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Abstract

We propose a method for detecting biased multi-stage sampling of spatial data and
a method to adjust for biased clustering of samples. We assess the effect of these me-
thods for the analysis of radioactivity contamination data from Rongelap island, with
the scientific problem being the estimation of the maximum level of radioactivity over
the island. These data were collected over a two-stage process of uniform and clustered
samples, which may have an impact on conclusions from a standard analysis that does
not account for either of these features.
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1 Introduction

The traditional geostatistical methods rely on the expected assumption that the sampling
design for locations xi, i = 1, ..., n is deterministic or it is stochastic but independent of the
data process, and all analyses are carried out conditionally on xi [1]. It is then assumed that
the sampling points have been chosen independently of the values of the spatial variable.
However, dependencies can occur due to the adopted sampling method, such as the favored
selection of specific areas that are believed critical (e.g. maximum values search).

Schlather et al. in [2] propose methods to detect the dependence between marks and
locations of marked point processes. As described in [3], the random field and the marked
point process are two type of spatial processes such that:

• The former is defined in every point of the observed region, and the sample positions
can be determined by the scientist himself (example of deterministic sampling design);

• For the latter, the locations are always given by a stochastic point process, and inter-
actions among the locations and the marks are normally expected. Otherwise, one has
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the so called random field model (marked point process becomes a special class of a
random field).

If the data are consistent with a random field model, the point pattern and the marks can
be analysed separately using standard techniques for point processes (e.g. [4] and [5]) and for
geostatistical data (e.g. [6]). Therefore, this analysis is greatly simplified. Furthermore, the
examination of second-order characteristics, like the variogram, of a spatial process should
consider if data come from a random field or a genuine marked point process. Example of
references concerned with this subject are [7] and [8].

Schlather et al. in [2] indicate next two likely situations for point and data processes
being dependent, and subsequent failure of this important geostatistics assumption. Firstly,
if the dependency is an intrinsic property of the data themselves, for example the relative
positions of trees impact on their size due to their competition for light and nutrient. This is
the case of genuine marked point processes. Alternatively, this dependency can be justified
by a prior scientific knowledge of the spatial variable of interest, for example of the expected
local level of contamination in air pollution. This can lead to the gathering of samples
in areas with atypical values. Our work concerns the problems resulting from the second
situation, that we think of major importance in geostatistics because of its high likelihood
of occurrence on actual field measurements, and often either ignored or addressed by generic
techniques like declustering ones applied to the first-order characteristics (e.g. [9] and [10]).

In this paper, we are motivated by the application example of the radioactivity data
from Rongelap island, where a two-stage data collection was used, leading to the presence
of clustered data. So that we restrict our attention to multi-stage samples, aiming to assess
the presence of multi-stage dependence, or also referred to as sequential dependence, where
the choice of sampling points is driven by previous measurements.

We propose a data exploratory method which is intended to detect biased multi-stage
collection of spatial data. We then investigate corrector models that aim to minimize the
impact on variogram estimation due to the adoption of the type of non-standard sampling
designs just described.

2 Motivating example

Our example is related to data collected on Rongelap island. This island is located in the
Pacific Ocean approximately 4000 kilometres south-west of Hawaii. The data were collected
for the analysis of current levels of radioactivity contamination that resulted from a nuclear
weapons testing programme during the 1950s. The scientific problem has been the estimation
of the maximum level of radioactivity over the island, as part of a wider investigation to
decide whether Rongelap can safely be resettled. See [6] or [11] for more detail on these
data.

The sampling design defined for data collection is illustrated in Figure 1. It started
with a coarse grid of 63 locations and ended up with 98 additional measurements within
four fine grids. These locations are identified by time label t0 and t1, respectively. As this
process involved two-stage of uniform and clustered samples, we wonder about the impact
on conclusions from a standard analysis that does not account for either of these features.
To proceed our analysis, the methods will be applied to transformed data with a constant
variance as described next.
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Figure 1: Rongelap’s island: two-stage strategy of uniform and clustered samples.

