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The Battery Management Systems (BMS) brought a new impetus to the battery energy 
management which lead to an increase in battery life. But the BMS fails when the State 
of Charge (SoC), State of Health (SoH), State of Life (SoL) or Remaining Useful Life 
(RUL) prognostics systems do not provide the required accuracy. Despite the increase of 
complexity and accuracy of battery models, the poor performance with floating 
temperature and load profiles persists. With the development of innovative products on 
wide-ranging applications, the battery materials, technologies, reliability and safety are 
being pressed to their limits. Therefore, a huge amount of work is still necessary, not only 
on the development of new battery technologies but also on the BMS, battery models and 
metrics accuracy improvements. The paper gives a comprehensive overview of the 
applicability, accuracy, weaknesses and advantages of the most recent battery models. 
The paper will also discuss how the Prognostics Health Management (PHM) can support 
a technologic impetus on battery affairs with battery models and metrics accuracy 
improvements.  
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1.   Introduction 

The use of battery power for portable applications becomes increasingly 
widespread. The Internet of Things (IoT) advent is providing new development 
vectors in battery technology: Wireless Sensor Nodes (WSN) with high-
precision measurement capability, battery powered wearable fitness/medical 
devices, industrial signal chains with isolated power and wireless battery 
powered field instruments. These new applications require great power 
efficiency which means longer battery lives with less maintenance as well as 
simplified power supply design [1], [2]. To address these demanding challenges 
the BMS designer must strike a balance between the competing priorities of 
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higher performance and lower power consumption. The BMS operation is based 
on the prognostics estimation of battery metrics such as State of Charge (SoC), 
Remaining Useful Life (RUL), etc. Many successful examples on lithium-ion 
batteries (LIBs) have shown the promising potential of PHM improving the 
battery performance and metrics prognostics. The actual PHM case studies are 
mainly based on the use of model-based and data-driven approaches, and 
validated with constant discharge profiles of current and temperature. This 
approach does not meet the requirements of the modern battery applications, 
where the performance parameters must be estimated very accurately in real 
time, with highly nonlinear profiles of discharge currents and environmental 
operating conditions [3], [4].  With this project we intend to achieve three main 
objectives: Investigate and develop hybrid techniques of fusion for battery RUL 
prognostics; Identify which critical issues on modern battery applications are not 
completely solved by the actual PHM approaches; Apply the design conceptual 
basis, techniques and tolls to a real case study of non-rechargeable batteries, for 
decision-making and definition of intervention policies. 

This paper is divided in the next three sections: (2) Battery models. 
Describe and classify the fundamental PHM approaches for battery metrics 
estimation: model-based, data-driven and fusion. The benefits and constraints of 
each approach method are also discussed. (3) Final discussion. This section 
discusses the fundamental gaps in PHM approaches, related with the unsolved 
problems on the battery metrics prognostics, namely, the inconsistencies of 
solving highly non linear problems involving linear approximations. With a real 
case study of non-rechargeable batteries and exploring the research 
opportunities of some recent publications from references, the paper presents 
and discusses the guidelines to improve PHM development on battery 
prognostics. (4) Conclusions. This section gives an overview of the article 
highlights and the most significant aspects of the proposed work.  

2.   Battery Models 

From the PHM viewpoint there are three main approach classes used for battery 
performance evaluation: physics-of-failure (PoF) or model-based, data-driven 
and fusion [4]. 

2.1.   Model-based or PoF approach 

The PoF models have the ability to identify the root causes and failure 
mechanisms that may contribute to battery failure [4].  This model approach can 
be divided into four categories: empirical, electrochemical engineering, multi-
physics and molecular/atomistic models [5], as represented in Table 1.  



 
 

Table 1. Battery model-based groups. 

Electrochemical 
Single particle 
Ohm porous 
Pseudo two dimensional 

Multi-physics 
Thermal 
Stress-strain & particle size/shape distributions 
Stack 

Molecular /atomistic 
Kinetic Monte Carlo 
Molecular dynamics 
Density functional  theory 

