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Schizophrenia (SZ) and bipolar disorder (BD) are severe psychiatric conditions with a neurodevelopmental
component. Genetic findings indicate the existence of an overlap in genetic susceptibility across the disorders.
Also, image studies provide evidence for a shared neurobiological basis, contributing to a dimensional diagnostic
approach. This study aimed to identify the molecular mechanisms that differentiate SZ and BD patients from
health controls but also that distinguish both from health individuals. Comparison of gene expression profiling
in post-mortem brains of both disorders and health controls (30 cases), followed by a further comparison be-
tween 29 BD and 29 SZ revealed 28 differentially expressed genes. These genes were used in co-expression
analysesthat revealed the pairs CCR1/SERPINA1, CCR5/HCST, C1QA/CD68, CCR5/S100A11 and SERPINA1/TLR1 as
presenting the most significant difference in co-expression between SZ and BD. Next, a protein-protein interac-
tion (PPI) network using the 28 differentially expressed genes as seeds revealed CASP4, TYROBP, CCR1, SERPINA1,
CCR5 and C1QA as having a central role in the diseasesmanifestation. Both co-expression andnetwork topological
analyses pointed to genes related tomicroglia functions. Based on this data, we suggest that differences between
SZ and BP are due to genes involved with response to stimulus, defense response, immune system process and
response to stress biological processes, all having a role in the communication of environmental factors to the
cells and associated to microglia.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Schizophrenia (SZ) and bipolar disorder (BD) are severe psychiatric
conditions, with a lifetime prevalence of about 1% (Merikangas et al.,
2007; Alaerts and Del-Favero, 2009; Doherty et al., 2012). Both disor-
ders have a neurodevelopment component, with onset of symptoms
occurring most frequently during late adolescence or early adulthood
(Maier et al., 2006; Doherty et al., 2012). Family studies demonstrate
that the recurrence risk in families of SZ patients is 8-12% and the recur-
rence risk in BD families is approximately 10% (Barnett and Smoller,
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2009; Ivleva et al., 2010). The estimates of heritability range between
40 - 80% for both diseases (Sullivan et al., 2003; Bienvenu et al., 2011)
with genetic findings indicating an overlap in familial-genetic suscepti-
bility across the diseases (O'Donovan et al., 2008; Lichtenstein et al.,
2009; Ivleva et al., 2010). In addition, chromosomal regions, including
risk variants show linkage to both BD and SZ (Barnett and Smoller,
2009; Moskvina et al., 2009; Williams et al., 2011a,b). Global gene
expression analyses revealed common genes for SZ and BD, which
were associatedwith synapse, neuronal and glial functions,metabolism,
cellular and mitochondrial function, nervous system development, im-
mune system development and response, and cell death (Iwamoto
et al., 2005; Choi et al., 2008; Shao and Vawter, 2008; Lin et al., 2012).

Due to the similarities between both disorders, gene expression pro-
filing of BD and SZwere first compared as one entity to controls to iden-
tify common alterations. Further, genes from this comparison were
analyzed in co-expression and protein-protein interaction (PPI) net-
works contexts allowing the identification of changes in expression
differentially dysregulated between bipolar disease and schizophrenia,

https://core.ac.uk/display/154273479?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.schres.2014.10.055
mailto:helena.brentani@gmail.com
http://dx.doi.org/10.1016/j.schres.2014.10.055
http://www.sciencedirect.com/science/journal/09209964
www.elsevier.com/locate/schres
http://dx.doi.org/10.1016/j.schres.2014.10.055


2 A. de Baumont et al. / Schizophrenia Research xxx (2014) xxx–xxx
and biological processes potentially involved in the different clinical
phenotypes observed in SZ and BD.

