A substantial number of ID patients are found to have a
genetic cause (reviewed in Bessa et al., 2012). Genome-wide analysis techniques currently used for
investigation of etiology often lead to the identification of very rare almost private variants, the
collection of patients with alterations in the same gene being a crucial aspect of the definition of a
new clinical entity.
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Earlier this year, patients harboring mutations in EBF3 gene
have been described, presenting a neurodevelopmental syndrome
including ID, ataxia, hypotonia, mild facial dysmorphisms, and
genitourinary abnormalities (OMIM 617330) (Chao et al., 2017;
Harms et al., 2017; Sleven et al., 2017). The EBF3 (Early B cell
Factor 3) gene encodes a member of the highly conserved early
B-cell factor transcription factor family, expressed at high levels
in the developing nervous system (data retrieved from GTEx
Portal). EBF3 is a transcriptional target of ARX, and shown to
be regulated by NeuroD and ARX (Friocourt and Parnavelas,
2011). ARX encodes a transcription factor critical for embryonic
development that, for many years, has been associated with a
wide range of neurodevelopmental disorders. The intellectual
impairment, central nervous system and genitourinary anomalies
observed in patient with both mutations in EBF3 and ARX
might reflect the contribution of both proteins to the same
molecular and cellular processes (Chao et al., 2017). EBF3
function has also been studied in animal models. Ablation
of its orthologs in worms and flies leads to impairment of
neuronal development (Prasad et al., 1998; Hattori et al., 2013).
In mice, knocking out Ebf3 leads to neonatal lethality and

FIGURE 1 | (A) Facial appearance of the patient at 3 years and 5 months showing the small and low-set ears with prominent anti-helix and (B) fetal pads in the

fingers. (C) Facial appearance of the patient at 11 years of age. (D) Highlighted in gray the 600Kb deletion at 10q26.3 region; a zoom in of the EBF3 gene in the DGV

database reveals the existence of 3 deletions in 3 controls that affect the first 6 exons of EBF3 (NM_001005463); CNVs within this region found in control populations

include deletions nvs825626 (present in 1/31 individuals), nvs552315 (present in 1/17421 individuals) and nsv552316 (present in 1/31 individuals). (E) The schematic

representation of EBF3 transcripts.

neuronal migration defects, with failure of olfactory neurons
project to the dorsal olfactory bulb (Wang et al., 2004). The
exact pathogenic mechanisms of EBF3 mutations is not yet
fully elucidated but the type of variants described so far [copy
number variations (CNVs), missense, nonsense, and splice
site altering] suggest that haploinsufficiency, gain of function,
and dominant negative are possible pathogenic mechanisms
for the variants described (Chao et al., 2017; Sleven et al.,
2017).

In this work we contribute with a patient with the smallest
deletion (600Kb) reported to date affecting the totality of
EBF3 gene and with a clinical presentation overlapping that
of patients with EBF3 single nucleotide variants (SNVs).
Additionally,we make a clinical comparison of the patients
with previously published large terminal 10q deletions and
report that, despite the differences in size, there is a significant
phenotypic overlap between patients with these alterations.
These findings add to the current knowledge of EBF3
related disorders and support EBF3 haploinsufficiency as key
in the neurodevelopmental syndrome associated with 10qter
deletions.
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MATERIALS AND METHODS

The patient was ascertained within a large study of
neurodevelopmental disorders in Portugal, in which the
enrollment of the patients and families was done by the referring
doctor, clinical information was gathered in an anonymous
database according to the Portuguese Data Protection Authority
(CNPD) and written informed consent was obtained for all
participants. Informed consent for the present patient was
provided by the mother for the genetic study and publication of
results (including photos). The study was approved by the ethics
committee of Center for Medical Genetics Dr. Jacinto Magalhães,
National Health Institute Dr. Ricardo Jorge.

