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Abstract 

 

Ionically conductive membranes of gelatin and d-PCL(530)/siloxane doped with cyano-based ionic 

liquids (ILs) were prepared through solvent casting and sol-gel methods, respectively. The 

membranes were characterized in terms of ionic conductivity, thermal behavior, morphology, and 

structure. All samples, except the d-PCL(530)/siloxane matrix, exhibited a predominantly 

amorphous morphology. The samples prepared through solvent casting and sol-gel displayed a 

minimum thermal stability of 170 and 230 ºC, respectively. The ionic conductivity varied 

accordingly with the type, quantity, and length of the alkyl chain of the cation of the ILs. The 

sample with the highest ionic conductivity was gelatin0.5[C2mim][N(CN)2] with 2.40 x 10-3 S.cm-1 

at 25 ºC and 1.68 x 10-2 S.cm-1 at 95 ºC. The good results of ionic conductivity encouraged the 

assembly and characterization of prototypes of electrochromic devices (ECDs). The best results 

were obtained with glass/ITO/WO3/gelatin1[C2mim][SCN]/CeO2-TiO2/ITO/glass configuration that 

showed a fast color switching time (~ 15 s) and a good open circuit memory (~ 4 hours). The ECD 

changed its color from pale blue to transparent, and its charge density decreased from -17.53 to -

2.71 mC.cm-2 during 640 color/bleaching cycles.  

	

	

Keywords: sol-gel, solvent casting, cyano-based ionic liquids, solid polymer electrolyte, 

electrochromic device.	  



3 
	

1. Introduction 

 Electrochromism is the capability of a material to reversibly alter its optical properties due 

to a redox reaction. This color alternation is induced by application of low current potentials [1]. 

Electrochromic windows, anti-glare mirrors, helmet visors, goggles, electrochromic displays, and 

sensors are examples of electrochromic devices (ECDs) envisaged applications [2, 3]. Some of 

these have already reached commercialization, e.g., NTERA is manufacturing iPod EC displays, 

while Gentex and Donnelly are fabricating auto dimming rear mirrors [4-6].  

High performance ECDs should depict high electrochromic efficiency, short response time, 

good stability, high optical contrast, and good optical memory [1]. Typically, an ECD is composed 

of a glass substrate (GS), a transparent conducting oxide (TCO), an electrochromic coating (EC), an 

ion conductor (IC), and an ion storage coating, also referred as counter electrode (CE). Often TCO 

is indium tin oxide (ITO) and EC is tungsten oxide (WO3) [3]. The IC is an electrolyte and it can be 

either liquid, gel, or solid. Its function is to avoid electronic charge flow but allow mutual ion 

exchange [7, 8]. Though the electrolyte can be either liquid, gel, or solid, but the solid-state design 

is the preferred one for ECDs. Liquid electrolytes are associated with leakage risks, high 

flammability, low stability, and show problems on the large scale [1, 9]. On the other side, polymer 

electrolytes (PEs) can act as a separator and a binder; exhibit reduced reactivity; operate in a wider 

temperature range; have better mechanical strength and enhanced protection and stability; and their 

easy processing allows to fine-tune PEs membranes thickness and area [1]. 

The current research demand for biodegradable, low cost, and highly efficient materials 

drew attentions to biopolymers. In this work we synthesized and characterized solid polymer 

electrolytes (SPEs) based on gelatin or poly(ɛ-caprolactone) (PCL(530), where 530 is the average 

molecular weight of the polymer in g.mol-1). Gelatin is a protein produced by partial hydrolysis of 

collagen, which can be found in animal skin, bone, and connective tissue. Gelatin amino acid 

composition is characterized by a repeating sequence of Glycine-X-Y triplet, where X and Y are 

frequently proline and hydroxyproline, respectively [10, 11]. PCL(530) is a linear, aliphatic 
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thermoplastic, biocompatible, permeable, hydrophobic, non-toxic for living organisms, and  

biodegradable poly(ester), [3]. Gelatin-based SPEs were prepared through solvent casting method, 

while d-PCL(530)/siloxane ormolytes (organically modified silicate electrolytes) were obtained 

through sol-gel. The sol-gel method is a synthetic chemical process that provides a facile and 

versatile route for the preparation of highly pure materials.  