2. Material and methods

2.1. Sample

RNA samples were obtained from the frontal cortex of 104 subjects
from the Stanley Neuropathology Consortium. Potential donors for the
brain collection were identified by the pathologist who contacts the
family of the deceased, request permission for donation,make a prelim-
inary diagnosis and require psychiatric records; if necessary a psychia-
trist contacts one or more family members and make a telephone
call to clarify the symptoms. All records are reviewedfor DSM-IV psychi-
atric diagnosis independently by two senior psychiatrists. For normal
controls, a structured telephone interview with a first-degree family
member was carried out in all cases. Detailed sample collection is
available in (Torrey, 2000). RNA concentrationwas determined by spec-
trophotometry (Nanodrop, Thermo Scientific, US), and integrity was
accessed using the 2100 Bioanalyzer (Agilent Technologies,Waldbronn,
Germany). Due to low RNA integrity, 16 samples were discarded. The
final samples included 30 non-psychiatric controls, 29 bipolar patients
and 29 schizophrenic patients. A summary of subject characteristics is
shown in Table 1.

The study protocol was approved by the ethics committee of
A.C.Camargo Cancer Center and was performed in accordance with
the Declaration of Helsinki.

2.2. cDNA microarray experiments

The Agilent 4x44K human oligonucleotide microarray assay was
used (Agilent 4112 F; Agilent Technologies, CA) formicroarray analyses.
Slides were scanned with the Agilent Bundle Microarray Scanner Sys-
tem (Agilent Technologies) and data were processed using the Feature
Extraction 10.7.3.1 software (Agilent Technologies). Among the 45,015
spots present in each array, only those with none flag for quality control
(i.e. low intensity, saturation, controls, etc.) were selected for analysis.
For analysis of replicate spots, the average intensity after background
correction was calculated, normalization was performed using locally
weighted linear regression (LOWESS) with α = 0.2 within slides
using the R software version 2.11.1 (R Development Core Team,
2010). For statistical analyses only transcripts that were presented in
at least 24 cases of each group were considered. In total, 22,639 tran-
scripts were analyzed. Gene expression data described in this study
are available from GEO with accession ID GSE6210.

2.3. Statistical analysis

For analysis of genes related to pathological changes, patients with
either BD or SZ (PSY) were compared to individuals without pathology
(CON). From this list of differentially expressed genes, BD and SZ
patients were compared to identify possible disease-specific genes.
Table 1
Summary of subject characteristics.

Bipolar
patients

Schizophrenic
patients

Non-psychiatric
controls

Number of Samples 29 29 30
Age 44,46 42,17 44,43
Gender 52% Male 79% Male 76% Male
Race 93% White 96% White 100% White
PMI 36,89 ± 18,26 31,40 ± 16,93 29,97 ± 12,71
Brain pH 6,49 ± 0,25 6,45 ± 0,25 6,61 ± 0,28

For each variable, mean ± standard error or percentage value is reported. PMI: post-
mortem interval.
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Analyses using Multiple Significant Analysis of Microarray (SAM)
identified differentially expressed genes. Five hundred permutations
were performed using a False Discovery Ratio (FDR) of 1% for both
the PSY vs. CON and BD vs. SZ analyses. To assess similarity patterns,
Pearson correlation and complete linkage were used for non-
supervised hierarchical clustering, and reliability was assessed by
bootstrapping using multiExperiment Viewer (MeV) software
(Saeed et al., 2003).

Differentially expressed genes were annotated using biological
process categories in the Gene Ontology Database (GO) and a hyper-
geometric test with multiple test adjustments was applied to find over-
represented chromosome regions withWebGestalt, using the human ge-
nome as reference, p-value b0.05 and Benjamin Hochnerg adjustment
(Zhang et al., 2005).

To assess differences in network organization between individuals
with BD and SZ, co-expression of pairs of genes were evaluated as pre-
viously described (Silva et al., 2012). Briefly, the Pearson Correlation
Coefficient (PCC) for each gene and partners in each groupwas calculat-
ed. PCC absolute difference between groups was used to identify genes
whose co-expression was different between BD and SZ. To identify
genes that were significantly different between patient groups, an em-
pirical p-value distributionwas created as follows: caseswere randomly
assigned to two groups and the PCCwas calculated for each group and a
difference ranking was calculated. These analyses were repeated 1,000
times to create a random distribution of PCC’s difference rankings.
Real PCC differences for genes between patient groups were compared
to the random distribution to generate p-values (Supplemental table
1) defining a network of genes whose co-expression was significantly
different (p ≤ 0.05) between SZ and BD. The network was visualized
using Cytoscape (Cline et al., 2007).

