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ABSTRACT 

Nowadays, the prospection plans have the difficult task of ensuring a more complete 

and rich characterization of the rock mass for the purpose of optimizing costs and 

increasing safety in geotechnical projects. Currently, boreholes location and depth are 

mainly defined based on experience and know-how of professionals, as such, it is user-

dependent. Hence, there is a lack of methodologies to help the decision-makers in 

defining the optimal location of boreholes (with relevant information). Therefore, this 

paper presents a methodology based on the use of geostatistical conditional simulation 

allied to a stochastic global optimization algorithm (Simulated Annealing) to develop 

optimized boreholes plans comparing a uni-objetive and a multi-criteria optimization 

approaches. In this work, the optimized location is considered the one that minimizes 

uncertainty translated by either the average local variance or the average width of 95% 

probability intervals of simulated values at unsampled locations. This methodology was 

applied using preliminary information obtained from previously executed boreholes 

using as variable the empirical rock mass classification system, Rock Mass Rating, in 

a Chilean deposit.  
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1 INTRODUCTION 

Rock mass prospection, mainly regarding boreholes, involves very high costs. 

Moreover, due to the frequently large spacing between boreholes and the fragmentary 

nature of the obtained data, considerable uncertainties affect the geotechnical models, 

mostly in highly heterogeneous rock masses. Currently, boreholes location and depth 

are mainly defined based on experience and know-how of professionals, as such, it is 

user-dependent. Therefore, the search for more rational ways of planning the borehole 

locations, as they can provide higher quality data and decrease the uncertainties, is of 

utmost importance, essentially in large geotechnical projects. 

Usually, the time and money available for rock mass model construction is very short. 

The geotechnical prospection plans in large geotechnical works are generally divided 

into two phases: the initial phase where a preliminary and confined characterization is 

carried out, and a second phase where the number of executed boreholes, as well as 

laboratory and in situ tests, are significantly higher. Thus, the proposed methodology 

can be applied in the second phase, using the preliminary information obtained from 

the initial phase. This methodology intends to fill the existing gap of consolidated 

methodologies for this purpose, and to help professionals to optimize the boreholes 

position in the second phase of the prospection works by giving them information 

regarding the borehole quantity and depth.  

In this search, a few existing methodologies for boreholes optimization combining 

different types of algorithms, in which the goal consists in minimizing a wide range of 

uncertainty measures obtained by using geostatistical techniques, were found.  

In detail, McBratney et al. (1981), Scheck and Chou (1983) and Olea (1984) presented 

methodologies to minimize the sampling requirements necessary to predict a 

regionalized variable at a specific level of accuracy based on the maximum or on the 

average standard kriging error as a global index of sampling efficiency. Subsequently, 

Englund and Heravi (1994) applied such a methodology to assess the number of 

samples and sampling phases required to remediate a contaminated soil balanced with 

reasonable costs. Marchant and Lark (2006) developed an approach to optimize the 

sampling scheme used to identify the spatial continuity (variogram) of the variable of 

interest. The goal was to understand what type of sampling scheme could result in more 

accurate variograms to use in further simulations and, consequently, reduce the 
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sampling costs. In each phase the information from previous phases is used to generate 

new information and to decide if a new phase is required. As an objective function, the 

authors minimized the developed expression to evaluate the uncertainty of variogram 

parameter estimation (sill, range, nugget, etc.). 

Van Groenigen et al. (1999, 2000) and Brus and Heuvelink (2007) presented more 

complex methodologies using the Simulated Annealing optimization algorithm to find 

the pattern for new samples that minimizes the average kriging variance. Soltani and 

Hezarkhani (2009, 2013b) also proposed a simulated annealing methodology, which 

aims to maximize the kriging variance reduction, calculated after dividing the kriging 

variance obtained from the initial samples with the kriging variance obtained with new 

additional boreholes. The same authors published a related work (Soltani and 

Hezarkhani, 2013a), this time combining the simulated annealing algorithm and an 

objective function to assess the value information that additional boreholes will bring 

for the deposit characterization, based on the range of reliability of each individual 

block resulting from its prediction. Similarly, Soltani et al. (2011) proposed the use of 

a genetic algorithm instead of simulated annealing, and the average kriging variance as 

the objective function to minimize.  

These statements lead to the identification of a limitation in optimal boreholes sampling 

strategies, mostly because the use of kriging only results in a single outcome for the 

random field and the obtained uncertainty metrics (kriging variance and related metrics) 

do not reflect the local variability of the regionalized variable under consideration, such 

as proportional and regressive effects, i.e., a local dispersion that depends on the local 

mean value (Chilès and Delfiner, 2012). Thus, the replacement of kriging by 

geostatistical simulation that results in several outcomes (realizations) and, 

consequently, in a greater uncertainty reduction and accuracy in the spatial variability 

quantification of a random field, is a way to overcome the aforementioned limitation. 