Our variables of interest from Rongelap data set are the spatial coordinates xi, the counts
Yi of radioactive emissions at each location, the length li of time over which the counts are
recorded, and the stage in sampling measurements were made. The total sample size is
n = 161. Note that the Yi are treated as realizations of mutually independent Poisson
random variables with expectations liλ(xi), where λ(x) measures the local radioactivity at
location x. We chose the data transformation Zi =

√
Yi/li to make the variability more

consistent and more Gaussian1.

3 Assessing through simulation

After introducing our motivating data set, we move to simulated data to develop and study
our diagnostic tools for data analysis. It is well known that simulation allows a level of
knowledge and control that leads to more robust and defendable solutions. Using simulated
data sets, where the characteristics of the data and the sampling designs are controlled and
varied, will help the research of the technique’s potential, and to assess its performance in
specific situations. We can gain insight about what happens when assumptions are violated
since the true model is known.

1According to Delta method used to estimate a variance of a transformed parameter, one has Var[G(T )] ≃
Var[T ] × (G′(µ))2 = const, where T = Y/l, E[T ] = Var[T ] = µ and G(T ) =

√
T .
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3.1 Sample generation algorithm

Typically, when one carries out some study of geostatistical data, the sample locations are
uniformly spread over the observation region. Suppose now that one wishes to proceed with
a multi-stage collection of data. If the goal is to better characterize the spatial variability for
short distances, then one solution is to include some clusters of locations into later stages.
Alternatively, suppose the goal is, as exemplified before, to pursue the maximum values of
the spatial variable of interest, then the complete sample data set is expected to be mainly
represented by large data values. These previous situations may condition the sampling
design. In our simulation studies, we shall then consider four distinct sampling designs:
complete spatial randomness (CSR); just clustered; biased but non-clustered; and, finally,
biased and clustered.

The sample generation algorithm presented here considers the case of a two-stage ap-
proach for sampling collection, with the second stage potentially influenced by the first. It
can be easily extended to more than two stages, even though our experience confirmed that
similar results are obtained.

We consider spatial locations x within the unit square [0, 1] × [0, 1]. A theoretical var-
iogram is chosen to model the spatial dependency structure. Data sets are then generated
with Gaussian data, Z(x1), ..., Z(xn), where Z(x) denotes the spatial random process. The
proposed algorithm allows the generation of K clusters, each one inside a sub-region Rk.
For example, if one wishes to produce a biased sample with just one cluster, this can be
done by restricting the sampling points from stage 2 to R1 and around the maximum of
measurements from stage 1. The total sample size will be n, with n1 from stage 1 and n2

from stage 2. The algorithm may be summarized as follows

1. Sample n1 points xi at random on [0, 1] × [0, 1];

2. Generate Z = (Z(x1), ..., Z(xn1
)) ∼ MV N ;

3. For k = 1, ..., K

(a) If biased=TRUE then select Z(xm,k) = max
i

{Z(xi)|xi ∈ Rk}
else select Z(xm,k) = random i{Z(xi)|xi ∈ Rk};

(b) Sample n2,k points at random on [xm,k − θ , xm,k + θ]2;

4. Consider n2 =
K∑

k=1

n2,k;

5. Generate Z∗ = (Z(xn1+1), ..., Z(xn1+n2
)) where

Z∗ | Z ∼ MV N
(

ΣT
12Σ

−1
11 Z , Σ22 − ΣT

12Σ
−1
11 Σ12

)

and Σ22 = var{Z∗}, Σ11 = var{Z}, Σ12 = cov{Z,Z∗};
The θ parameter in step 3 defines the size of the cluster; moreover, points are rejected

if not within the observation region. The conditional distribution from step 5 was derived
from the joint distribution using properties of the multivariate Gaussian distribution. Ad-
ditionally, bear in mind that a completely random sample can be obtained avoiding stage 2,
i.e. n2 = 0, or generating the n2 points uniformly spread over all unit square. Moreover, the
cluster effect tends to disappear for a large K.
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3.2 Impact on variogram estimation

We now want to analyse the impact of clustered and biased multi-stage sampling on var-
iogram estimation. We consider a stationary and isotropic spatial process Z(x), in which
case the variogram reduces to 2γ(‖xi − xj‖) = E[(Z(xi) − Z(xj))

2]. Consequently, we can
estimate the variogram from sample data replacing the previous theoretical expectation by
the corresponding sample average. The variogram estimator most commonly adopted was
proposed by Matheron in [12] and it can be represented by the weighted average