To identify additional properties potentially associated with the
differentially expressed genes between SZ and BD, a Protein-Protein In-
teraction (PPI) networkwas used. By querying three human interac-
tome databases: HPRD (Keshava Prasad et al., 2009), MINT (Licata
et al., 2012) and IntAct (Kerrien et al., 2012), a network starting with
differentially expressed genes (seeds) and their first neighbors (genes
with direct interaction in the interactome databases) and genes that
connected first neighbors from seedwas constructed. To identify broker
(i.e., a gene that connects different genes that do not connect directly
with each other) and bridge (i.e., a gene that has only a few connections
but connects broker genes and their associated partners (i.e., hubs))
genes, previously published algorithms (Cai et al., 2010) were used in
the Interactome Graph website (http://bioinfo.lbhc.hcancer.org.br/
interactomegraph/). Top 5% genes were selected. Using the entire set
of genes available in the three banks (14,276), the probability of a
node appearing in a random network was estimated by generating
1,000 networks using a random collection of 25 genes (an equivalent
number of genes differentially expressed found in this study and
present at the PPI data). For each gene in the original network, the num-
ber of times it appeared in the 1,000 networks was computed. Genes
that appeared more than 20% times (5th percentile) were considered
random, because the gene has a high probability of appearing in any
human PPI.

3. Results

3.1. Characterization of differentially expressed genes between BD and SZ

Gene expression profile analyses of PSY (i.e., BD and SZ) versus CON
identified 1,264 differentially expressed genes. These genes were in-
volved with nervous system, vasculature and ectoderm development,
regulation of metabolism and the immune system biological processes.

Of the 1,264 genes, 28 were differentially expressed when compar-
ing individuals with BD and SZ (FDR b 1%), all having a higher expres-
sion in BD. These genes are involved with immune system response,
immune system regulation, and response to stimulus (Table 2). Non-
differentially dysregulated between bipolar disease and schizophrenia,
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Table 2
Genes differentially expressed between BD and SZ with respective genomic location, fold change and main biological processes according Gene Ontology functional annotation.

Gene Symbol Gene ID Location BD/SZ GO Biological Processes

SST 6750 3q28 1,36 response to stimulus, locomotion, response to stress
APOC1 341 19q13.2 1,42 Apolipoprotein C1 associated to LOAD (late onset Alzheimer Disease)
A_24_P418901 Not_found 1,46 None informed
PGDS 27306 4q22.3 1,48 Apoptosis-increase ROS, IL6, TNFa
AK126405 1240 12q24.1 1,50 Chemokine-like receptor 1 – CMKLR1 – multifunctional receptor with pro-anti-inflammatory effect
S100A11 6282 1q21 1,51 response to stimulus
CCDC71 64925 3p21.31 1,54 Coiled coil domain containing 71
LAIR1 3903 19q13.4 1,55 Leucocyte Associated IG like receptor1 immune inhibitory receptor
CMTM7 112616 3p22.3 1,59 response to stimulus, locomotion
U807731 Not_found chr1:83151695-83151636 1,61 None informed
AIF1 199 6p21.3 1,63 immune response, immune system process, regulation of immune system process, response to stimulus,

response to stress
HLA-DMB 3109 6p21.3 1,63 immune response, immune system process, response to stimulus
PYCARD 29108 16p11.2 1,63 immune response, immune system process, regulation of immune system process, response to stimulus,

response to stress
CYBB 1536 Xp21.1 1,65 immune response, defense response, immune system process, response to stimulus, response to stress
CASP4 837 11q22.2-q22.3 1,66 Inflammation and natural immunity regulation activates CASPASE1, that in turn activates IL1b

and IL18 that regulat inflammation and immunity
TREM2 54209 6p21.1 1,68 immune response, immune system process, response to stimulus, locomotion
CCR5 1234 3p21.31 1,69 immune response, immune system process, defense response, response to stimulus, response to stress
HCST 10870 19q13.1 1,71 immune response, immune system process, regulation of immune system process, response to stimulus
TLR1 7096 4p14 1,73 immune response, immune system process, regulation of immune system process, response to stimulus,

