Comunicado (Técnico %

Medida Rápida e Simultânea dos Tempos de Relaxação Longitudinal e Transversal por RMN-CWFP

Tiago Venâncio¹ Mario Engelsberg² Rodrigo B. V. Azeredo³ Neif E. R. Alem4 Luiz Alberto Colnago⁵

Introdução

Os tempos de relaxação longitudinal, T₁ e transversal T₂ são dois parâmetro de grande importância para medidas de ressonância magnética nuclear (RMN). São necessários para determinação dos parâmetros das medidas quantitativas da separação de analitos em amostras heterogêneas e dão informações sobre propriedades físico-químicas de alimentos como viscosidade, difusão, elasticidade, maciez entre outros parâmetros.

Ambos os processos de relaxação, T₁ e T₂ são governados por campos magnéticos flutuantes, associados ao movimento molecular. A relaxação longitudinal, também denominada como relaxação spin rede, corresponde à troca de energia entre os spins excitados e a vizinhança (rede), e restabelece o equilíbrio térmico dos spins, correspondendo assim a um processo entálpico.

O principal método para medida de T, é o método denominado de inversão-recuperação (IR), que consiste na aplicação de um pulso de rf de 180 graus (que inverte o sentido da magnetização M_o), seguido de um tempo e de um pulso de 90 graus, antes da aquisição do sinal de RMN³. O valor de T₁ é então calculado a partir da intensidade do sinal de RMN em função do tempo .

A relaxação transversal (T2), também conhecida como relaxação spin-spin, é resultante da perda de coerência de fase entre os momentos magnéticos individuais na sua precessão, devido a um processo entrópico3. Em muitos casos de amostras sólidas, a perda de coerência de fase é devida às interações diretas entre os momentos de spin individuais, sem qualquer participação da rede.

O método mais usado para medida de T2 é conhecido como CPMG, que traz as iniciais de seus autores: Carr-Purcell-Meibom-Gill³. A següência CPMG consiste de um pulso de rf 90 graus, aplicado no eixo x', seguido de um intervalo de tempo e de um trem de pulsos de 180 graus, aplicado no eixo y`. A intensidade do sinal de RMN da següência CPMG (eco), obtida em função de , decai exponencialmente com uma constante de tempo T2. Como visto os tempos de relaxação são medidos por duas técnicas diferentes e o de medida de T₁ é um processo muito demorado que pode chegar até alguns anos, para caso de amostras com T1 da ordem de alguns minutos (KRONENBITTER e SCHWENK, 1977). Para reduzir esse tempo de medida Kronenbitter e Schwenk, propuseram um método rápido de medida de T₁ e T₂ baseado na técnica de precessão livre no estado

[§] Farmaceutico, Dr. Embrapa Instrumentação Agropecuária, Rua: XV de Novembro, 1452, CEP 13560-970, São Carlos, SP, colnago@cnpdia.embrapa.br

¹ Químico, Dr., USP-IQSC, Avenida Trabalhador São-Carlense 400, CEP 13560-590, São Carlos, SP, tiago@cnpdia.embrapa.br ² Físico, Dr., UFPE, Departamento de Física, Avenida Professor Luiz Freire s/n°, Cidade Universitária, CEP 50670-901, Recife, PE, mario@df.ufpe.br ³ Engenheiro Químico, Dr., UFF, Instituto de Química, Outeiro de São João Batista s/n°, C. do Valonguinho, CEP 24020-150, Niterói, RJ, rodrigo@rmn.uff.br ⁴ Engenheiro Físico, Grad., UFSCar, Rodovia Washington Luís (SP-310), Km 235, CEP 13565-905, São Carlos, SP, neif@cnpdia.embrapa.br

estacionário (SSFP). Este método consiste de dois passos: o primeiro denomina de razão " T_1/T_2 " é obtido, medindose a amplitude do sinal SSFP em função do ângulo de excitação. O valor ótimo do ângulo de excitação é determinado com uma seqüência de medidas, e é um procedimento bastante demorado. Uma vez determinado o ângulo ótimo (AO) calcula-se a razão entre os tempos de relaxação pela equação T_1/T_2 $(1 \cos(_{opt}))/(1 \cos(_{opt}))$. O valor de AO é usado para calcular o somatório de " T_1 ". Com AO faz-se um novo experimento e obtémse a constante de tempo T_{opt} para a entrada no estado estacionário SSFP. A constante de tempo para AO é dada por T_{opt} $(T_1$ $T_2)/2$, que juntamente com o resultado de AO permite medir ambos os tempos de relaxação.