As previously mentioned, the proposed methodology will work as a helping tool in 

supporting the decision-maker when defining the prospection plans. To establish this 

methodology, it is necessary to combine two important techniques: the geostatistical 

simulation of the geotechnical variable of interest, conditionally to the available 

preliminary information, and an optimization algorithm known as simulated annealing 

(SA). The methodology can be divided into three major steps: first, preliminary 
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information, i.e. geotechnical information resulting from preliminary boreholes, is 

required; second, the data should allow performing geostatistical simulation to obtain 

the objective functions needed in the optimization process; and the third and last step 

culminates by performing the optimization with SA. As a result of this optimization, it 

is possible to extract the optimal position for additional boreholes, the gain in terms of 

geotechnical details and the minimum depth of each borehole. It is worth mentioning 

that the methodology is of easy use and presents considerably low pre- and post-

processing times. 

The paper is organized as follows. The general global optimization algorithm and the 

developed methodology to optimize boreholes plans are presented in Sections 2 and 3, 

respectively. A case study is then described in Section 4, with a short introduction of 

the data and a presentation of the results of geostatistical simulation. In Section 5, the 

optimization results are presented considering uni- and multi-criteria approaches. 

Discussion and conclusions follow.  

2 SIMULATED ANNEALING 

In the metallurgical industry, a thermal process named annealing aims to forge iron in 

order to minimize the energy spent to cool and freeze the metal. Then, the metal is 

heated to a maximum temperature able to change its physical properties (creating a 

particle disorder) and followed by slow cooling to guarantee that the final configuration 

of the solid is structurally superior. Simulated annealing (SA) (Kirkpatrick et al., 1983) 

is an iterative algorithm to solve combinatorial optimization problems inspired in this 

process in order to find a balanced state for each temperature, this way minimizing the 

internal energy of the process. In engineering problems, the use of SA has been 

increasing once it is an alternative to gradient-based methods or other local classical 

methods that can be trapped in local optima. 

This algorithm starts by randomly generating two solutions at each iteration, the so-

called new solution (𝑗 ) that emerges after random changes in the parameters that 

generate the previous solution (𝑖). Then, in the case of facing a minimization problem, 

SA compares the objective function (OF) values for each solution. On the one hand, if 

𝑂𝐹𝑗  ≤  𝑂𝐹𝑖  , solution 𝑗 is automatically accepted and assumed as the temporary best 
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solution. Under these conditions, the algorithm jumps to another iteration and new 

solutions are generated. On the other hand, if 𝑂𝐹𝑗  ≤  𝑂𝐹𝑖 there is a possibility to accept 

solution 𝑗, even if it is a “worse” solution than solution 𝑖. By allowing these controlled 

uphill moves to counter the downhill moves, the algorithm is forced towards the global 

minimum that sometimes can be found near the worst solutions. This selection is made 

through the calculation of an acceptance probability ( 𝑃𝑎𝑐𝑐𝑒𝑝𝑡 ) that depends on a 

temperature parameter that decreases in a slow rhythm to avoid, once again, the 

algorithm to be trapped into a local minimum: 

𝑃𝑎𝑐𝑐𝑒𝑝𝑡 = {
1              𝑂𝐹𝑗 ≤ 𝑂𝐹𝑖

𝑒
−∆𝑂

𝑇           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
    (1) 

wherein ∆O represents the difference between the OF values in the states i and j (∆O = 

OFj - OFi) and T is the control temperature. In the case of lower temperature values, the 

probability of accepting worse solutions is also lower, allowing SA to converge faster. 

As previously mentioned, the initial temperature to start the process must be high 

enough to allow SA exploring all the space of solutions. However, during the process, 

the temperature is progressively reduced until a threshold value defined by the user. 

This cooling should be slow in order to avoid rushing the stopping criteria of the 

algorithm, e.g.: 

𝑇𝑗 = 𝛼 ×  𝑇𝑖      (2) 

where 𝑇𝑖 represents the temperature value assumed when solution 𝑖 is generated and 𝛼 

represents the cooling constant, whose value ranges from 0.70 to 0.99 for a fast and 

slow cooling, respectively (Aarts and Korst, 1989). 

Besides the previously mentioned parameters, others should be defined: 

 A perturbation or transition kernel, which indicates the mechanism used to generate 

a new solution to be tested given a current solution. 

 

A maximum number of allowed moves for each temperature value. This number 

translates the number of times that SA generates new solutions before decreasing 

the temperature. Once reached this maximum number of moves, the temperature is 
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decreased using the aforementioned cooling process. Additionally, the maximum 

number of accepted solutions given the same temperature value must also be 

defined. 

 A stopping criterion: this criterion can be defined based on one or more key 

parameters. Many authors stop SA by defining a final value for the temperature, 

while others add more criteria to the process (Yang, 2010; Brus and Heuvelink, 

2007; Hernandez and Emery, 2009). In the present case, the stopping criterion will 

be composed by a temperature, an iteration number and a maximum number of 

rejections within a given temperature state. The latter will allow stopping the 

algorithm if no progress is shown. 