response to stress
SERPINA1 5265 14q32.1 1,75 response to stimulus, response to stress
CD14 929 5q31.1 1,75 immune response, immune system process, regulation of immune system process, response to stimulus,

response to stress
CCR1 1230 3p21 1,77 immune response, immune system process, regulation of immune system process, response to stimulus,

response to stress
TYROBP 7305 19q13.1 1,77 immune response, immune system process, regulation of immune system process, response to stimulus,

response to stress
RGS1 5996 1q31 2,05 immune response, immune system process, response to stimulus
C1QA 712 1p36.12 2,08 immune response, immune system process, regulation of immune system process, response to stimulus,

response to stress
CD68 968 17p13 2,09 response to stimulus
PSPH 5723 7p11.2 2,30 response to stimulus
CAMK2N2 94032 3q27.1 3,57 Calcium calmodulin dependent protein kinase II inhibitor 2 regulation of synaptic plasticity implicated in

neurodegeneration

1 Probes in the platform without identified gene.
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supervised hierarchical clustering based on the expression of these 28
genes did not reveal different patterns of gene expression between SZ
and BD (Supplemental Fig. 1).
Fig. 1. A. Network showing gene pairs with significant altered correlations (p b 0.05). The col
inverted but increased, the color of edges represents the difference in absolute correlation. B. L
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To identify chromosome regions potentially involved in the differen-
tiation between BD and SZ, the 28 genes were mapped revealing over-
representation of genes located at 3p21 (p b 0.001); CCDC71, CCR1
or of edges is based on absolute differences of correlations. As the correlations were not
egend of colors of edges.

differentially dysregulated between bipolar disease and schizophrenia,
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and CCR5 found in our analyses in this region were part of the chemo-
kine receptor gene cluster.

3.2. Construction of networks based on the differentially expressed genes
between BD and SZ patients

3.2.1. Co-expression gene network
To identify differences in co-expression among the 28 genes (see

Material and Methods), we used Pearson Coefficient Correlation (PCC)
between gene pairs in SZ and BD. This analysis revealed 65 significant
gene pairs (p b 0.05) between SZ and BD, with the gene pairs CCR1/
SERPINA1, CCR5/HCST, C1QA/CD68, CCR5/S100A11 and SERPINA1/TLR1
presenting the most significant differences of co-expression between
the disorders (Supplemental Table 1). These were used to construct a
co-expression network (Fig. 1). It is importantto note that the signifi-
cant differences in co-expressed gene pairs between SZ and BP present-
ed the same sign, suggesting that it represents variances in the
magnitude of the co-expression rather than inversion of the PCC. Of
Fig. 2. A. Gene network based on the 25 differentially expressed genes which presented intera
neighbors. B. Legend of colors. The 28 genes are indicated with green border.
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note, there were not gene pairs that correlated in a positive way in
one disorder and in a negative way in the other.
3.2.2. PPI network
To better address the cellular mechanisms involved in the differ-

ences between SZ and BD, 25 out of 28 differentially expressed genes
were found to be represented in the human PPI databases and used as
seeds to construct an interaction network rendering 285 genes
(Fig. 2). This set of 285 genes has over-representation of response to
stimulus, defense response, immune system process and response to
stress biological processes (Supplemental Table 2).

Next, we identified the genes that could affect the network topology.
Fifteen bridge and 15 broker genes were initially identified. All 15 brid-
ges and eight out of 15 brokers after bias correction (appeared in less
than 20% of the random networks (Supplemental Table 3) due to the
fact that commonly studied proteins are more likely to be included in
PPI databases (Das and Yu, 2012) were selected. We observed that six
ctions in the human interactome. Nodes present their sizes proportional to the number of

differentially dysregulated between bipolar disease and schizophrenia,

http://dx.doi.org/10.1016/j.schres.2014.10.055


5A. de Baumont et al. / Schizophrenia Research xxx (2014) xxx–xxx
of the 28 differentially expressed genes were brokers in the network:
CASP4, TYROBP, CCR1, SERPINA1, CCR5, C1QA.

