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Abstract. An extension of the firefly algorithm (FA) for solving mixed-integer nonlinear programming (MINLP) problems is
presented. Although penalty functions are nowadays frequently used to handle integrality conditions and inequality and equality
constraints, this paper proposes the implementation within the FA of a simple rounded-based heuristic and four preference rules
to find and converge to MINLP feasible solutions. Preliminary numerical experiments are carried out to validate the proposed
methodology.

INTRODUCTION

In this paper, we address the problem of solving mixed-integer nonlinear programming (MINLP) problems by an
extended version of the firefly algorithm (FA) that is capable of computing solutions with continuous and integer
variables simultaneously. The MINLP problem has the form

min(x,y) f (x, y)
subject to g j(x, y) ≤ 0, j = 1, . . . , p

hl(x, y) = 0, l = 1, . . . ,m
x ∈ Γx, y ∈ Γy ∩ Zni

(1)

where the vector x represents the continuous variables with Γx ⊂ IRnc being the set of simple bounds on x (or a
polyhedral subset of IRnc ) Γx = {x ∈ IRnc : lx ≤ x ≤ ux, lx, ux ∈ IRnc }. The integer variables are represented by the
vector y, where Γy is the set of simple bounds on y, Γy =

{
y ∈ Zni : ly ≤ y ≤ uy, ly, uy ∈ Zni

}
, and the parameter

n = nc + ni represents the total number of variables. The function f : Γx × Γy → IR is the objective function and
g : Γx × Γy → IRp and h : Γx × Γy → IRm are the inequality and equality constraint functions respectively. Let V(x, y)
be the non-negative real function that is used to measure inequality and equality constraint violation:

V(x, y) =

p∑
j=1

max{0, g j(x, y)} +
m∑

l=1

|hl(x, y)|.

In the following, a solution (x, y) that satisfies the inequality and equality constraints, i.e., that verifies V(x, y) = 0 is
denoted by a constraint-feasible solution; if V(x, y) > 0, the point (x, y) is a constraint-infeasible solution.

The difficulties that arise when solving this type of problem are related to the integrality of the variables y and to
the nonlinear functions in the objective and constraints. Penalty-based techniques have been used to handle integrality



as well constraint violations [1, 2]. Although popular, their use turn out to be a challenging issue since they require
finding suitable values for the penalty parameters.

In this paper, to overcome the penalty parameter issue, nonlinear inequality and equality constraints are handled
by a set of four preference rules that favor constraint-feasible solutions against infeasible ones but without ignoring
them. First, in the next section, we present the four preference rules that are used to select the best of two compared
solutions; afterwards, we describe the heuristics used to handle integer variables in the FA.

HANDLING CONSTRAINTS BY PREFERENCE RULES

A quite common and popular constraint handling technique, presented in [3], relies on three rules that favor feasible
points against infeasible ones. The constraint violation and the objective function values are used and compared
separately in order to decide which point would be preferred between the two. The technique has been used with
different metaheuristics, like the genetic algorithm, evolutionary algorithm, differential evolution, electromagnetism-
like algorithm [3, 4, 5] Recently, a new rule has been added to the set with the goal of solving nonlinear global
optimization problems [6]. The authors extended the FA to general constrained global optimization problems by
exploring two strategies, one based on the global competitive ranking and the other on the below four described rules.
The following rules, herein denoted by “preference rules”, aim to compare two solutions so that the one that would be
preferred is identified:

(P1) Any constraint-feasible solution is preferred to any constraint-infeasible one.
(P2) Between two constraint-feasible solutions, the one with lower objective function value f is preferred.
(P3) Between two constraint-infeasible solutions, the one with lower constraint violation V is preferred.
(P4) Between two constraint-infeasible solutions, the one having smaller number of violated constraints is preferred.

The rules (P1) – (P3) are the well-known feasibility and dominance rules proposed for binary tournaments [3]. The
rule (P4) means that a solution (xl, yl) with a smaller number of violated constraints would be preferred to any other
(xk, yk) with a larger number of violated constraints, whatever the relation between V(xl, yl) and V(xk, yk).