Empirical 
Analytical 
Stochastic 
Circuit Centric 

 
Comparing the different model-based approaches in the most accurate 

models are the molecular/atomistic, multi-physics and electrochemical. But the 
accuracy of these approaches demands complexity, resources and time 
computing, making this type of models only applicable on the battery design by 
manufacturers [6]. By contrast, the simpler empirical approaches are more 
adequate for modern online BMS. The circuit centric approaches are simpler 
and are very disseminated by different studies. But the determination of 
components values is time-consuming and requires complex laboratory 
conditions. The accuracy of the models is affected by the dynamic transient of 
the components and test frequency. The studies published show that these 
models are only suitable to represent the system under stable conditions of 
temperature and load currents. In turn, analytical models are too much simple to 
be successfully applied on the modern complex working conditions of batteries 
[7]. By contrast, for the modern non-linear operating conditions of batteries the 
stochastic models are more accurate in the estimation of the SoC and RUL. The 
results given in the form of probability distribution functions (PDFs) accounting 
for uncertainty [4]. 

 
 
 

 

 
 
 
 
 
 
Figure 1. Battery Model-based approaches versus computational demands. 
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2.2.   Data-driven approach 

On the RUL prognostics estimation, the data driven approaches can be used as 
black-box models that can grasp the system degradation behaviour based on 
monitored data without requiring specific knowledge of the system. These 
features make the data analysis methods the most popular for RUL prognostics 
[8]. In different published studies Esteves & Nunes [4] and Wu et al. [8] show 
that from the point of view of PHM, the data-driven approaches can be 
subdivided into two major groups, the statistical and machine learning methods 
(Table 2). The statistical based models also can be separated in two subgroups 
namely, on directly observed state processes (online) and on indirectly observed 
state processes (offline) (Table 2). In turn the on-line state processes can be 
classified in Stochastic models and Continuous time stochastic models. The off-
line processes are separated in Statistical models and Stochastic non-linear 
filtering models [4]. 

Table 2. Data-driven approach methodologies. 
 

On-line 
Stochastic Autoregressive model (AR) 

Continuous time Stochastic Wiener process 
 

Machine learning 

Artificial Neural Network (ANN) 
Support Vector Machine (SVM) 
Relevance Vector Machine (RVM) 
Particle Swarm Optimization (PSO) 
Dempster-Shafer Theory 
Bayesian Monte Carlo 

Off-line 

Stochastic non-linear filtering 

Kalman Filter (KF) 
Extended Kalman Filter (EKF) 
Unscented Kalman Filter (UKF) 
Particle Filter (PF) 
Spherical Curvature Particle (SCPF) 

Statistical 
Hidden Semi-Markov Model (HSMM) 
Gaussian Process 
Bilinear Kernel Regression 

 
   The work published by Wu et al. [8], describes the data-driven approaches 

most used on battery prognostics. Most disseminated Machine Learning 
methods are the Artificial Neural Network (ANN), Support Vector Machine 
(SVM), Relevance Vector Machine (RVM), Particle Swarm Optimization 
(PSO), Dempster-Shafer Theory and Bayesian Monte Carlo. The proposed on-
line Stochastic models are the Wiener Process and the Autoregressive (AR) 
approach. Prediction-based filtering techniques include the Kalman filter (KF), 
Extended Kalman filter (EKF), unscented Kalman filter (UKF), Particle filter, 
and Spherical curvature particle. Statistical approaches include the Hidden 



 
 
Markov model (HMM) and the Hidden semi-Markov model (HSMM), Gaussian 
process, Gaussian process regression (GPR),  multi-scale Gaussian process 
modelling  method in wavelet analysis and the Bilinear Kernel regression. 

The works referred above regard the batteries operation in ideal laboratory 
controlled conditions with linear approximations of temperature and current 
discharge, which is far from the real battery operation conditions with time-
varying environment, random varying current, self-recharge characteristics,  and 
different system configurations [8]. From the data-driven approaches universe, 
the stochastic methods have more accuracy on prognostics estimation by 
producing the results in PDFs by accounting for uncertainty.  

2.3.   Fusion approaches 

Comparing the RUL prognostics methodologies presented above, the PHM 
fusion or hybrid approach can be an alternative option for battery reliability 
prognostics with accuracy, precision, cost efficiency and saving qualification 
time. The fusion approach combines the model-based or PoF with the data-
driven tools, taking full and direct double advantage of the benefits from both 
approaches in order to estimate the RUL under operating and non-operating life-
cycle conditions. The model-based is helpful on battery design stage for 
studying the battery dynamics and performances under specific load profiles and 
environmental conditions or to identify faults thresholds. The data-driven 
approach is suitable for on-line applications, quantifying the RUL or monitoring 
the degradation level of performance parameters [4].  