In order to improve ECD stability and reduce switching time, ionic liquids (ILs) were 

included in the SPEs composition. Additionally, the aim was that SPE simultaneously fulfills the 

requirements of ionic conductivity above 10-4 S.cm-1, electrochemical windows above 1.0 V, low 

volatility, and environmental stability [12].  

Many ILs present characteristics that make them very interesting from an industrial point of 

view, namely almost null volatility at room temperature [13], nonflammability [14], and high 

thermal stability [15]. The interchangeability between thousands of possible cations and anions can 

be used to tune the properties of ILs [16]. Most common ILs are composed of an organic cation and 

an inorganic or organic anion [17]. Pure 1-alkyl-3-methylimidazolium ILs with cyano-based anions 

([SCN]-, [N(CN)2]- or [C(CN)3]-), display, at 25 ºC, very high ionic conductivities around 2.0x10-2 

S.cm-1 and electrochemical windows of about 3.0 V [18-21]. 

The gelatin- and d-PCL(530)/siloxane-based SPEs studied here were doped with four cyano-

based ILs: 1-ethyl-3-methylimidazolium thiocyanate ([C2mim][SCN]), 1-ethyl-3-

methylimidazolium dicyanamide ([C2mim][N(CN)2]), 1-ethyl-3-methylimidazolium 

tricyanomethanide ([C2mim][C(CN)3]), and 1-butyl-3-methylimidazolium thiocyanate 

([C4mim][SCN]). In this work we report the ionic conductivity, thermal behavior, structure, and 

morphology of gelatin- and d-PCL(530)/siloxane-ILs-SPEs. Finally, the samples were tested in 

small electrochromic windows and the best results were obtained with 

glass/ITO/WO3/gelatin1[C2mim][SCN]/CeO2-TiO2/ITO/glass configuration, which was 

characterized by electrochemical and spectroscopic methods. 
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2. Material and methods 

2.1 Materials 

Commercial colourless gelatin (Vahine®), glycerol (Himedia, 99.5 %), α,ω-hidroxylpoly(ε-

caprolactone) (PCL (530) (Aldrich, average molecular weight 530 g.mol−1), and 3-

isocyanatepropyltriethoxysilane (ICPTES, Aldrich, 95%) were used as received. Tetrahydrofuran 

(THF, Aldrich) and ethanol (CH3CH2OH, Riedel de Haën) were stored over molecular sieves. Milli-

Q water was used in all experiments. 

[C2mim][C(CN)3], [C2mim][N(CN)2], [C2mim][SCN], and [C4mim][SCN] were acquired 

from IoliTec with a stated purity higher than 98 %.  All ILs were dried under vacuum and moderate 

temperature for at least 48 h. 1H NMR and 13C NMR were performed for all samples and confirmed 

the supplier indication. 

 

2.2 Solvent casting 

Commercial colourless gelatin (1.0 g) was dispersed in water (15 mL) and stirred for a few 

minutes at 50 ºC for complete dissolution. The IL (0.25 – 2.0 g) and glycerol (0.625 g), as 

plasticizer, were added to this solution. The solution was poured on a Petri dish and left to dry for 8 

h at 25 ºC, then overnight at 40 ºC, followed by 4 h at 60 ºC and then cooled down to 25 ºC. The 

resulting transparent flexible membranes showed an average thickness of 0.296 ± 0.001 mm. The 

notation gelatinx[IL], where x corresponds to the quotient between the mass of the polymer and the 

mass of the IL, was used. 

 

2.3 Sol-gel 

The d-PCL(530)/siloxane-based hybrid electrolytes were prepared through a procedure 

described in detail elsewhere [22]. In the first step a urethane cross-link was formed between the 

hydroxyl (-OH) end groups of PCL(530) (0.80 g, 1.51 mmol) and the isocyanate (-N=C=O) groups 

of ICPTES (745 µL, 3.01 mmol), in THF at 70-80 ºC, to yield the non-hydrolysed hybrid precursor. 
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In the second step, ethanol (705 µL, 12.07 mmol) and water (82 µL, 4.55 mmol) were added to this 

solution to promote the characteristic sol-gel reactions of hydrolysis and condensation. 

[C2mim][SCN] (0.019 – 0.946 g, 0.11 – 5.59 mmol) was then incorporated in different quantities. 