Genomic DNA was extracted from peripheral blood using
either Citogene R© DNA isolation kit (Citomed, Portugal). aCGH
was performed using Agilent 180K array (AMADID:023363)
against a diploid DNA reference (Kreatech’s MegaPoll Reference
DNA, Kreatech Diagnostics, Amsterdam). aCGH analysis
was performed using the Nexus Copy Number 6.0 software
with FASST2 Segmentation algorithm (BioDiscovery Inc., El
Segundo, CA). Genomic coordinates are according to Human
Genome Build hg19. CNV confirmation was performed by
qPCR for EBF3 (forward primer—CTCTCTGCTGGGTGC
TGAG; reverse primer—GCGTCCCTTCATACGCTAAC;
ENST00000368648.7) gene and using SDC4 (forward primer—
ACCGAACCCAAGAAACTAGA; reverse primer—GTGCTG
GACATTGACACCT; ENSG00000124145, Chr.20) and ZNF80
(forward primer—GCTACCGCCAGATTCACACT; reverse
primer—AATCTTCATGTGCCGGGTTA; ENSG00000174255,
Chr.3) as references genes. The analysis was carried out in a 7500-
FAST Real Time PCR machine (Applied Biosystems, Foster City,
CA, USA) using Power SYBR Green R© (Applied Biosystems,
Foster City, CA, USA) according to the manufacturer’s
recommendations and following the general guidelines for qPCR.
The specificity of each reaction was verified by the generation of
a melting curve for each of the amplified fragments. The primer
efficiency was calculated by the generation of a standard curve
fitting the accepted normal efficiency percentage (primers used
listed in Supplementary Data). Ct values obtained for each test
were analyzed in DataAssistTM software (Applied Biosystems,
Foster City, CA, USA).

RESULTS

Here we describe a patient with a de novo deletion affecting
EBF3. The patient is an 11 years old girl with severe ID
(global development quotient = 27 at 7 years of age), born
from non-consanguineous parents and with no family history of
neurodevelopmental disorders. She was born after a biamniotic
bichorionic twin pregnancy (her sister being healthy), by vaginal
delivery, at 35 weeks of gestation. Birth parameters were: weight,
1,830 g (P3); length, 42.5 cm (P10); and OFC, 30.6 cm (P10),
with an Apgar score of 8/9 (1st and 5th min, respectively). The
neonatal period was complicated with sepsis and the diagnosis
of hereditary spherocytosis (inherited from her mother). Global
developmental delay was noted in the first months, with head
control achieved at 12 months, sitting at 18 months, independent

walking at 30 months, and no words spoken at the age of 3
years. She had pyelonephritis at 19 months (renal ultrasound
showed no abnormalities), gastroesophageal reflux and recurrent
otitis media, with conductive hearing loss that required surgical
intervention and a hearing aid. Epilepsy was suspected at 5
months (episodes of suspended activity) but the EEGwas normal.

She was first observed at the age of 3 years 5 months
(Figures 1A,B), at which time she displayed muscle hypotonia,
hypotonic face, strabismus, and reduced sensitivity to pain. She
also presented mild dysmorphic features (Figure 1A): triangular
face, small low-set ears with prominent anti-helix, arched
eyebrows, anteverted nares, bulbous nasal tip, small mouth with
downturned corners, pointed chin, short neck, and prominent
finger fetal pads, as well as a mild short stature (89 cm,
corresponding to around 2SD).

Brain MRI was performed at 6 years, but no abnormalities
were noted. At the age of 10 years she was reevaluated; she still
had recurrent otitis media, but otherwise was in good global
health. Language was very poor (two word sentences spoken
after 8 years). She had behavior problems, with stereotypic
movements (rotating movements, chewing on clothes, head
retropulsion), scoring for severe autism spectrum disorder (ADI-
R and ADOS) at 7 years; she displayed agitation and aggressive
behavior (auto and hetero) and was medicated with antipsychotic
drugs. An orthopedic surgery was performed for pes planus. The
facial features were similar to those previously described, with
spaced upper central incisors (Figure 1C); she had eyeglasses for
strabismus and hypermetropia.

Analysis of genomic DNA by aCGH revealed a de novo
600 kb deletion at 10p26.3 (Figure 1D) affecting three genes—
MGMT (encoding the enzyme O-6-methylguanine-DNA
methyltransferase, involved in DNA repair), EBF3 and GLRX
(encoding glutaredoxin, a small thioltransferase that removes
protein GSH adducts), of which EBF3 was the most likely
disease-associated gene.