 

To sum up, the algorithm should be applied using the following general steps: 

Step 1: The values of the above key parameters (initial temperature, maximum of 

iterations, cooling constant and maximum number of rejections in a given temperature 

state) must be set. This can be defined after performing a sensitivity analysis to identify 

which parameter values allow the convergence of the algorithm to the global minima, 

or using as a reference existing values for similar optimization problems. 

Step 2: In the first iteration, an initial solution 𝑖 should be randomly generated within 

the space limits. For the remnant process, the new generated solutions are based in 

random changes made to the current solution. 

Step 3: The objective function is calculated for the new solution 𝑗 and the decision of 

whether or not moving to the new solution is made. 

Step 4: The temperature is decreased until reaching the thresholds defined for the 

stopping criterion, for which the algorithm gives the near-optimal solution for the 

optimization problem. 
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3 PROPOSED METHODOLOGY  

3.1 Overview 

In spite of the decreasing uncertainty associated with the rock mass geotechnical model, 

as the number of executed boreholes increases, it seems essential to optimize the 

number and cost of the boreholes in the prospection plans, as the location and depth of 

these boreholes considerably influence the quality of the characterization model. As 

such, it is imperative to accomplish a trade-off between the geotechnical detail and the 

number of necessary boreholes, and the proposed methodology allows precisely that. It 

gives not only the adjustment of the minimum number of boreholes to execute as a 

complement of preliminary boreholes, resulting in a prospection plan with a certain 

quality, but also the optimal positions of these boreholes through the minimization of 

the uncertainty associated with the geotechnical model. 

In detail, the methodology starts by performing a geostatistical simulation from 

preliminary data (input), for which a wide range of geotechnical information can be 

obtained such as the Fracturing Degree (F), Weathering Degree (W), Rock Quality 

Design (RQD) or the empirical rock mass classification systems, like Rock Mass Rating 

(RMR) (Bieniawski, 1989), Q-system (Barton, 1974) or Geological Strength Index 

(GSI) (Hoek, 1994). Geostatistical simulation is performed in a conditional way, thus 

guaranteeing that the preliminary data are reproduced in information and position, 

following the methodology presented by Pinheiro et al. (2016) (Fig. 1: Stage 1). As a 

result, a total of 𝐿  realizations of the geotechnical information, which enable the 

determination of the objective function to use in the optimization process, are obtained. 

In this case, two metrics will be used as objective functions: the local variance of the 

simulated values and the width of their 95% probability interval. Then, the SA 

algorithm is used to minimize the objective function values, which translates the 

uncertainty of the geotechnical model. In this sense, the output of the previously 

explained process can obtain the optimal length and position of additional boreholes to 

execute during the second phase of the prospection plans (Fig. 1: Stage 2). 
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Fig. 1. Scheme of the proposed methodology combining geostatistical simulation and simulated 

annealing. 

3.2 Optimization process 

As already mentioned, the methodology requires geotechnical information to use as 

preliminary data. In general, this information is obtained from a limited number of 

boreholes already executed in the field, the location and depth of which are usually 

based on the know-how of the professionals and geological aspects. This geotechnical 

information should allow the calculation and fitting of a variogram of the measured 

regionalized variable (Chilès and Delfiner, 2012), which is an imperative tool to use in 

geostatistical simulation. The type of information used as initial data in this 

optimization process can be diverse and directly derived from the borehole data. Note 

that there is no deterministic number of preliminary information to use in order to apply 

the methodology, it should be enough to allow the experimental variogram computation 

that depends on the variable spatial behavior. 

In what concerns the optimization process, it is initialized by randomly generating 

𝑛 points in a confined space used to represent the additional boreholes to execute. Then, 

conditional simulation is performed and a total of 𝐿 realizations of the chosen variable 

at the 𝑛 target points are obtained. At this stage, the turning bands algorithm is used to 

construct the realizations and the residual kriging approach is used to condition the 

realizations to the preliminary data values, i.e. to force the realizations to honor the 
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information and position of the preliminary data (Emery and Lantuéjoul, 2006). The 

average of the 𝐿 realizations is computed in order to represent each target point with a 

single value. After this process, each additional point has some simulated information 

comparable to the preliminary data and the remaining optimization process can then be 

executed. The purpose of this first stage is to investigate the contribution of each point 

in reducing the uncertainty of the geotechnical model by using the simulated values.  

In the second stage and using the L realizations average values of each 𝑛 simulated 

point assigned to the additional boreholes to execute, are joined to the preliminary data, 

resulting in a new sampling design (𝑆𝑛). Consequently, using the points of the new 

design, once again a conditional simulation is executed, this time using as target points 

a predefined grid (2D or 3D) covering the region of interest. As an outcome of this 

simulation process, the objective function to be minimized in order to find out the 

optimal solution for the presented problem is obtained (Fig. 2). All the geostatistical 

routines and the SA algorithm have been programmed in a Matlab environment (Emery 

and Lantuéjoul, 2006; Lin and Fei, 2012; Yang, 2010), using a desktop computer with 

an Intel ® Core ™ i7-3610QM CPU @2.30GHz processor.  