The ormolyte sample, produced as a xerogel film, was aged for 1 month in an oven at 50 ºC, 

followed by a final drying under vacuum at 90 ºC for 3 days. The membranes thickness varied 

between 0.447 and 0.565 ± 0.001 mm. These materials were identified by the notation d-

PCL(530)/siloxanen[C2mim][SCN], where n corresponds to the number of C(=O)(CH2)5=O) PCL 

repeat units per [C2mim]+ ion. 

 

2.4 SPEs characterization 

Ionic conductivity: The bulk ionic conductivity was obtained using the complex plane 

impedance technique (Autolab PGSTAT-12; Eco Chemie) over a frequency range of 65 kHz to 500 

mHz and a temperature range from room temperature (~ 20 ºC) to 100 ºC. The samples were 

sandwiched between two gold electrodes (10 mm diameter ion-blocking gold electrode, 

Goodfellow, > 99.95%) with gold electrode/polymer electrolyte/gold electrode configuration, 

secured in a suitable constant volume support under an argon atmosphere. 

Thermal analysis: Differential scanning calorimetry (DSC) measurements were carried out 

using a Mettler DSC 821e. 40 µL aluminum cans with perforated lids were sealed with each sample 

inside a glove box filled with dry argon.  Gelatin-based SPEs were analyzed in the temperature 

range from – 60 to 200 ºC, at a heating rate of 5 ºC.min-1. d-PCL(530)/siloxane-based SPEs were 

analyzed from – 60 to 15 ºC, at a heating rate of 10 ºC.min-1, and from 25 to 350 ºC, at a heating 

rate of 5 ºC.min-1. All measurements were carried out under a 30 mL.min-1 flowing argon atmos-

phere. 

Thermogravimetric analysis (TGA) were performed with a Shimadzu TGA-50 equipment 

between 30 and 900 ºC, at a heating rate of 10 ºC.min-1, and under a nitrogen atmosphere with a 60 

mL.min-1 rate flow. Before each analysis and aiming to eliminate the traces of absorbed moisture all 



7 
	

samples were subject to a first run from 30 to 105 ºC, at a heating rate of 20 ºC.min-1, followed by a 

second isothermal run at 105 ºC during 10 minutes. 

Structural and morphological measurements: X-ray diffraction (XRD) measurements were 

carried out at room temperature with an X-ray Rigaku Utma 4 diffractometer, power of 50 kV/50 

mA, Cu Kα irradiation, speed of 2 o.min−1 and an angle range (2θ) from 10 to 60°.  

Scanning electron microscopy (SEM) images were obtained at 10 kV with a LEO 440 mi-

croscope. Energy-dispersive X-ray spectroscopy (EDS) of the d-PCL(530)/siloxanen[C2mim][SCN] 

ormolytes were performed with an EDX Link Analytical with a resolution of 133 eV.    

Atomic Force Microscopy (AFM) images were taken with a Bruker AFM System (Dimen-

sion icon with scan Asyst). In all AFM analyses the intermittent-contact mode was employed by 

using silicon AFM probes with a force constant of 48 N.m-1 and a resonance frequency of 190 kHz. 

 

2.5 ECD prototype 

ECD construction: CeO2-TiO2 and WO3 films were deposited by dip-coating on conducting 

ITO glass substrates (Delta Technologies, sheet resistance of 8 ohm.sq-1), previously cleaned and 

rinsed with bidistilled water and ethanol, and then dried at room temperature. The ITO substrates 

were withdrawn from the CeO2-TiO2 and WO3 solutions in a dry box (relative humidity < 40 %) at 

a speed of 20 and 6 cm.min-1, respectively. Finally, CeO2-TiO2 and WO3 coated substrates were den-

sified in air at 450 ºC for 15 min and at 120 ºC for 1 h, respectively. The thin crack-free CeO2-TiO2 

and WO3 films presented excellent optical quality and thicknesses ranging from 100 to 140 nm. 

Determination of the film thickness was important because of its impact on the colouring voltage of 

WO3
 [23]. 