DISCUSSION

The presented patient was first analyzed by aCGH a few years ago.
At the time of aCGH analysis, the existence of the three variants
present in Database of Genomic Variants (DGV)1 affecting the
first five exons of EBF3 gene (Figure 1E; Park et al., 2010; Cooper
et al., 2011), as well as the absence of other known disease causing
mutations in this gene, lead us to classify it as a variant of
unknown significance (VOUS). However, the recent publications
of EBF3 mutations (Chao et al., 2017; Harms et al., 2017; Sleven
et al., 2017) and the clinical similarities with the reported cases,
lead us to re-assess the variant and make us believe that EBF3
deletion may in fact be accounting for the disease in the patient.
One of the aspects that raised doubts about the pathogenicity
of this variant in the first place was the existence of population
controls bearing deletions of the first six exons of this gene, in
heterozygosity (data retrieved fromDGV database as of February
2017) (Figure 1D). Even though a transcript of EBF3 starting in

1Database of Genomic Variants Available at: http://dgv.tcag.ca/dgv/app/home

[Accessed August 5, 2014].
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Exon13b is listed in the Ensembl database (ENST00000440978.1)
(Figure 1E), which could explain how deletion of the first exons
could eventually result in a normal phenotype, this transcript
excludes the DNA binding domain of EBF3, and its expression
pattern and functional relevance have not been characterized.
Upon reassessment, however, the CNVs described by Cooper
and colleagues (nsv552315 and nsv552316) (Chao et al., 2017;
Harms et al., 2017; Sleven et al., 2017) were considered to be
at the threshold of detection by SNP microarray and cannot be
the basis for exclusion of a candidate gene, particularly in light
of the strong genetic and functional evidence for the relevance
of EBF3 mutations to disease (Evan Eichler, Greg Cooper and
Bradley Coe, personal communication).

Our patient shows many clinical similarities with
previously described patients with mutations in EBF3 (21
cases summarized in Table 1), such as global developmental
delay, delayed expressive speech, hypotonia, increased pain
threshold, behavioral problems and characteristic facial
features (long/triangular face, large forehead, hypotonic face).
However, even though our patient had significant delay in
motor development, no significant ataxia was detected (with
some limitations in clinical examination, as the child was not
cooperative), and no cerebellar anomalies were present in brain
MRI.

Several large terminal 10q26 deletions have been reported in
the literature (24 cases, summarized in Table 2; Turleau et al.,
1979; Evans-Jones et al., 1983; Zatterale et al., 1983; Shapiro
et al., 1985; Mehta et al., 1987; Gorinati et al., 1989; Wulfsberg
et al., 1989; Kogasaka et al., 1990; Schrander-Stumpel et al.,
1991; Wilkie et al., 1993; Petit et al., 1998; Leonard et al., 1999;
Waggoner et al., 1999; Lukusa et al., 2002; Iourov et al., 2014)
and in Decipher (60 cases), in patients who share some clinical
features with our patient, such as developmental delay and/or
ID (present in all cases in which the patient was old enough to
evaluate), short stature (10/24), hypotonia (12/24), strabismus
(13/24), triangular facial appearance (9/24), and dysmorphic ears
(14/24). Even though these patients have much larger deletions,
the similarities suggest that EBF3 may also be an important
contributor to their phenotype.

The EBF3 variants described in the literature in the beginning
of 2017 include point mutations predicted to be deleterious
and small insertions and deletions leading to in frame deletion
of key aminoacids or to a frameshift, predictably causing
early truncation of the resulting protein or nonsense-mediated
decay. The mutations were concentrated on parts of the
gene encoding the DNA-binding domain of EBF3, and were
predicted through different methods to lead to a loss of

function of this transcription factor, thus suggesting reduced
function and haploinsufficiency as the mechanism underlying
the neurodevelopmental disturbance in these patients. Knock-
out mice for Ebf3 are described to present neonatal lethality
and neuronal migration defects, with failure of olfactory neurons
to project to the dorsal olfactory bulb (Wang et al., 2004), but
no description is made of a phenotype in the heterozygous
animals, which are actually presented as controls in many of the
experiments, thus not supporting the haploinsufficiency model.
We made efforts to obtain and study the neurodevelopmental
phenotype of these animals, but were not successful, as the
Ebf3(O/E2) knock-out line may have been discontinued (Joseph
W. Lewcock, personal communication). However, the current
case together with the patients summarized in Table 2, do
support the hypothesis of EBF3 haploinsufficiency as disease
causing.

In summary, the current description reinforces EBF3 loss of
function/haploinsufficiency as a cause of neurodevelopmental
disease, and reinforces the association of this gene with a
characteristic clinical syndrome within this spectrum.
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