FIREFLY ALGORITHM EXTENSION TO MIXED-INTEGER VARIABLES

A simple rounding-based heuristic is used to handle continuous and integer variables simultaneously in the FA. While
the movement of the continuous variables in the search space proceeds as usual, the movement of the integer variables
is controlled by search steps that take only integer values. This is achieved by using an operator that finds the nearest
integer value to a real value. FA is a stochastic population-based algorithm for solving continuous bound constrained
global optimization problems. It is inspired by the flashing behavior of fireflies at night. The FA was developed by [7]
and the firefly movements are based on the following three main rules:

(i) all fireflies are unisex, meaning that any firefly can be attracted to any other of the brighter ones;
(ii) the attractiveness of a firefly is determined by its brightness which is associated with the encoded objective

function;
(iii) the attractiveness is directly proportional to brightness but decreases with the distance.

In the context of solving MINLP problems, the position of a firefly l will be represented by the point (xl, yl) ∈ Γx × Γy
and firefly k is brighter than firefly l if the point (xk, yk) is preferred to the point (xl, yl) according to the “preference
rules” (P1) – (P4). We assume that the number of fireflies in the population is NP. At the beginning, the positions of
the fireflies in the population are randomly generated. Then, they are evaluated, by computing f , V and the number of
violated constraints. Afterwards, based on rules (P1) – (P4), the points are ranked in ascending order, i.e., (x1, y1) is
the brightest firefly, (x2, y2) is the second brightest and so on. Subsequently, the fireflies are moved following rules (i)
– (iii) and according to the below shown equations (3) and (4).

To randomly generate the positions of the NP fireflies, each with nc continuous variables and ni integer variables,
in Γx × Γy, we use for k = 1, . . . ,NP:

xk
i = (lx)i + λk

i ((ux)i − (lx)i) for i = 1, . . . , nc
yk

j = (ly) j + τk
j for j = 1, . . . , ni

(2)



where the notation (lx)i represents the component i of the vector lx (similarly for (ux)i, (ly) j, (uy) j), λk
i is a number

uniformly distributed in [0, 1] and τk
j is a number randomly selected from the set {0, 1, . . . , ((uy) j − (ly) j)}. The move-

ment of fireflies in the original version of FA is related with the brightness emitted by each firefly and the degree
of attractiveness that is generated between two fireflies. Now, extending these ideas to the mixed-integer variables, a
firefly k (k = 2, . . . ,NP − 1) is moved towards the brighter fireflies l = 1 . . . , k − 1 as follows:

xk
i = xk

i + β(xl
i − xk

i ) + α(λk
i − 0.5)Xi for i = 1, . . . , nc

yk
j = yk

j + RND
[
β(yl

i − yk
i ) + α(λk

j − 0.5)Y j

]
for j = 1, . . . , ni

(3)

where the operator RND[z] gives the nearest integer vector to the real z, α is the randomization parameter defined by
the user, usually a number in the range [0, 1], and Xi and Y j aim to scale the movement of the continuous and integer
variables to the sets Γx and Γy respectively. We note that, based on rule (i) above, the brightest firefly (x1, y1) will
not be moved. In this paper, a different movement is used to define a trial position for the worst firefly (xNP, yNP). A
random movement is carried out componentwise around (x1, y1). After all movements have been carried out, the trial
position of each firefly is checked against the corresponding bounds and a projection on to the boundary is carried
out if the components fall outside. Then, the final trial position of each firefly is compared with its initial position
according to rules (P1) – (P4) and the preferred one is maintained for the next iteration.

The parameter β in (3) gives the attractiveness between fireflies k and l, it varies with the brightness seen by
adjacent fireflies and the distance between themselves [7], and is defined as follows

β = β0 exp
(
−γ

∥∥∥(x, y)l − (x, y)k
∥∥∥2

2

)
, (4)

where the constant β0 is the attraction parameter when the distance is zero. The parameter γ is used to increase the
attractiveness between fireflies and it varies along the iterative process [8]. The randomization parameter α is made to
decrease gradually as the iterative process proceeds and aims to increase diversity at the beginning of the process, see
[2, 8] for details.