The glass/ITO/WO3/gelatin1[C2mim][SCN]/CeO2-TiO2/ITO/glass ECD was assembled by 

placing the electrolyte between two coated glasses, i.e., glass/ITO/WO3 and glass/ITO/CeO2-TiO2 

substrates. The electrolyte film was placed with a tweezer on glass/ITO/WO3 substrate, leaving 1 

cm of free space for the electrical contact. Then, the other coated substrate (glass/ITO/CeO2-TiO2) 
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was pressed onto the film in such a way that the two coatings faced each other inside the assembled 

window. A 1 cm wide Cu-conducting tape (3M®) was then glued to the free edge of each substrate 

for electrical connection. Finally, the mounted cells were sealed with a protective tape (3M®). The 

ECD had dimensions of about 1 cm x 2 cm (Figure 1). 

 

  ECD characterization: The electrochemical measurements of the ECD were performed with 

an Autolab 302N apparatus. The cyclic voltammograms were registered over the -2.8 and +3.0 V 

potential range at different scan rates of 50, 200, 300, and 500 mV.s-1. The chronoamperometric 

(CA) measurements were performed using a square wave of -2.8 and +3.0 V for 15 s. It means that 

one CA cycle comprised the application of -2.8 V for 15 s and +3.0 V for the next 15 s.  

The UV-Vis spectroscopy measurements of the ECD were recorded with an Agilent 8453 

between 200 and 1100 nm after the application of −2.8 and +3.0 V for 15 s each potential. For the 

memory test the UV/VIS spectra were registered as a function of time. 

 

3. Results and discussion 

 3.1 Ionic conductivity 

Figure 2 depicts the temperature dependence of the ionic conductivities of (a) gelatin and 

[C2mim][C(CN)3], (b) gelatin and [C2mim][N(CN)2], (c) gelatin and [C2mim][SCN] or 

[C4mim][SCN], and (d) d-PCL(530)/siloxane and [C2mim][SCN] based SPEs. The conductivity 

plots demonstrate a remarkable enhancement, up to 10-3 S.cm-1, of the ionic conductivities of the 

samples doped with IL, comparatively to the matrix samples. Depending on the quantity of IL 

added to the gelatin-based samples, the conductivities increased from approximately 10-8 S.cm-1 to 

about 10-4, 10-3, 10-5, and 10-5 S.cm-1 for gelatinx[C2mim][C(CN)3], gelatinx[C2mim][N(CN)2], 

gelatinx[C2mim][SCN], and gelatinx[C4mim][SCN], respectively (Fig. 2a, b, and c). In the case of 

samples based on PCL it was observed an increase from about 10-12 S.cm-1 to 10-5 S.cm-1, at room 

temperature (Fig. 2d). Therefore, the very high ionic conductivity exhibited by the materials studied 
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in this work confirms the success of the addition of ILs to the matrices. All the samples exhibited a 

non-linear variation of the conductivity with the temperature, which is typical of polymer 

electrolytes with predominantly amorphous morphology. The highest conductivity of the gelatin-

based system at room temperature (T = 25 ºC) is 2.40 x 10-3 S.cm -1 for gelatin0.5[C2mim][N(CN)2]. 

At 95 ºC, it exhibits a conductivity of 1.68 x 10-2 S.cm-1. On the opposite side, the gelatin matrix 

exhibited the lowest conductivity of the gelatin-based system (4.94 x 10-7 and 1.27 x 10-4 S.cm-1, at 

25 and 95 ºC, respectively). As the temperature increases, the inter-chain hopping and intra-chain 

ion movements are favored, resulting in an increase of the ionic conductivity of the SPE. Also, the 

viscosity of ILs decreases rapidly with increasing temperature. Lower viscosities are associated 

with higher ion mobility, which results in higher ionic conductivity. Besides temperature, the guest 

salt (quantity and type) strongly influences the SPE ionic conductivity. As expected, the increase of 

the quantity of added IL induced an increase of the ionic conductivity (Figures 2 and 3), due to the 

increase of the number of charge carriers [24]. Moreover, ionic conductivity is also influenced by 

the length of the alkyl chain of the cation. Figure 2c shows that the ionic conductivity of the gelatin 

membranes doped with [C2mim][SCN] is higher than the ionic conductivity of the ones doped with 

[C4mim][SCN]. Shorter alkyl chains generally produce ILs with lower viscosities, which facilitate 

ion mobility. These results are also in accordance with the ones previously assessed for SPEs based 

on chitosan and other ILs [25].  