4. Discussion

In this study, gene expression profiling and PPI network in post-
mortem brain samples of SZ, BD and controls subjects allowed us:
1) to detect common alterations in both diseases when compared to
healthy controls, and 2) to characterize molecular alterations that
differentiate SZ fromBD. Genenetwork approaches allow the identifica-
tion of genes that are not necessarily central but have a crucial biological
role in signal transduction or in the regulation of the expression of other
genes. Typically found in complex diseases, these genes tend to have an
intermediate impact in the protein-protein interaction networks as is
the case for brokers and bridges (Feldman et al., 2008; Cai et al., 2010).

The integration of gene expression with a PPI network to study pa-
tients with schizophrenia and bipolar disorder have been used by
other studies. Lee et al analyzed BD and SZ separately in relation to con-
trols revealing genes involved in housekeeping functions (translation,
transcription, energy conversion, and metabolism), in brain specific
functions (signal transduction, neuron cell differentiation, and cytoskel-
eton), and in stress responses (heat shocks and biotic stress) (Lee et al.,
2011). A recent whole transcriptome analysis of post-mortem brain tis-
sues identified differentially expressed genes between SZ and BD, com-
pared to control subjects, many of the genes showing concordant
expression level, also revealing the involvement of lysosomal function
and regulation of actin cytoskeleton with both diseases (Zhao et al.,
2014). Different from previous studies, we first identified the common
alterations of SZ and BD in relation to control and subsequently focused
on the differences between both disorders. The common alterations in-
cluded 1,264 genes possibly involvedwith the clinical symptoms shared
by SZ and BD. They are involved with nervous system, vasculature and
ectoderm development aswell as regulation of metabolism and the im-
mune system.

A much smaller subset of 28 genes were found differentially
expressed between BD and SZ. Others have noted the small difference
in the molecular profiles of BD and SZ and the concordant expression
level of genes in both diseases in relation to control (Zhao et al.,
2014). A comparison of inflammatory monocyte gene expression pro-
files revealed three subsets of strongly correlating genes characterized
by different sets of transcription/MAPK regulating factors, with only
one subset showing a different profile: up-regulated in the monocytes
of BD but down-regulated in SZ (Drexhage et al., 2010).

Functional analyses of the 28 genes revealed that they are associated
with response to stimulus, defense response, immune system process
and response to stress. Previous in silico analyses suggested that inflam-
matory responsemarkers are able to differentiate patientswith SZ or BD
(Griffiths et al., 2010; Ricklin et al., 2010). A systematicmeta-analysis of
13 studies reviewed evidence of peripheral cytokine alterations in BD
and found differences between patients and controls and between
phases of disease within patients (Munkholm et al., 2013), suggesting
that different symptoms are related to activation of different processes
within the cell. A meta-analysis based on 40 studies of SZ also indicated
that some cytokines may be state markers for acute exacerbations, and
others may be trait markers, suggesting that cytokine alterations in
schizophrenia may also vary with clinical status (Miller et al., 2011).
Accordingly, inflammatory cytokines such as IL6, IL12 and TNF-α were
found at high levels in the peripheral blood of patients with SZ (Kunz
et al., 2011; Pedrini et al., 2012).

The set of 28 genes had over-representation of genes located at 3p21
in the chemokine receptor gene cluster (CCDC71, CCR1 and CCR5).
The 3p21 locus were pointed as a putative altered locus in BD by
GWAS (genome-wide association studies) (McMahon et al., 2010) and
an increased susceptibility for late onset SZ was related to a 32-bp dele-
tion inCCR5 (Rasmussen et al., 2006). Down-regulation ofCCR1was also
observed in human peripheral mononuclear cells from SZ patients
Please cite this article as: de Baumont, A., et al., Innate immune response is
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under treatment with antidepressant and antipsychotic (Chertkow
et al., 2007). Chemokines have fundamental roles in regulating immune
and inflammatory responses. CCR1 and CCR5 encode members of the β-
chemokine receptor family critical for the recruitment of mononuclear
phagocytes to the central nervous system (CNS) in neuroinflammatory
diseases (Eltayeb et al., 2007).