Taking into account that each borehole lists information at several depth ranges, i.e. 

each borehole contains the geotechnical information at several points, the optimization 

is also made by considering alignments of points in the generation of the sampling 

design. Therefore, in this work, the developed methodology is also tested by assuming 

each borehole as a vertical alignment of points originated from an isolated point in the 

surface (header). This action allows the integration of all vertical information that can 

emerge from a borehole and best represents the reality of them. 
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Fig. 2. Simulated annealing workflow adapted to the proposed methodology. 

3.3 Uni-objective approach 

The bound constrained problem to be addressed here has the following form: 

𝑚𝑖𝑛 𝑂𝐹(𝑆𝑛)
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑙𝑏 ≤ 𝑆𝑛 ≤ 𝑢𝑏

     (3) 

where 𝑂𝐹(𝑆𝑛) represents the value of the objective function for design 𝑆𝑛. The bound 

constraints on the values of the variables 𝑆𝑛 are related to the rock block dimensions, 
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where the lower (lb) and upper (ub) bounds give the minimum and maximum values of 

the (x, y, z) coordinates, respectively.  

Thereafter two distinct objective functions are considered in the optimization process: 

the variance of simulated values and the width of the 95% probability intervals of the 

simulated values. These two metrics are considered in order to provide more options to 

the decision-maker in choosing the metric that, from his/her point of view, is able to 

better represent the uncertainty of the geotechnical model. To simplify the notation, the 

argument of each objective function will be shown in the following sections. 

The first objective function to be presented is the average width of the probability 

intervals obtained using the 𝐿 realizations results, calculated as follows:  

𝑃𝐼̅̅
9̅5% = 𝑚𝑒𝑎𝑛(𝑃𝐼95%)     (4)  

where 𝑃𝐼95% is obtained for each target location from the set of 𝐿 simulated values at 

this location, by calculating the difference between the percentiles of an inferior limit 

and a superior limit given by (1 − 𝑝) 2⁄  and (1 + 𝑝) 2⁄ , respectively, for a probability 

𝑝 equal to 0.95. After that, the average of the 𝑃𝐼̅̅
9̅5% widths over all the target points is 

computed and used as an objective function. The 𝑃𝐼̅̅
9̅5% final value should be as low as 

possible to decrease the uncertainty associated with the geotechnical property at 

unsampled locations. 

The second objective function is based on the variance of the simulated values for each 

created design (𝑆𝑛), calculated after the execution of two main steps: first, the variance 

of the 𝐿 simulated values is calculated at each location; second, the average value of 

these variances over all the target locations is computed. Again, the lower this average 

variance, the lower the uncertainty at unsampled locations. 

Table 1 shows details of the first step, where N represents the total number of grid nodes 

that compose each 𝑆𝑛 design, 𝐿 is the total number of geostatistical realizations, and 

𝑋𝑝,𝐿 represents the simulated value for point 𝑝 at realization 𝐿.  
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Table 1 First step to calculate the variance value. 

𝑺𝒏 points 
Realization number 

Local variance 1 2 L 

1 𝑋1,1 𝑋1,2 𝑋1,𝐿 𝑉𝑎𝑟1 =
1

𝐿
∑(𝑋1,𝑙 − �̅�1)2

𝐿

𝑙=1

 

2 𝑋2,1 𝑋2,2 𝑋2,𝐿 𝑉𝑎𝑟2 =
1

𝐿
∑(𝑋2,𝑙 − �̅�2)2

𝐿

𝑙=1

 

N 𝑋𝑁,1 𝑋𝑁,2 𝑋𝑁,𝐿 𝑉𝑎𝑟𝑁 =
1

𝐿
∑(𝑋𝑁,𝑙 − �̅�𝑁)2

𝐿

𝑙=1

 

Thus, the objective function based on the variance is given by, 

𝑉𝑎𝑟 =
1

𝑁
∑ 𝑉𝑎𝑟𝑝

𝑁
𝑝=1       (5) 

3.4 Multi-criteria approach 

Taking into account the difficulty and plurality of possibilities associated with in situ 

decisions in geotechnics, a multi-criteria approach is also considered in this work. The 

goal is to facilitate future decisions and to analyze the effectiveness of the objectives 

(used metrics) when applying SA to boreholes optimization. 

Therefore, the two previously presented objective functions (criteria) are combined into 

a single function, since they can be complementary. Using this multi-criteria approach, 

the decision-maker will be able to use both objectives (metrics) and to identify one 

criterion that is dominated by the other by analyzing the trade-off existing between 

them (Kalamaras et al., 2000). 