 The most conductive membrane synthesized using the sol-gel route (d-

PCL(530)/siloxane1[C2mim][SCN]) still shows quite high ionic conductivities of 3.38 x 10-5 and 

8.97 x 10-4 S.cm -1, at 25 and 95 ºC, respectively. Moreover, these values are at least one order of 

magnitude higher than the ones found for the most conductive d-PCL(530)/siloxane membrane 

doped with LiCF3SO3 [22] and LiClO4 [26], and they are similar to the ones found for d-

PCL(530)/siloxane doped with [C2mim][BF4] [3]. The ionic conductivity values of the gelatin-ILs 

SPEs studied here are one order of magnitude higher than those found previously for similar 

samples based on gelatin [27], DNA [28, 29], agar [30], chitosan [25], and synthetic polymers 
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incorporating cyano-based ILs [19, 31, 32]. The conductivities of present samples are two orders 

higher than the values found for gelatin doped with lithium salts [2, 33, 34]. 

 These high ionic conductivities can be explained by the small size and well delocalized 

charge of the cyano-based ILs anions. The delocalization of the charge produces weak ion-ion 

interactions, leading to higher ionic conductivity [35, 36]. For the gelatin-SPEs series, the order of 

conductivity values was gelatinx[C2mim][N(CN)2] > gelatinx[C2mim][SCN] > 

gelatinx[C2mim][C(CN)3] > gelatinx[C4mim][SCN]. The same order is found in literature for the 

ILs: [C2mim][N(CN)2] (2.20 x 10-2 S cm-1) > [C2mim][SCN] (2.01 x 10-2 S cm-1) > 

[C2mim][C(CN)3] (2.00 x 10-2 S cm-1) > [C4mim][SCN] (4.56 x 10-3 S cm-1) [18-20, 37]. 

 

3.2 Thermal behavior 

The DSC thermograms (Figure 4) confirm that all the produced SPEs are predominantly 

amorphous, except the d-PCL(530)/siloxane matrix, which shows a semi-crystalline morphology 

with a Tg around -36 ºC. The amorphous nature of these materials is a desirable property as the 

absence of crystallinity is associated with optical, mechanical, and electrochemical improvements 

[38]. The endothermic peaks observed above 180 ºC, for the gelatinx[C2mim][N(CN)2] samples 

with x = 0.5 and x = 2, are associated with the matrix thermal degradation. 

The samples thermal stability was thoroughly evaluated by TGA. The TGA curves shown in 

figure 5 are consistent with a Tonset of 170 ºC for the gelatinx[IL] electrolytes and 230 ºC for the d-

PCL(530)/siloxanen[C2mim][SCN] ormolytes. 

The onset of thermal degradation of the gelatinx[IL] samples is similar to that of the gelatin 

matrix and is almost IL independent at about 170 to 190 ºC. Only the membranes doped with the 

highest quantities of [C2mim][N(CN)2] presented a small increase of the Tonset to values close to 226 

ºC. This IL-stabilizing effect was also previously verified by our group for chitosan-SPEs 

incorporating cyano-based ILs [39]. On the other side, regarding d-

PCL(530)/siloxanen[C2mim][SCN] ormolytes, the presence of [C2mim][SCN] had a non-stabilizing 



11 
	

effect on the host polymer matrix. The thermal degradation of the d-

PCL(530)/siloxanen[C2mim][SCN] samples is related to the IL thermal degradation. Figure 5e 

demonstrates that the Tonset decreases with the increase of the quantity of added IL. The d-

PCL(530)/siloxane matrix initiates its thermal degradation at approximately 350 ºC, whereas in the 

case of the most IL concentrated sample d-PCL(530)/siloxane0.5[C2mim][SCN] thermal 

decomposition initiates at 230 ºC. Similar results were found for d-PCL(530)/siloxane doped with 

different guest salts [26, 40]. 

From a thermal degradation step-wise analysis, the PCL-SPEs showed a stability higher than 

the gelatin-SPEs. Nevertheless, all SPEs presented Tonset values adequate for ECDs application. 

 

3.3 Morphology and structure 

The predominantly amorphous morphology is confirmed by the XRD diffractograms 

throughout the Gaussian shaped broad bands (Figure 6). The gelatin-SPEs 2θ = 20.5-22 o peak is 

also characteristic of other systems based on gelatin [27, 33, 34] and other natural macromolecules 

[25, 28-30, 41], while the d-PCL(530)/siloxane-SPEs 2θ = 20.5-21 o peak is associated with the 

ordering of siliceous domains [3, 40, 42].  