2γ̂(u) =

∑n

i=1

∑n

j=1 wij(u)[Z(xi) − Z(xj)]
2

∑n

i=1

∑n

j=1 wij(u)
, u ∈ IR

where wij(u) = I{‖xi−xj‖=u}. In practice, this estimator is usually smoothed by taking a toler-

ance region T around u. Alternatively, one can take the weights as wij(u) = K
(

u−‖xi−xj‖

h

)
,

where K is a symmetric, zero-mean and bounded density function, with compact support
[−C, C]. The positive number h is usually called bandwidth. The resulting variogram es-
timator is commonly referred to as the kernel estimator. Bear in mind that the weights
are at their maximum when the distance between two points is close to u, and zero values

if
∣∣∣u−‖xi−xj‖

h

∣∣∣ > C ⇐⇒ ‖xi − xj‖ /∈ [u − hC, u + hC]. Consequently, it offers a smoother

estimation of the variogram.
Both Matheron and the kernel variogram estimators are included in most software avail-

able to practicing statisticians/geostatisticians. An example is the geoR library from R,
described in [13], which offers a kernel estimator for exploratory purposes with the band-
width being chosen by the user. In [14], it is suggested a transformed version of the kernel
estimator, not restricted to exploratory aims but allowed to be used in kriging. They adapt
the Nadaraya-Watson regression estimation to the context of spatial data and propose an
asymptotically optimal bandwidth parameter. In [15], the performance of the NW kernel
estimator and the Matheron one are compared, under different spatial correlation models;
the results suggest the usual superiority of the former estimator.

In this work, we also take the Matheron and NW kernel estimators, aiming to analyse the
effect of clustered and biased multi-stage sampling. The numerical study of these estimators’
behaviour must be based on results from several independent cases. We then generate a total
of 100 independent data sets and, for each one, derive the integrated square error (ISE) be-
tween the estimator and the theoretical variogram. The ISE, defined as

∫
[γ̂(u) − γ(u)]2 du,

was approximated numerically through the trapezoid rule. We chose a Matérn model to
model the spatial dependency, with a Bessel function of order κ = 1, a range equals to 0.2
(distance beyond which the correlation between variables is zero) and a partial sill equals to
2.25 (corresponds to Var[Z(x)]).

In Table I, we summarize the mean value of the ISE, considering the 4 possible combi-
nations of biased two-stage sampling and clustered sampling. To generate a biased but not
strongly clustered sample, we split the sample grid into 25 sub-areas. We start to generate
randomly 75 values and locations in the total area and then generate 5 more points clustered
around the maximum of previous measurements in each sub-area. A final sample size of 200
is obtained. For standardization reasons, in the remaining cases, n1 equals to 75 and n2

equals to 125 is also chosen.
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The results from Table I, for Matheron and NW kernel estimators, suggest a poor per-
formance for both estimators under biased clustering. Note that Table I also includes the
results of two other variogram estimators, RobClust and Pooled, that will be introduced in
later Sections of this paper. We now want to restrict our attention to the Matheron and
NW kernel estimators.

One may observe that there is a larger degradation for the Matheron’s estimator. In fact,
when all lags less than or equal to 0.6 are considered, this estimator and the kernel one grow
worse 4.9 and 3.2 times, respectively. The worst results normally associated to Matheron’s
estimator tend to be not so obvious for smaller lags. This should be an indirect consequence
of the typical less satisfactory behaviour of kernel estimators in boundaries. In any case,
with respect to larger lags under just biased or just clustered sampling designs, note that the
NW kernel estimator performs quite well. Finally, from Table I, the clustering issue seems
to have a larger impact on variogram estimates than the sequential dependence issue.

4 Data exploratory methods

We have shown that the non-standard sampling designs described in Section 3.1 are respon-
sible for a more difficult estimation of the spatial dependency structure. This suggests the
need for detecting biased multi-stage sampling and, ideally, for correcting solutions.

Still using simulated data, we first investigate data exploratory tools to reveal hidden
dependency patterns in a given sample data set and, then, we present an hypothesis test
based on those tools. More precisely, the practical part of this research is concerned with
the exploratory analysis of sampled data in order to understand if it is reasonable to assume
dependency between data values and locations and if this dependency is indeed sequential.