Hence, the multi-criteria problem to be optimized exhibits the following form: 

𝑚𝑖𝑛 (𝑂𝐹1(𝑆𝑛), 𝑂𝐹2(𝑆𝑛))

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑙𝑏 ≤ 𝑆𝑛 ≤ 𝑢𝑏
    (6) 

where, 

𝑂𝐹1 =
𝑃𝐼̅̅ ̅95%

𝑃𝐼̅̅ ̅95%,𝑖𝑛𝑖𝑡𝑖𝑎𝑙
      (7) 
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𝑂𝐹2 =
𝑉𝑎𝑟

𝑉𝑎𝑟𝑖𝑛𝑖𝑡𝑖𝑎𝑙
      (8) 

Note that 𝑂𝐹1 and 𝑂𝐹2 are the objective functions normalized using the values of the 

objective functions of the preliminary data (initial data used for conditioning the 

geostatistical simulation). As mentioned before, the argument 𝑆n is removed in order 

to simplify the notation. 𝑃𝐼̅̅
9̅5% represents the average width of the 95% probability 

intervals and 𝑉𝑎𝑟 is the average variance obtained after the geostatistical simulation of 

the tested design (Sn). 𝑃𝐼̅̅
9̅5%,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 and 𝑉𝑎𝑟𝑖𝑛𝑖𝑡𝑖𝑎𝑙  denote the average width of the 95% 

probability intervals and the average variance, respectively, obtained after geostatistical 

simulation on the predefined grid conditioned only to the preliminary data.  

The Weight Sum Method (Zadeh, 1963) is a classical multi-objective method that 

allows standardizing a set of objectives into a single objective function by multiplying 

each one by a weight. This method is chosen due to its simple use, as well as the 

assurance in finding the ideal and admissible space of solutions (Marler and Arora, 

2009). The weight definition can be made using different methods. However, in this 

study the weights are attributed manually since the weight vector and the solution 

vector do not show a linear correspondence. The manual weight definition intends to 

simulate the decision-maker perspective, regarding the objective function. Hence, the 

problem to be minimized is converted to a uni-objective problem by aggregating the 

two objective functions into a single one, given by:  

𝑚𝑖𝑛 (𝑊1. 𝑂𝐹1(𝑆𝑛) +  𝑊2. 𝑂𝐹2(𝑆𝑛))

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑊1 + 𝑊2 = 1

𝑙𝑏 ≤ 𝑆𝑛 ≤ 𝑢𝑏

   (9) 

where 𝑊1 is the weight for objective function 𝑂𝐹1 and 𝑊2 is the weight for objective 

function 𝑂𝐹2. 

4 CASE STUDY 

4.1 Presentation 

The proposed methodology is applied using information of mechanical boreholes from 

an epithermal gold deposit located in the Cordillera de Los Andes, region of Atacama, 
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northern Chile. The geotechnical information gathered from the boreholes is the 

empirical Rock Mass Rating (RMR) system. Regarding the regional geology of the 

area, it is characterized by a group of intrusive, volcanic and sedimentary rocks, 

affected by fault zones that control the mineralization.  

Considering the high quantity of the available data it is necessary to restrict the 

information to a confined area (block). The optimization is applied to two different 

scenarios, one using isolated points, and the second one using vertical alignments of 

points that better represent the reality of boreholes. In what concerns the scenario with 

isolated points, a total of 22 points are selected from the available boreholes to represent 

the preliminary information to use in the geostatistical simulation and in the 

optimization procedure. Regarding the scenario with vertical alignments of points, a 

total of 6 boreholes are chosen as the preliminary information and each alignment to be 

found will be composed by 12 points evenly spaced along the depth. 

Each one of the 22 points and 6 boreholes contains information about the RMR within 

a rock block with the dimensions of 120 m × 440 m × 220 m along the east (X), north 

(Y) and vertical (Z) directions. Fig. 3 maps the 22 points allowing the visualization of 

the preliminary data, while Fig. 4 presents the 6 chosen alignments. 

 
(a) (b) 
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Fig. 3. Mapping of the initial boreholes data used in the isolated points scenario in: a) 𝑋𝑌 plane; and b) 

𝑋𝑌𝑍 perspective (𝑋, 𝑌 and 𝑍 in meters). 

 
(a) (b) 

Fig. 4. Mapping of the initial boreholes data used in the vertical alignments scenario in: a) 𝑋𝑌 

plane; and b) 𝑋𝑌𝑍 perspective (𝑋, 𝑌 and 𝑍 in meters). 

4.2 Geostatistical simulation 

Regarding the geostatistical simulation conditioned to the preliminary data, some steps 

proposed by Pinheiro et al. (2016a, 2016b) need to be implemented: 

1) First, the RMR preliminary data are analyzed through the calculation of basic 

statistics (Table 2). According to these statistics, the rock mass in consideration 

shows a good quality, insofar as the RMR value ranges from 51 to 71, with a mean 

of 67 that can classify the rock mass as almost homogeneous. 

2) The preliminary data corresponding to the 22 points or to the 6 alignments are then 

transformed into data with a standard Gaussian distribution with a zero mean and a 

unit variance. Such a transformation is necessary for subsequent geostatistical 

modeling and simulation (Chilès and Delfiner, 2012). 

3) The experimental variograms of the Gaussian data are computed, using either the 

isolated points or the point alignments. These variograms are computed until a 
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maximum distance of 100 m, beyond which the data values are found to exhibit a 

low correlation.  