Neste comunicado demostramos que a etapa de medida do AO, que é o procedimento mais demorado da medida não precisa ser feito.

No procedimento desenvolvido pode-se usar diretamente o ângulo de excitação de 90 graus, que normalmente é um dos parâmetros de calibração do aparelho e fazer apenas a medida da entrada do sinal no estado estacionário de precessão livre de onda contínua (CWFP), que é uma variante da técnica SSFP.

Materiais e Métodos

O experimentos de RMN foram realizados com um transceptor Apollo Tecmag, usando um amplificador de potência AMT 2035, um pré-amplificador Miteq 1054, uma sonda de bobina simples e um íma de 2T da Oxford com 30 cm de "bore". As medidas convencionais de T1 e T2 foram realizadas com as técnicas de inversão recuperação (IR) e CPMG.

Resultados e discussão

É conhecido que do equilíbrio térmico até atingir o estado estacionário CWFP, o sinal de RMN passa por dois regimes transientes (figura 1). O primeiro é caracterizado por uma alternância de amplitude do sinal entre valores negativos e positivos. Este regime ocorre nos primeiros milissegundos do sinal da figura 1. Esse regime é seguido por um regime quasi-estacionário, onde essas alternâncias desaparecem, e o sinal decai até atingir o estado estacionário CWFP (VENANCIO et al, 2005). Foi determinado que a passagem do estado quasi-estacionário para o estacionário CWFP ocorre com uma constante de tempo T $2T_1T_2/(T_1-T_2)$ e que a amplitude do CWFP é dada por $|M_s|/M_0$ $|T_2|/(T_1$ $|T_2|$). Na figura 1, pode-se observar que o valor da constante de tempo e da amplitude CWFP para o ácido fosfórico é bem menor que para a água. Isso indica que o ácido fosfórico tem T2 bem mais curto que T_1 e que na água o valor de T_1 e T_2 são similares.

Assim, combinando as duas equações acima e a medida de Mo, intensidade após o primeiro pulso, Mz, amplitude no CWFP e a constante de tempo, pode-se determinar os valores de T_1 e T_2 em um único experimento.

Onde,
$$\begin{array}{ccc} T_1 & (T(& /2)/2)/(|M_s|/M_0) \\ & e \\ T_2 & (T(& /2)/2)/[1 & (|M_s|/M_0)] \end{array}$$

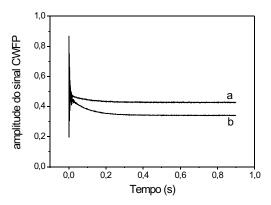


Figura 1. Experimento CWFP para uma amostra de água (a) e de ácido fosfórico (b)

Nas tabelas 1 e 2 estão os valores de T_1 e T_2 medidos com técnicas convencionais de IR e CPMG e por CWFP. Os resultados mostram que o método CWFP que é rápido mede simultaneamente os valores de T_1 e T_2 com precisão similar aos métodos convencionais que são mais lentos.