 SEM images of gelatinx[IL] (Figure 7) and d-PCL(530)/siloxanen[C2mim][SCN] (Figure 8) 

electrolytes show surface homogeneity with no obvious phase separation.  

The light lines in figure 7a are probably replicas of the dish surface irregularities in which 

the samples solutions were poured. The gelatin2[C2mim][N(CN)2] membrane seams to show a 

fibrous structure (Figure 7b). The micro-vesicle in figure 7f are probably clusters of glycerol [25]. 

The SEM images reproduced in figure 8 demonstrate that the d-PCL(530)/siloxane- samples 

exhibit an irregular texture. The texture of the d-PCL(530)/siloxane5[C2mim][SCN] ormolyte 

(Figure 8b) exhibited micro-objects, some of them shapeless.	 The sample displayed a texture 

characteristic of the presence of crystalline regions. 

The EDS analysis confirmed the presence of sulfur in the d-
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PCL(530)/siloxanen[C2mim][SCN] ormolytes. The results were obtained from the data average 

from five different places on each sample. This indicates the successful uniform incorporation of 

the IL. Similar results were found for chitosan-ILs-SPEs [25].  

 

The 2D and 3D AFM images of gelatin1[C2mim][SCN] and d-

CL(530)/siloxane10[C2mim][SCN] SPEs are depicted in Figure 9. The images were acquired with a 

scanning area of 5.0 µm x 5.0 µm. Surface roughness analysis revealed that the two samples have 

very similar roughness mean square (RMS) values, i.e., gelatin1[C2mim][SCN] RMS = 8.50 nm and 

PCL(530)/siloxane10[C2mim][SCN] RMS = 8.92 nm. The surface roughness of the gelatin-based 

samples ranged from 6.23 to 47.1 nm. For the PCL-based ormolytes the RMS values varied 

between 2.13 and 259 nm. The addition of ILs had a contradictory effect on the samples surface 

roughness. The sample with the highest RMS value, on the gelatin-based system, was gelatin 

matrix, which suggests that the ILs incorporated well on the gelatin polymer host. The d-

PCL(530)/siloxane matrix showed the lowest RMS value among the studied ormolytes. The d-

PCL(530)/siloxanen[IL] SPEs high roughness might be explained by the crystalline domains 

observed in SEM images. Due to technical constrains, it was not possible to perform AFM analysis 

on the gelatin0.5[C2mim][N(CN)2], d-PCL(530)1[C2mim][SCN], and  d-PCL(530)5[C2mim][SCN] 

samples. 

  

 3.4 ECD prototype characterization 

Prototype ECDs, with the configuration represented in figure 1, were assemble with 

gelatin0.5[C2mim][N(CN)2], gelatin1[C2mim][SCN], and d-PCL(530)/siloxane1[C2mim][SCN] as 

electrolytes. The samples with higher ionic conductivity were chosen for the tests. Although all 

three SPEs were used to assemble ECDs, only the ECD with gelatin1[C2mim][SCN] performed 

well. The successful characterization of the ECD with 

glass/ITO/WO3/gelatin1[C2mim][SCN]/CeO2-TiO2/ITO/glass configuration is presented here. 
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 Figure 10 depicts cyclic voltammograms of the tested ECD that was recorded at scan rates 

ranging from 50 to 500 mV.s-1 and over the -2.8 to 3.0 V potential range. All voltammograms show 

a cathodic peak centered at -2.1 V (50 mV.s-1), which corresponds to the reduction of the WO3 layer 

(coloration). The anodic peak is centered at 0.0 V (50 mV.s-1) and corresponds to the oxidation 

reaction (bleaching). The increase of the scan rate promotes an increase of the cathodic current from 

-0.40 to -1.12 mA.cm-2 and its shift to more negative potentials. The anodic current peak also 

increases with increase of scan rate and shifts to more positive potentials (0.0 to 0.6 V). The inset in 

Figure 10 plots the anodic and cathodic peaks currents against the square root of the scan rate. The 

plot linearity indicates that the mass transfer at the electrode surface is diffusion controlled [43].  