Finally, an intensification phase is included in the final step of the FA. A derivative-free method from the pattern
local search class, known as Hooke-and-Jeeves (HJ) [9], is invoked starting from the brightest firefly. The HJ local
search is implemented 5n iterations and has been extended to handle continuous and integer variables simultaneously
by using the operator RND[·], similarly to (3).

NUMERICAL EXPERIMENTS

In order to analyze the performance of the extended FA based on the preference rules, we carried out prelimi-
nary numerical experiments with a set of small well-known MINLP problems available in the literature. We use a
PC Intel Core 2 Duo Processor E7500 with 2.9GHz and 4Gb of memory RAM and the algorithm was coded in
MatlabTMVersion 8.1 (R2013a). The results are shown in Table 1 that depicts the best obtained objective function
value, fbest, and the corresponding violation, Vbest, (out of the 30 independent runs), the average f of the 30 results,
favg, and the average number of function evaluations, n. f .eval, required to reach a solution (x1(K), y1(K)) (at iteration
K) that satisfies the stopping conditions∣∣∣∣ f (

x1(K), y1(K)
)
− f ∗

∣∣∣∣
| f ∗|

≤ 1.0E − 4 and V
(
x1(K), y1(K)

)
≤ 1.0E − 3

where f ∗ is the best known optimal solution. If these conditions are not satisfied after 10n iterations, the algorithm
stops and provides the best solution found thus far. Results in the table, collected from [10] (a filter-based genetic
algorithm (GA)) and [11] (an extended version of the ant colony optimization (ACO)), correspond to a population
of 20 points, 30 independent runs, and termination after 10 000 function evaluations or when a solution with error
1E − 04 is reached. As it can be seen, the set of four preference rules when integrated into the extended FA yields
a rather competitive methodology for solving MINLP problems. Since there is no penalty parameter to initialize and
tune, the algorithm is easy to code and quickly implemented.



TABLE 1. Numerical results for NP = 20.

Prob. nc/ni f ∗
extended FA

based on (P1)–(P4)
Filter-based GA

in [10]
Extended ACO

in [11]
fbest Vbest favg n. f .eval favg n. f .eval favg n. f .eval

ex 12.2.1∗ 2/3 7.66718 7.6671 1.87E-04 8.0695 8622 7.7406 4720 7.6672 363
ex 12.2.2∗ 2/1 1.07654 1.0766 0.00E+00 1.0767 5178 1.0767 8074 1.1459 4250
ex 12.2.3∗ 3/4 4.57958 4.5796 0.00E+00 4.7758 12157 5.1322 8125 4.5796 731
ex 12.2.6∗ 1/1 -17.0000 -17.0000 5.44E-07 -16.9998 3243 -17 999 -17 307
st e13† 1/1 2.0000 2.0000 0.00E+00 2.0000 3409 2.0000 4530 – –
f2 in [10] 2/1 2.124 2.1320 2.75E-07 2.7149 5253 2.1852 3799 – –
f10 in [10] 1/1 -2.444 -2.4380 0.00E+00 -2.4380 3501 -2.4444 230 -2.4444 270
f11 in [10] 2/1 3.2361 3.2361 0.00E+00 3.2361 4405 3.4208 5616 23.475 1180

∗ Test problems from [12] (http://titan.princeton.edu/TestProblems/chapter12.html).
† Test problem in [13] (http://www.gamsworld.org/minlp/minlplib/points.htm); – means not available.

CONCLUSIONS

We have presented a simple heuristic to handle integer variables inside the firefly algorithm developed for continuous
variables. The algorithm has also been enhanced with an intensification phase by using the Hooke-and-Jeeves pattern
search-type method. The issue related to the inequality and equality constraints of the problem has been addressed
by four preference rules that favor feasible solutions against infeasible ones. The preliminary numerical experiments
show that the new methodology is rather competitive when compared with other stochastic-based techniques available
in the literature for solving MINLP problems.
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