Tabela 1. Medida de relaxação de T₁ por IR e CWFP.

amostra	T ₁ (IR) msec	T ₁ (CWFP) msec
Água deionizada (¹ H)	2430 ± 10	2460 ± 15
Água com Fe ³⁺	24.31 ± 0.01	22.65 ± 0.01
Acetona (¹ H)	4520 ± 30	4260 ± 30
Oleo Vegetal (1H)	199.60 ± 0.01	214.60 ± 0.02
látex (1H)	118.00 ± 0.03	112.50 ± 0.05
Ácido fosfórico (1H)	191.00 ± 0.03	190.00 ± 0.05
Ácido fosfórico (31P)	746 ± 44	741 ± 44
Trifluoretanol(19F)	2008 ± 13	2120 ± 20
Trifluralina (¹⁹ F)	272.00 ± 0.02	272.00 ± 0.02

Tabela 2. Medida de relaxação T₂ por CPMG e CWFP.

amostra	T ₂ (CPMG) msec	T ₂ (CWFP- /2) msec
Água deionizada (¹ H)	2120 ± 4	2400 ± 20
Água com Fe ³⁺	15.40 ± 0.01	15.20 ± 0.03
Acetona (1H)	4260 ± 2	4030 ± 10
Oleo Vegetal (1H)	127.0 ± 0.01	119.70 ± 0.04
látex (1H)	8.0 ± 0.03	8.0 ± 0.1
Ácido fosfórico (1H)	140.0 ± 0.3	160.0 ± 0.3
Ácido fosfórico (31P)	178.00 ± 0.30	145.73 ± 0.03
Trifluoretanol(19F)	1832 ± 0	2080 ± 7
Trifluralina (19F)	127.00 ± 0.01	127.00 ± 0.02

Como essa técnica é rápida concluímos que ela poderá ser usada para medidas rápidas de tempo de relaxação em processos dinâmicos como processos de congelamento, solidificação entre outros. O monitoramento destes parâmetros pode ser importante, por exemplo, para prever um adequado acondicionamento de produtos como frutas, hortaliças, entre outros. Um exemplo de aplicação da técnica em agropecuária é o seu uso na previsão da qualidade de carne bovina em parceria com a Embrapa Pecuária Sudeste, uma vez que os tempos de relaxação da água na carne estão relacionados com parâmetros de qualidade como: capacidade de retenção de água (CRA), capacidade de ligação de água (CLA) e maciez.

Referências bibliográficas

KRONENBITTER, J.; SCHWENK, A. New technique for measuring relaxation-times T_1 and T_2 . **Journal of Magnetic Resonance**, New York, v. 25, p. 147-165, 1977.

MEIBOOM S.; GILL, D. Modified Spin-Echo Method for Measuring Relaxation Times, **Review of Scientific Instruments**, Rochester, v. 29, p. 688-691, 1958.

VENÂNCIO, T.; ENGELSBERG, M.; AZEREDO, R. B. de; V., ALEM, N. E. R.; COLNAGO, L. A. Fast and simultaneous measurement of longitudinal and transverse NMR relaxation times in a single continuous wave free precession experiment. **Journal of Magnetic Resonance**, New York, v. 173, p. 34-36, 2005.

Comunicado Técnico, 66

Ministério da Agricultura, Pecuária e Abastecimento Exemplares desta edição podem ser adquiridos na: Embrapa Instrumentação Agropecuária

Rua XV de Novembro, 1542 - Caixa Postal 741

CEP 13560-970 - São Carlos-SP **Fone:** 16 3374 2477

Fax: 16 3372 5958 E-mail: sac@cnpdia.embrapa.br www.cnpdia.embrapa.br

1a. edição

1a. impressão 2005: tiragem 300

Comitê de Publicações

Presidente: Dr. Carlos Manoel Pedro Vaz Secretária Executiva: Valéria de Fátima Cardoso Membros: Dra. Débora Marcondes B. P. Milori,

Dr. João de Mendonça Naime, Dr. Washington Luiz de Barros Melo

Membro Suplente: Dr. Paulo S. P. Herrmann Junior

Expediente

Supervisor editorial: Dr. Victor Bertucci Neto Revisão de texto: Dr. Victor Bertucci Neto Normalização bibliográfica: Valéria de Fátima Cardoso Tratamento das ilustrações: Valentim Monzane Editoração eletrônica: Valentim Monzane