4) The experimental variograms are fitted using isotropic spherical functions, as 

presented in Equations (10) and (11), where the distance written between brackets 

represents the correlation range and the number before the spherical structure 

denotes the adopted value for the sill (Chilès and Delfiner, 2012): 

Scenario with isolated points: 

𝛾 = 0.495 𝑆𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 (40 𝑚)      (10) 

Scenario with point alignments: 

𝛾 = 0.80 𝑆𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 (70 𝑚)      (11) 

5) A two-dimensional regular grid with a mesh of 5 m × 5 m and a total of 60 nodes 

along the east direction and 120 nodes along the north direction is defined to 

conditionally simulate the RMR and to calculate the objective functions. 

6) A Gaussian random field is simulated at the target grid nodes using the turning 

bands method (Emery and Lantuéjoul, 2006; Pinheiro et al., 2016a, 2016b). The 

number of turning lines used to generate the random field is 1500, while the number 

of realizations is set to 𝐿 =  100, so that the post-processing outputs (variances and 

probability intervals) can be calculated with a reasonable approximation (this 

number of realizations is commonly used in geostatistical applications and is 

suggested by Chilès and Delfiner (2012)). Residual kriging is then used to condition 

the simulation to the preliminary data, with a unique neighborhood implementation. 

7) The simulated Gaussian values for each realization are finally back-transformed 

into their original scale (RMR). 

 
Table 2 Basic statistics on RMR preliminary data and their Gaussian transforms. 

 22 isolated points 6 point alignments 

 RMR Gaussian values RMR Gaussian values 

Number of points 22 22 62 62 

Mean 66.77 0.00 67.29 0.00 

Variance 19.99 0.94 12.27 0.98 

Minimum 51.00 -2.00 51.00 -2.41 
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Maximum 71.00 2.00 74.00 2.41 

To understand the differences between the preliminary data and the geotechnical 

improvements when new boreholes are added, the simulation conditioned only to the 

preliminary data is also performed on the predefined grid. As a result, the values 

obtained for the variance and width of 95% probability interval objective functions are 

𝑉𝑎𝑟𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 9.00  and 𝑃𝐼̅̅
9̅5%,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 11.28  when using the 22 isolated points and 

𝑉𝑎𝑟𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 9.39 and 𝑃𝐼̅̅
9̅5%,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 11.36 when using the 6 point alignments. As an 

example, Fig. 5 shows the first realization of the RMR and the variance of 100 

realizations, conditioned to the preliminary data. Regarding the simulation 

computational time, it can be divided in two: 1) the time required to construct 100 

realizations on the randomly generated coordinates, which was approximately 30 min; 

and 2) the time required to construct 100 realizations of the new design configuration 

𝑆𝑛 on the target grid, which takes more or less 1h. 

   

(a) (b) 

Fig. 5. RMR preliminary data geostatistical simulation results for: a) first realization; b) variance of 

100 realizations  
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5 OPTIMIZATION RESULTS 

In order to execute the SA and to start the optimization process, some internal 

parameters need to be defined. Therefore, a sensitivity study is carried out, which 

enables to understand the influence of each parameter and find the best values for the 

algorithm. As such, the internal values adopted in this optimization are shown in Table 

3. 

Table 3 SA internal parameters. 

Cooling 

factor 

Initial 

temperature 

(º) 

Final 

temperature 

(º) 

Maximum 

number of 

rejections 

Maximum 

number of 

moves 

Maximum 

number of 

acceptances 

0.80 2.00 0.01 100 50 10 

 

5.1 Uni-objective results 

Regarding the validation of the proposed optimization methodology, a wide range of 

additional points and alignments of points are considered.  

5.1.1 Isolated point optimization 

The point optimization process starts by adding one point to the preliminary 22 points, 

so 𝑛 = 1, and then by adding points consecutively one by one up to a total of 13 

additional points. A number of points of 16, 20, 24 and 30 are also tested in order to 

accelerate the optimization process and understand the advantage of using a large 

number of additional points, i.e. the gain of using a large number of additional 

boreholes to characterize the rock mass.  

As result of this uni-objective optimization, Fig. 6 reports the optimal value of each 

objective function for every number of tested points. This graphical representation 

gives a more practical view of the differences in the objective function value when a 

small or a high number of additional points is considered.  
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Fig. 6. Convergence study for the number of additional points considering the average width of 95% 

probability intervals (black line) and the average variance (red line). 

It is possible to observe, as expected, that both objective functions values decrease as 

the number of additional points increases. However, this decrease is not constant. In 

what concerns the variance objective function, the decrease is significant until 12 

additional points and also when the number of points increases from 16 to 20. After this 

value, the decrease in the objective function is modest. In relation to the probability 

interval objective function, a significant reduction in the value is only observed starting 

from 5 additional points and up to 13. After this value the decrease rate is smaller. 