4.1 Detection of sequential dependence

In a context of marked point processes, Schlather et al. in [2] investigate marks and locations
interactions, by introducing functions of the inter-point distance u, under the assumption
of stationary and isotropy. One of these functions denotes the conditional expectation of a
mark, given that there is a further point of the process a distance u away. Writing Φ =

⋃
i xi

for the corresponding unmarked point process, it may be represented by:

E(u) = E [Z(x) | x,x′ ∈ Φ, ||x − x′|| = u] .

These authors then present tests based on E for the hypothesis of dependency between the
values of the marks and their locations.

In order to decide if existing dependency is sequential, we propose a new version for the
conditional expectation function, denoted by Eseq(u), restricted to the latest values of the
spatial variable. This new function can be defined as:

Eseq(u) = E [Z(x) | x,x′ ∈ Φ, ||x − x′|| = u, t(x) > t(x′)] ,

where t(.) identifies the stage when data were collected, i.e. a time label. It is then assumed
that the analyst is aware of how, or if one prefers when, the collection of the sample data
occurred, making time labels available.
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Both conditional expectation functions, E(u) and Eseq(u), can be approximated through
a sample average, but the second considers a sub set of the total data values considered for
the first. Allowing a tolerance region for lag u, our estimator can be defined as

Êseq(u) = N−1
u

∑

|‖xi−xj‖−u|≤ ε

2

t(xi)>t(xj)

Z(xi)

where ε > 0 is a fixed bin-width and Nu is the number of pairs (xi,xj) for which |‖xi−xj‖−
u| ≤ ε

2
.

The behaviour of these functions was then investigated through a new simulation study
aiming to analyse the influence of sequential biased and clustered sampling. We have consid-
ered 1000 independent data sets and the same features chosen for our previous study: same
sampling designs and spatial dependency structure.

In Figures 2 and 3, we plot the mean of 1000 estimated conditional expectation functions,
given by Êseq(u)− Ê(u), Êseq(u)− Ê(Z) and Ê(u)− Ê(Z). The confidence intervals (CI)
for the sampling distribution of differences constructed from 1000 samples were added to
check the variability of these estimations.

We conclude that under the absence of a sequential biased sample, and just in this case,
the difference functions Êseq(u) − Ê(u) and Êseq(u) − Ê(Z) are approximately zero.
The corresponding CIs embrace the theoretical Eseq(u) − E(u) = Eseq(u) − E(Z) = 0.
Otherwise, with or without the presence of strong clustering, our two difference functions
are clearly non-zero, reflecting the existence of bias in latest data points (higher values in
our simulation).

The plots illustrate the following dependency pattern of a biased multi-stage collection
of sample data

Eseq(u) − E(u) 6= 0,

which we shall adopt in our proposal.

4.2 Monte Carlo tests

The widely used Monte Carlo (MC) significance testing was originally proposed in [16] and its
basic idea is as follows. Suppose H0 is the null hypothesis about the model which generates
Y = {(xi, Z(xi)) : i = 1, ..., n}, and r1 is an observed value of a real valued statistic R =
h(Y ), which has a distribution function F , possibly mathematically intractable. Moreover,
suppose we agree to reject H0 for a large value of r1.

Hence, we can use pseudo-random numbers to simulate a random sample r2, ..., rm of
m−1 observations from distribution F and to construct a test by comparing these simulated
values with r1. If F is continuous and k = 1 + #{j : j = 2, ..., m and r1 > rj}, then H0

will be rejected at the k/m attained significance level, since the rank of r1 is uniformly
distributed on the integers 1, ..., m when H0 is true. See [17] for a general discussion of
Monte Carlo tests. Note that the parametric bootstrap techniques work in a similar way to
those described in here (see e.g. [18]).