Prenatal inflammation is thought to be a risk factor for the develop-
ment of neuropsychiatric disorders such as schizophrenia and autism
spectrum disorders in the unborn child (Gertig and Hanisch, 2014),
whereas dysfunctional innate immunity in bipolar disorder could
make patients more susceptible to stressful events during life (Najjar
et al., 2013; Stertz et al., 2013). Prenatal inflammation triggers the
activation of microglia, the tissue-resident macrophages of the central
nervous system (CNS) and are active participants in the development
and homeostasis of the CNS (Marin-Teva et al., 2004; Takahashi et al.,
2005). Using differentially gene expression, co-expression and PPI net-
work topological analyseswe found genes related tomicroglia functions
as important genes in the differentiation of SZ and BD: TREM2, TLR1,
TYROBP, C1QA, CD68, SERPINA1, CD14, and AIF1.

TREM2 promotes microglial phagocytosis of apoptotic cells (Hsieh
et al., 2009). It inhibits macrophage response to ligation of toll-like
receptors (TLR) (Ito and Hamerman, 2012). TLR1 plays a fundamental
role in activation of innate immunity and is found in microglia, neurons,
astrocytes and endothelial cells (Lampron et al., 2013). TREM2 also inter-
acts with TYROBP (DAP12) to maintain brain homeostasis (Paradowska-
Gorycka and Jurkowska, 2013). The complex DAP12-TREM2 is detected
in embryonic day 14 CNS co-localized with markers of microglia/
macrophages (Thrash et al., 2009; Cameron and Landreth, 2010). CD68
can be considered an immunological marker of the density of activated
microglia (Monier et al., 2007). CD68-positive microglial cells have
frequently been observed in human fetal white matter and present a to-
pographical relationship with growing axons. The protein encoded by
CD14 is a surface antigen that mediates the innate immune response.
Socially-defeated mice show increased surface expression of several in-
flammatory proteins including CD14 in microglia and CNS macrophages
(Wohleb et al., 2011, 2012). Another protein expressed in microglial
cells is AIF1, a marker of activated macrophages (Fukui et al., 2012).
SERPIN1 has an important role as a self-defense protein that modulates
the activation of microglia (Griffiths et al., 2010).

Microglia is also related to neurodevelopment in neurogenic niches
such as the hippocampal dentate gyrus, which contains neural precur-
sor cells (NPCs). In such regions microglia shows a more activated
phenotype, detected by CD68 expression (Mosher et al, 2012). More-
over, during development more synapses tagged by complement
signaling are pruned by microglia. C1q is an upstream member of the
complement signaling cascade critical for the elimination of weak or
dysfunctional synapses during postnatal neurodevelopment. C1q is
found co-localizedwith synapses in the developing CNS and its ablation
results in an excess number of synapses during adolescence (Stevens
et al, 2007).Microglia play a significant role in determining theneuronal
and the behavioral responses to chronic psychological stress and, as
such, may contribute to the development of stress-related psychopa-
thologies (Hinwood et al., 2012). Altogether, these results suggest that
changes in expression of genes involved in microglial function would
account to environmental stimulus during neurodevelopment. Also,
emerging data show fundamental roles for microglia in the control of
neuronal proliferation and differentiation as well as in the formation
of synaptic connections, clearance of apoptotic cells and debris, produc-
tion of trophic factors and in the more long term wiring of neuronal
circuits (Graeber, 2010; Hughes, 2012).

In summary, the results from this study revealed genes and biologi-
cal processes that may underlie differences between SZ and BD,
supporting the hypothesis that SZ and BD arise from shared genetic fac-
tors, but that the resulting clinical phenotype ismodulated by additional
alterations mediated by microglia, possibly caused by interference of
environmental factors at different times during neurodevelopment
differentially dysregulated between bipolar disease and schizophrenia,
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and early life, and/or epistatic interactions among groups of genes and
environment (Rovaris et al., 2013). Our study has limitations since the
expression datawas provided from post-mortem brain samples and be-
cause patients had been medicated. Additionally, it can be conceived
that this group of differently expressed genes could represent spurious
association due to limited number of cases, regardless all statistical
corrections. Lager sample sizes could confirm or refute these findings.
Further studies with larger patient and control groups using samples
from distinct brain regions are needed to validate our findings and to
elucidate how they precisely contribute to disease pathology in these
psychiatric disorders.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.schres.2014.10.055.
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