Fig. 7 shows a 3D representation with the optimized positions for 12 additional points 

at each objective function, along with the representation of the preliminary data (black 

points). There is some proximity between the points optimized with each objective 

function, however their spatial locations are different, meaning that both objective 

functions behave differently. Also, it is interesting to notice that some of the points are 

aligned, which allow their simultaneous characterization by performing non-vertical 

boreholes that reduce the execution costs. For this specific case, using the variance 

results, the number of additional boreholes to perform is not 12, as the number of 

suggested points, but can be reduced for, approximately, 7 or 8 boreholes (Fig. 7a). 

Even so, in Fig. 7b the number of needed boreholes is lower (5 to 6 boreholes). 
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(a)                                (b) 

 
Fig. 7. 3D location of 12 additional points with preliminary data in black points for: a) average width 

of 95% probability intervals; b) average variance. 

Concerning the SA output parameters, for the specific case of 12 points, the final 

temperature is 0.08 for both objective functions and these functions are evaluated a total 

of 400 times. Also, the computational time spent in all the process is of 9 hours 

approximately. 

In addition, Fig. 8 shows a 3D graph that intends to represent the search block used for 

this study. It is possible to observe that the algorithm was able to search quite well 

within the block in order to find the optimal combination of 12 points. 

  

Fig. 8. 3D representation of the block used in the search for the 𝑉𝑎r function optimization when 12 

points are added. 
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5.1.2 Point alignment optimization 

 

Following the same logic as for the isolated point optimization, the point alignment 

optimization also starts by adding one alignment of points composed by a total of 12 

points (𝑛 = 12), then 5 alignments were added one by one. As a result, Fig. 9 presents 

the optimal value for each one of the objective functions for every alignment of points 

added to the preliminary data. 

 

Fig. 9 Convergence study for the number of additional alignments considering the average width of 

95% probability intervals (black line) and the average variance (red line). 

As observed in the isolated point optimization, both objective functions values decrease 

as the number of additional alignments increases. The decrease is more significant for 

the variance objective function when passing from 5 to 6 alignments, while the 95% 

probability function shows a more constant behavior. 

Fig. 10 shows the 3D maps with the optimized positions for 3 additional alignments at 

each objective function along with the representation of the preliminary data (black 

points). In this case and when compared to the isolated point optimization, one notices 

that the obtained alignments are located closer to the preliminary alignments; however, 

the spatial locations of the alignments for both objective functions are considerably 

different, showing, once again, that both functions behave distinctly. 
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(a)                                (b) 

 
Fig. 10. 3D location of 3 additional point alignments with preliminary data in black points for:  

a) average width of 95% probability intervals; b) average variance. 

5.2 Multi-criteria results 

To provide an insight into the most influential objective function in the optimization 

results for each objective function, different weights values are assigned. These 

combinations of weights are presented in Table 4 along with the optimization results 

for both objective functions when 5 points (𝑛 = 5) are added to the 22 preliminary 

points (scenario with isolated points). This number of additional points is chosen based 

on the fact that a total of 5 additional boreholes can be sufficient to increase the quality 

of the geotechnical model (performing a large number of boreholes is not common in 

geotechnical works that are most often bounded to narrow budgets). This approach is 

also performed in the scenario with point alignments; however, considering the 

similarity of the results, the scenario with isolated points is chosen to be presented as 

an example.  

Since trying a large number of weights can lead to a computational burden, a total of 

11 most common combinations of weights are considered and represented in Table 4 

by the test number, while the 𝑉𝑎𝑟 and 𝑃𝐼̅̅
9̅5% values are presented in their normalized 

scale. The representation of the solutions in the objective space is depicted in Fig. 11. 
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Table 4 Optimization results for each combination of weights. 

Test number 𝑾𝟏 𝑾𝟐 𝐏𝐈̅̅ ̅
𝟗𝟓% 𝑽𝒂𝒓 

T1 0.00 1.00 0.85 0.69 

T2 0.10 0.90 0.87 0.72 

T3 0.20 0.80 0.86 0.72 

T4 0.25 0.75 0.84 0.69 

T5 0.40 0.60 0.82 0.68 

T6 0.50 0.50 0.86 0.71 

T7 0.60 0.40 0.89 0.73 

T8 0.75 0.25 0.90 0.67 

T9 0.80 0.20 0.91 0.76 

T10 0.90 0.10 0.82 0.67 

T11 1.00 0.00 0.84 0.70 

In Fig. 11, the 𝑋-axis represents the 𝑃𝐼̅̅
9̅5% values obtained for each weighted test and 

the 𝑌-axis, likewise, represents the 𝑉𝑎𝑟 values. As expected, one can observe that both 

objectives are not conflicting since the points represented in Fig. 11 result in a linear 

trend. In this sense, it is possible to detect that T5 and T10 result in the non-dominated 

points since the trade-off between the two objectives is softer, showing that the ideal 

solution should not exclude the variance criterion (T10). Also, T8 that valorizes the 

probability interval in 75% gives a worse solution (a solution far from the diagonal). 

This information confirms that the variance criterion, even for lower weight values, 

results in objective function values that are lower than 𝑃𝐼̅̅
9̅5%, meaning that cannot be 

excluded of the optimization process and should be seen as the main objective function. 