In our work, we are interest in a test for the hypothesis that a given data set does not
incorporate sequential biasing, so that we shall define

H0 : Eseq(u) − E(u) = 0.
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Figure 2: Part I - mean values of estimated conditional expectation functions. Total of
replicas equals to 1000.
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Figure 3: Part II - mean values of estimated conditional expectation functions. Total of
replicas equals to 1000.
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Under this hypothesis, the spatial process can be generated by sampling a random field Z
at the given locations xi, i = 1, ..., n, with no sequential dependence. In this way, we can
simulate m − 1 further data sets under H0, and define rj to be a measure of discrepancy

between Êj
seq(u) and Êj(u) over the whole range of u. For example, our test statistic can be

given by the integrated squared difference

rj =

∫
{Êj

seq(u) − Êj(u)}2du.

We can then proceed to a formal test based on the rank of r1 amongst rj, because under
H0 all ranking of r1 are equiprobable. Bear in mind that m is rather smaller than might
perhaps be expected, in contrast with the much larger sample which would be needed for
accurate estimation of F , the distribution function of R. According to [19], for a one-sided
test at the conventional 5% level of significance, m = 100 is suitable.

Additionally, a preliminary rough visual guide to address the problem being investigated
can be provided by means of the well-known “simulation envelopes” plot. Testing involves
comparing an observed test statistic with samples from the model under consideration. Con-
sequently, this visual approach is based directly on the variation in estimates obtained from
data generated from the model. The maximum and minimum of the total m−1 independent
simulations allow the definition of upper and lower envelopes. See Figure 4, for an example.

Diggle in [5] emphasises the use of such a plot as a visual aid to interpretation. Compar-

ison of the observed curve Ê1
seq(u)− Ê1(u) with that expected from a random arrangement

of Êj
seq(u) − Êj(u), j = 2, ..., m allows an assessment of the overall degree of coverage. If

the observed curve lies between the two envelopes, this suggests the acceptance of hypoth-
esis H0. If the observed curve exceeds the envelopes for some distances u, this is an initial
and informal indication of the possibility of H0 rejection. Anyway, in our case, we prefer to
deepen analysis and to proceed with a formal Monte Carlo test.

4.3 Rongelap island’s data

First, we need to simulate j = 2, ..., m datasets under H0, i.e. “Rongelap island’s data does
not incorporate sequential biasing”. It was found convenient to start with the maximum
likelihood estimation of the spatial dependency structure. So, we consider a variogram
estimator, obtained by using the coarse data and, derived through restricted maximum
likelihood (REML).

In Figure 4, we present the results of our Monte Carlo test. We generate 99 simulations
of a random field over the total 157 distinct2 locations of Rongelap’s island. From this plot,
we would not reject the null hypothesis, as confirmed through a formal test. So, we would
tend to refuse the existence of sequential bias. However, when one replaces this variogram
estimator for one of those proposed in Section 5, this tendency is not that clear.

The previous approach requires model assumptions, like Gaussianity of data. If one
wishes to avoid it, an alternative Monte Carlo method can be supported by the theory of
randomization tests. The basic idea is to calculate a test statistic from the observed data,
and then reshuffle the data a large number of times, recalculating the test statistic for each

2Four locations were overlapped in fine and coarse grids.
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Figure 4: Simulation envelopes of Eseq(u)−E(u) for Rongelap island’s data, with γ̂ obtained
through REML: data (solid curve); upper and lower envelopes from 99 simulations of a
random field (dashed curves).

iteration. These statistics are used as before to generate a distribution of values. The
observed value can be compared to the distribution to see whether the observed case is a tail
value, i.e. an event that is unlikely to occur through chance. The latter tests are sometimes
referred to as permutation ones, because the randomization can be done by reordering the
positions of elements in an array.

In geostatistics, a natural permutation test can be derived when the actual data values
are maintained, but they are randomly permuted in order to obtain the distribution of the
test statistic. Exactly how they are permuted depends on the null hypothesis to be tested.

In our case, for testing H0 : Eseq(u) − E(u) = 0 on Rongelap data, we suggest the
following non-parametric approach. Suppose the locations and values for the first stage of
the sampling were fixed a priori, then we can assess the variation in the test statistic over
randomisation of the second stage sampling. In here, to keep avoiding the assumption of a
model for the spatial process, we can select at random over all the locations from the two
stages and using the observed values at these selected sites, this would avoid the need for a
model.

The results plotted in Figure 5 were derived following this type of approach. We fixed
as true the 63 sampled locations and values from the first stage

{(xi, Z(xi)) : i = 1, ..., 161, t(xi) = t0}.