A recent work, from Xing et al. [9] predicts the remaining useful 
performance (RUP) by merging an empirical exponential and a nominal 
regression model to track the battery degradation trend over its life cycle, based 
on experimental data analysis. Alternatively, Fang et al. [10] propose an 
adaptive iterative extended Kalman filter (IEKF) of simultaneous state and 
parameter estimation based for the SoC estimation and a MM-AdaSoc 
algorithm.  However in both cases the fusion models are only validated with 
constant discharge currents and with constant controlled temperature. 

3.   Final discussion 

From the literature review presented in Section 2, it was possible to identify 
some critical topics that have impact on the reliability, life cycle and 
performance of batteries, that are not completely fully treated on published 
studies, namely: battery technology, working environmental conditions, 
recovery effect, quiescent currents and load discharge current profile. 



 
 

Concerning battery technology, the studies published take up 
predominately the LIBs models, and fail to address the non-rechargeable 
batteries models and BMS particularities. But the non-rechargeable batteries are 
still a good technological option for IoT, WSN and health devices due to its 
higher energy density comparatively to the rechargeable batteries [11], [12]. 

The discharge current profile ties the battery life expectancy and 
performance. A battery can be discharged by three basic different modes: 
constant resistance, constant current and constant power. The constant power 
mode has the lowest average discharge current from the three discharge modes, 
resulting in the longest service time. The battery discharge type can be 
continuous or intermittent. The intermittent discharge can improve and extend 
the battery service life, through the voltage battery recovery effect (VBRE). The 
VBRE is the battery voltage which drops during a heavy discharge, will rise 
after a rest period. This phenomena is being interpreted as an energy battery 
recover [11]. However the existence of the battery recovery effect phenomena is 
rejected by Narayanaswarmy et al. [13]. This fact reflects the lack of 
standardization on the PHM tests and results analysis techniques used by 
different authors and previously discussed by Esteves & Nunes [4]. It is also 
important to analyze the negative impact of the quiescent current on the battery 
life and SoC of IoT, health devices and WSN [11], [12]. 

The discharge temperature has a pronounced effect on battery service life, 
capacity, performance and voltage characteristics [14]. More complex discharge 
load profile and ambient conditions make the model adjustment more difficult 
and laborious. Except for the electrochemical and multi-physics models, all the 
others approaches not embody the effect of dynamic temperature and dynamic 
load discharge profile on the battery performance and prognostics estimations.  

For these reasons future work will be centred on the design and 
improvement of fusion approaches for the prognostics of battery metrics on non-
rechargeable batteries,  similar to the diagram on Figure 2.  Figure 2. The model 
is based on five modules: data acquisition system, historic database, model-
based, data-driven (offline) and data-driven (online). The data acquisition 
system captures the battery signals: voltage, discharge current profile and 
ambient temperature. From the historic data, off-line data-driven approaches 
(statistical tolls and machine learning methods), can estimate the performance 
trends for the model-based approaches directed for the stochastic models based 
on the Markov theory. 

 
 



 
 

 
 
 
 
 
 
 
 
 
 

 
Figure 2.  Simplified fusion approach functional diagram. 

The data-driven (online) block is divided in two levels: The SoC 
measurement based on the Coulomb counting adjusted by an EKF and 
adjustment factors (temperature, voltage and discharge rate), extracted from 
stochastic model via tools like the Machine learning. The second level for RUL 
prognostics, is made with an EKF with two inputs. The models AR formulated 
from the historic data are the base for Wiener process or Brownian motion 
random walks with the adjustment factors extracted from the stochastic models 
via machine learning tools. 

4.   Conclusion 

This paper gives an overview over the three basic PHM approaches, namely, 
model-based or PoF approach, data driven-approach and fusion or hybrid 
approach, used on RUL and other battery metrics prognostics. The model-based 
and data-driven approaches still show weakness in deal with highly non-linear 
battery load profiles and dynamic environmental conditions associated with the 
modern battery applications. Therefore, the effects of the temperature, non 
constant discharge current profile and discharge rate still remain critical issues 
to solve on the battery performance and metrics prognostics. The modern IoT 
and WNS applications and the non-rechargeable batteries with its own 
particularities are opportunities to explore new battery models. 

The future work may be focused in the development of fusion approaches 
based on stochastic and machine learning models for online RUL prognostics in 
order to incorporate solutions for the critical issues mentioned above.   
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