  The reversibility and stability of the ECD was tested by chronoamperometry cycling. Figure 

11 shows the charge density response of the ECD for the 10th and 640th cycles. The change of color, 

from transparent to light blue, occurred by charging/discharging the electrochemical cell through 

the application of a potential of -2.8 and 3.0 V during 15 s, respectively. The charge density 

decreased from -17.53 mC.cm-2 at the 10th cycle to -2.71 mC.cm-2 at the 640th cycle. For the initial 

sweeps, this value is more than twice the one reported for a gelatin-IL based electrolyte, -8.0 

mC.cm-2 at 2.5 V [27], and for a gelatin-LiClO4 SPE, -8.0 mC.cm-2 at 2.0 V [44]. The difference is 

even more pronounced for ECD with electrolytes based on other natural polymers such as DNA 

[43, 45, 46], agar [30, 46], chitosan [47], gellan gum [48], or cellulose [49]. 

 The decrease of the ECD performance is possibly related to the incomplete extraction of the 

inserted charge, which probably leads to the decrease of the device reversibility. The charge 

decrease on cycling might be related to the degradation of the interfacial contact between the 

electrolyte and the conducting materials, which is attributed to the volumetric change caused by the 

expansion and shrinkage of the active materials. This could lead to an increase in the charge transfer 

resistance. Additionally, due to the formation of passive films of ions of ILs during charge/discharge 

cycles, the activation of these ions decreased as the cycle test was repeated. Another explanation for 

this decrease of the reversibility can be due to the non-perfect nanoporous structure of the WO3 and 
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CeO2–TiO2 thin films, where the charges accommodate during the insertion and extraction 

processes. 

 The transmission spectra obtained in the wavelength range between 190 and 1100 nm at the 

10th cycle for the as-deposited, colored, and bleached states are reproduced in Figure 12. The 

transmittance of the gelatin1[C2mim][SCN]-based ECD in the VIS region is identical to the as-

deposited and bleached states. The maximum transmittance difference (ΔT = Tbleached - Tcolored) was 

5.1 % at 633 nm. At 550 nm that difference was 4.6 % (Figure 10). Under abundant illumination 

(daylight), the eye sensitivity is maximum at 550 nm [40]. At 640th cycle, ΔT = 0.6 % for both 

wavelengths. Thus, the optical density (OD = - log (Tcolored/Tbleached)) at 633 nm is 0.0690 and 

0.0345 for 10th and 640th cycles, respectively. At 550 nm, OD is 0.0562 and 0.0297 for 10th and 

640th cycles, respectively. 

The coloration efficiency (CE) of an ECD is defined as the change in optical density, at a 

defined wavelength, per unit of inserted charge [1]. Thus, for the 10th cycle the CE is 3.94 and 3.21 

cm2.C-1 at 633 and 550 nm, respectively. 

 Figure 13 demonstrates that the tested ECD has a good open circuit memory of 

approximately 4 hours. 

 

4. Conclusions 

 Gelatin and d-PCL(530)/siloxane electrolytes doped with cyano-based ILs were prepared 

through solvent casting and sol-gel methods, respectively. The ionic conductivity, thermal behavior, 

morphology, and structure of the samples encouraged us to incorporate these materials as 

electrolytes in ECDs.  The features that made these materials interesting for application in ECDs 

include adequate ionic conductivity (~10-3 and 10-5 S.cm-1) and high thermal stability (Tonset > 170 

ºC). Also, except the d-PCL(530)/siloxane matrix, all the SPEs exhibited an amorphous 

morphology. Gelatinx[IL] ionic conductivity decreased in the order: gelatinx[C2mim][N(CN)2] > 

gelatinx[C2mim][SCN] > gelatinx[C2mim][C(CN)3] > gelatinx[C4mim][SCN]. Ionic conductivity 
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increased with the increase of the quantity of added IL. The quantity of IL also influenced the d-

PCL(530)/siloxanen[C2mim][SCN] ormolytes thermal stability. It decreased with the increase of the 

quantity of IL present in the membrane. 

 Although ionic conductivity is the most relevant feature for ECD application, the 

characterization of a prototype ECD was not successful using gelatin0.5[C2mim][N(CN)2]. This 

membrane displayed the highest ionic conductivity values (2.40 x 10-3 and 1.68 x 10-2 S.cm-1 at 25 

and 95 ºC, respectively). Nevertheless, the gelatin1[C2mim][SCN] SPE ionic conductivity values of 

5.50 x 10-5 and 3.98 x 10-3 S.cm-1 at 25 and 95 ºC, respectively were still very high and adequate for 

the application of this sample as electrolyte in an ECD.  