For each simulation, we chose randomly 98 extra data points xk, among the total 161 avail-
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Figure 5: Simulation envelopes of Eseq(u) − E(u) for Rongelap island’s data, using a non-
parametric approach: data (solid curve); upper and lower envelopes from 99 simulations of
a random field (dashed curves).

able and we got a new data set representative of the second stage

{(xk, Z(xk)) : t(xk) = t0 or t(xk) = t1}.

We could then derive the conditional expectation functions Êj
seq(u) and Êj(u) for

j = 1, ..., 99. According to Figure 5, we realize that this non-parametric approach gives
a narrow envelope interval when compared to the one obtained through REML in Figure
4, probably because of the smaller variability associated to a permutation test. These sim-
ulation envelopes actually suggest a possible rejection of H0. However, this rejection was
not confirmed with the formal test. The observed test statistic r1 was the 92th largest of all
values rj , so H0 should be accepted with an attained significance level of 0.92.

5 Non-standard sampling correctors

In Section 3.2, when analysing the Matheron’s and Nadaraya-Watson kernel variogram es-
timators under different sampling designs, we have concluded that they may produce poor
estimates of the spatial variability. This can happen when the sampling strategy causes later
samples to be located in areas with atypical, usually high or low, data values. While, it is
likely that these samples give good information on the spatial variance within the clusters,
they are not representative of the remaining area. The naive approach of discarding clus-
tered biased data would force us to lose useful information, as well as, it may not always be
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possible to identify those that should be kept and those that should be discarded. To obtain
a good estimate of the global spatial variance, one may claim a method of weighting indi-
vidual samples and clustered ones, in such a way the latter do not have an undue influence
on the estimate.

5.1 Method to adjust for clustering

Our first concern is then the clustering issue. We propose to modify the NW kernel estimator
2γ̂(u) in Section 3.2 trying to adjust for clustering of samples and minimize the negative
impact on variogram estimation.

Consequently, a compensation for the unpopulated areas is proposed, by suggesting an
inverse weight to a given neighbourhood density and, simultaneously, joining the benefits out-
come from a kernel estimator. A possible way to extend weights wij(u) = K ((u − ‖xi − xj‖)/h)
to adjust for clustering is to use

wij(u) =
1√

ni × nj

× K

(
u − ‖xi − xj‖

h

)
, ni =

∑

k

I{‖xi−xk‖≤δ}

where ni represents the number of points that fall within the circle of radius δ and center xi.
In [20], this new variogram estimator is proved to enjoy good properties, such as asymp-

totically unbiasedness and consistency. Additionally, it is also proposed optimal values the
neighbourhood radius δ and the kernel bandwidth h. The first results from the analysis of
the density estimation derived on the observation region. The latter is treated via the MSE,
i.e. the minimum square error.

5.2 Sequential biased corrector

The second concern is about the bias possibly present in the final sample data set, when some
type of multi-stage sampling design is adopted. Here, we propose a very naive approach. If
the exploratory analysis from previous Sections suggests the presence of sequential bias, we
propose to slightly modify the adjust for clustering’s method in such a way that those data
values included and those not included into a region regarded as sequential biased would not
be mixed. Once more, the implementation of this proposal assumes certainly that one keeps
track of time labels associated to each data value, i.e., that knowledge about how the multi-
stage collection of data occurred is made available. Then, the previous weight expression
changes to

wij(u) =
1√

ni × nj

× K

(
u − ‖xi − xj‖

h

)
× I{t(xi)=t(xj)}, ni =

∑

k

I{‖xi−xk‖≤δ}

Under biased clustered samples, this resulting pooled variogram estimator can be roughly
described as using latest data values for small lags’ estimations and the remaining data
values otherwise. Under the absence of sequential bias, this estimator should produce very
similar results to estimator from Section 5.1.
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5.3 Simulation study re-visited

The comparison study of variogram estimators described in Section 3.2 can now be concluded.
In Table I, we include the results achieved by the variogram estimators proposed in the two
previous Sections, tagged RobClust and Pooled, respectively. Please remember that, for this
simulation study, we have considered a two-stage approach for sampling collection, with the
second stage possibly influenced by the first, suggesting four possible combinations of biased
sampling and clustered sampling.