 

Fig. 11. Objective function values for each weight combination test. 
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Furthermore, and in order to easily understand the contribution of each function in the 

decision of the number of boreholes to execute, Fig. 12 presents the performance of 

each objective function individually and the aggregation of the two objective functions 

in the multi-criteria approach, for each weight combination test. Throughout the 

graphical analysis it is possible to observe that, for the first five tests, where the variance 

objective weights are higher, the combination of the two objective functions (darkest 

line) shows the lowest values, confirming that the variance behaves as the best metric 

to use in the optimization process to decide the number of additional boreholes to be 

executed.  

 

Fig. 12. Representation of the objective function values obtained in the multi-criteria approach. 

5.3 Discussion 

Both approaches provide an important insight into how optimizing the boreholes 

location increases the geotechnical detail of the rock mass and decreases the associated 

uncertainties. The uni-objective problem shows good results in giving the boreholes 

near-optimal locations according to two different objective functions. Fig. 6 displays 

the resulting curve between the variance value and the number of additional points 

tested, and it is possible to observe a higher downhill compared with the probability 

interval objective function. Also, it is possible to notice the differences between 

assuming the borehole as an isolated point or as a point alignment; however, they are 

not as significant as expected, once the total number of points used in the alignment 

optimization is almost the triple as the one used in the point optimization. In terms of 

values, the biggest difference is observed for 𝑉𝑎𝑟 function, where for one point versus 
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one alignment the variance value is 10% lower for the last case, while the 𝑃𝐼̅̅
9̅5% shows 

a reduction of only 5% compared with the results obtained from isolated point 

optimization. 

In this regard, Fig. 12 shows that when a higher weight is given to the probability 

interval function (T7 to T11) the 𝑃𝐼̅̅
9̅5%  value is, sometimes, higher and the variance is 

lower. This effect is called a trade-off (how much of a loss in one objective is one 

willing to sacrifice for a gain in another objective) and, in this case, the probability 

interval is the objective function that sacrifices more, i.e. minimizes slower when the 

goal is to give importance to the variance objective. Although, identifying this trade-

off may become difficult, once both functions are dimensionless (Marler and Arora, 

2009). Nevertheless, this type of trade-off analysis can be helpful for the decision-

maker in the weight values definition and in choosing the best metric to achieve the 

optimization goals. 

6 CONCLUSIONS 

The goal of this work was to define a methodology to optimize boreholes plans 

commonly needed in geotechnical engineering. The proposed methodology combines 

two important methods: geostatistical conditional simulation, which results in the 

definition of the objective functions to measure the uncertainty at locations without 

data, and simulated annealing, used to perform the optimization by minimizing the 

defined objective functions. Two different objective functions are obtained and tested 

in this work: the average variance of the simulated values and the average width of the 

95% probability intervals of the simulated values over a region of interest. Moreover, 

not only a uni-objective problem is solved, but also a multi-criteria approach is carried 

out using the weight sum method. The methodology was applied using real data from 

a deposit located in Chile and a different number of additional isolated points or point 

alignments (each alignment representing an additional borehole) were found in order 

to culminate in the best spatial location for each isolated point or point alignment. 

Compared with the multi-criteria approach, the uni-objective approach presents the 

advantage of needing a lower computational time (9 to 10 hours while the multi-criteria 

approach requires 18h to 22h), as the use of only one metric as an objective function 
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simplifies the problem. On the other hand, the multi-criteria approach allows the 

decision-maker to give more importance to the metric (objective function) that is 

considered relevant, increasing the confidence in the optimization results.  

Regarding the isolated point and point alignment optimizations, the results are very 

different, mainly because of the total number of initial points used in both cases: in 

isolated point optimization, a total of 22 points are used, while 62 points are used in 

point alignment optimization. In the latter case, the objective functions are not as low 

as expected, compared with the isolated point optimization. This fact comes to endorse 

that the XY location of the boreholes assumes, in this case, an important role in 

geotechnical prospection, although the point alignment optimization brings a more 

realistic output to represent boreholes. 

Both optimization problems are formulated in order to apply the proposed methodology 

and show good results in finding the near-optimal locations for the additional boreholes. 

Hence, it is important to point out that a point-by-point study allows the decision-maker 

to understand the geotechnical gain balanced with the economic costs. For example, 

will performing five boreholes instead of four bring a significant gain in the rock mass 

characterization that justifies the difference in cost?  

Therefore, one concludes that this methodology can contribute for a more rational 

approach in the formulation of prospection plans. Once the output is the measurement 

of the gain obtained from the addition of boreholes, including their spatial location, an 

indirect optimization of costs can be expected as a consequence. Also, it is worth 

mentioning that the output information of this methodology should be seen as 

complementary information to be paired with geological maps. One extra advantage 

associated with this methodology is the possibility to perform an updating in the 

information as the additional boreholes are executed. 

In future works and in order to improve the proposed methodology it seems important 

to develop a multi-objective approach that aims at minimizing the number of boreholes 

and the associated costs. 
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