An ECD with the configuration glass/ITO/WO3/gelatin1[C2mim][SCN]/CeO2-

TiO2/ITO/glass was assembled and electrochemically and spectroscopically characterized. The 

promising results confirmed the applicability of this class of materials in commercial devices. For 

the 10th cycle and at 633 nm, the prototype ECD showed an ΔT = 5.1 %, OD = 0.0690, and CE = 

3.94 cm2.C-1. Color switching time was very fast (~15 s) and optical memory persisted for 

approximately 4 hours. Although some optimization work is required, these results are encouraging.  
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Figures caption 

 

Figure 1. Representation of an ECD with glass/ITO/WO3/SPE/CeO2-TiO2/ITO/glass 

configuration. 

 

Figure 2. Variation of the log ionic conductivity with the inverse temperature of the (a) 

gelatinx[C2mim][C(CN)3], (b) gelatinx[C2mim][N(CN)2], (c) gelatinx[C2mim][SCN] and 

gelatinx[C4mim][SCN], and (d) d-PCL(530)/siloxanen[C2mim][SCN] SPEs. 

 

Figure 3. Isotherms of the log ionic conductivity vs composition of the gelatinx[IL] SPEs, at 

approximately 30 ºC. 

 

Figure 4. DSC thermograms of SPEs based on (a) gelatin between -60 and 200 ºC, (b) d-

PCL(530)/siloxane between 60 e 15 ºC, and (c) between 25 and 350 ºC. 

 

Figure 5. TGA curves of the (a) gelatinx[C2mim][C(CN)3], (b) gelatinx[C2mim][N(CN)3], 

(c) gelatinx[C2mim][SCN], (d) gelatinx[C4mim][SCN], and (e) d-PCL(530)/siloxanen[C2mim][SCN] 

electrolytes. 

 

Figure 6. X-ray diffraction patterns of (a) gelatin-SPEs incorporating (a1) [C2mim][SCN], 

(a2) [C4mim][SCN], (a3) [C2mim][N(CN)2], and (a4) [C2mim][C(CN)3], with (.1) n = 4, (.2) n = 2, 

(.3) n = 1, and (.4) n = 0.5; and (b) d-PCL(530)/siloxanen[C2mim][SCN]-SPEs with (b1.1) n = 50, 

(b1.2) n = 25, (b1.3) n = 10, (b1.4) n = 5, and (b1.5) n = 1.  

 

Figure 7. SEM pictures of the (a) gelatin2[C2mim][C(CN)3], (b) gelatin2[C2mim][N(CN)2], 

(c) gelatin0.5[C2mim][N(CN)2], (d) gelatin2[C2mim][SCN], (e) gelatin2[C4mim][SCN], and (f) 
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gelatin matrix membranes. 

 

Figure 8. SEM pictures of the d-PCL(530)/siloxanen[C2mim][SCN] ormolytes, with (a) n = 

1, (b) n = 5, (c) n = 10, (d) n = 25, (e) n = 50, and (f) d-PCL(530)/siloxane matrix. 

 

Figure 9. AFM images of the (a) gelatin1[C2mim][SCN] and (b) d-

PCL(530)/siloxane10[C2mim][SCN] electrolytes. 

 

Figure 10. Cyclic voltammograms between -2.8 and 3.0 V at different scan rates. The inset 

depicts the anodic and cathodic peaks current densities against the square root of the scan rates of 

ECD with glass/ITO/WO3/gelatin1[C2mim][SCN]/CeO2-TiO2/ITO/glass configuration. 

 

Figure 11. Charge density results of the 10th and 640th cycles of ECD with 

glass/ITO/WO3/gelatin1[C2mim][SCN]/CeO2-TiO2/ITO/glass configuration. 

 

Figure 12. Transmission spectra for the as-deposited, bleached, and colored states of ECD 

with glass/ITO/WO3/gelatin1[C2mim][SCN]/CeO2-TiO2/ITO/glass configuration at the 10th cycle. 

 

Figure 13. Memory test of ECD with glass/ITO/WO3/gelatin1[C2mim][SCN]/CeO2-

TiO2/ITO/glass configuration. 

	

 

 

 