Under random sampling, the four estimators present similar results, with just a slightly
better performance for the three kernel estimators. The best improvement accomplished
by the Pooled estimator occurs under simultaneously biased and clustered sampling, when
the errors decrease 4.5 times and 7.2 times, when compared to NW kernel and Matheron
estimators, respectively. Under just clustered sampling, these same values decrease 1.2 and
2.0 times, respectively. For the last combination, bias but no strong clustering, the Pooled

estimator origins values 1.9 and 1.4 smaller than NW kernel and Matheron estimators.
As expected, the new estimators RobClust and Pooled present very similar ISE values un-

der the absence of sequential sampling. However, under simultaneously biased and clustered
sampling, there is some practically relevant improvement of our naive Pooled estimator over
existing methods. This suggests to consider time labels in the estimates whenever possible.

6 Discussion on Rongelap island’s data

The direct observation of the Rongelap island’s data, in Figure 1, allow us to conclude
that some sub-areas were more intensively sampled than others. This spatial sampling
design was adopted to better characterize short-range variability, which requires a denser
sampling, but sometimes too costly to cover the whole study region. However, if later
sample locations concentrated in sub-regions corresponding to atypical high (or low) values
of the measurements made at earlier sample locations, then the total data points are not
equally representative of the overall data. Thus, the traditional methods of geostatistics
must be carefully adopted or even avoided.

In this closing Section, we do the assessment of the proposed variogram estimators on
Rongelap data, when testing for the presence of sequential dependency. In Section 4.3,
the Monte Carlo test suggested for the Rongelap data has employed a variogram estimator
derived through maximum likelihood. This estimation was required to model the spatial
dependency and to generate 99 simulations of a random field according to the null hypothesis
(i.e. absence of sequential dependency). We now investigate the influence of adopting the
new variogram estimators instead. Bear in mind that conditional negative-definite versions
of these estimators must be used, which are obtained by fitting the empirical estimators
introduced in Sections 5.1 and 5.2 to a permissible variogram given by Bochner’s theorem
as described in [21]. Both estimators, with similar outcomes, were applied to all data from
coarse and fine grids.

In Figure 6, we choose to illustrate the Monte Carlo test related to the Pooled estimator.
The observed curve Êseq(u)− Ê(u) is outside the simulation envelopes for small and large
lags. According to these results, the presence of sequential dependency in the samples should
not be totally excluded. Actually, the rejection of the null hypothesis was confirmed with
the proposed formal test at the 5% level of significance.
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Figure 6: Simulation envelopes of Eseq(u)−E(u) for Rongelap island’s data, using the Pooled

variogram estimator: data (solid curve); upper and lower envelopes from 99 simulations of
a random field (dashed curves).

It is also noteworthy that this data set underlies some characteristics, like a low spatial
variance and locations almost forming a straight line due to the island’s layout, requiring a
careful estimation. Consequently, corrector methods like the ones proposed are advised.
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Table 1: Comparison of four distinct variogram estimators, through the mean values of the
evaluated ISE. Four distinct sampling designs were considered, from simultaneously biased
and clustered sample to a completely random sample. Total of replicas equals to 100 and
each replica total sample size equals to 200.

Sampling Design γ̂(u) u ≤ 0.6 u ≤ 0.3 u ≤ 0.2 u ≤ 0.1
Matheron 0.608 0.239 0.123 0.032
NW kernel 0.580 0.275 0.161 0.043

Random
RobClust 0.571 0.265 0.154 0.042
Pooled 0.574 0.264 0.153 0.041
Matheron 0.957 0.453 0.315 0.070
NW kernel 0.567 0.248 0.159 0.063

Just
Clustered RobClust 0.512 0.260 0.164 0.059

Pooled 0.472 0.238 0.152 0.059
Matheron 0.685 0.350 0.246 0.111
NW kernel 0.507 0.268 0.164 0.048

Just
Biased RobClust 0.496 0.255 0.154 0.044

Pooled 0.352 0.177 0.105 0.027
Matheron 2.989 0.766 0.336 0.090

Biased NW kernel 1.882 0.338 0.176 0.071
and

Clustered RobClust 1.102 0.402 0.218 0.068
Pooled 0.415 0.212 0.142 0.061
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