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A B S T R A C T

A series of push-pull aryl-bithiophene based systems 2–3 were designed and synthesized in order to understand
how structural modifications influence the electronic, linear and nonlinear optical properties. The push-pull
conjugated chromophores 2–3 bear a bithiophene spacer conjugated with a phenyl ring functionalized with N,N-
dialkylamino electron-donor groups together with cyanoacetic or rhodanine-3-acetic acid acceptor groups.
Theoretical (DFT calculations) and experimental studies were carried out to obtain information on conformation,
electronic structure, electron distribution, dipolar moment, and molecular nonlinearity response of the push-pull
bithiophene derivatives. This multidisciplinary study revealed that chromophore 2e exhibits the highest value
for hyperpolarizability β (10440 × 10−30 esu) due to the strong electron donating ability of the N,N-di-
methylamino group, and the ethyne linker that not only lengthens the π-conjugation path but also grants less
distortion to the system.

1. Introduction

For the last several years, push-pull π-conjugated systems have at-
tracted widespread interest. The D-π-A molecular arrangement of these
systems allows the electron donor and acceptor end-caps to interact
through a π-conjugated spacer, facilitating intramolecular charge-
transfer (ICT) upon visible light excitation (colored substances). The
large polarizability and often large difference between the molecular
dipole moments in the ground and first excited electronic state of this
push-pull chromophores favor strong nonlinear optical responses. Such
compounds are especially noteworthy due to their easy synthesis, ex-
cellent optical and electrochemical properties, well-defined structures
that can easily be tuned to satisfy various requirements, as well as their
good thermal and chemical stability [1]. Practical applications are
found in various areas, including field-effect transistors (OFETs) [2],
light emitting diodes (OLEDs) [3], nonlinear optics (SHG, TPA) [4],
photovoltaic cells (OPVCs) [5], dye-sensitized solar cells (DSSCs) [6],
bulk heterojunction cells (BHJs) [7], near infrared absorbing (NIR) dyes
[8], etc. Due to the great interest in these types of systems, an extensive
catalog of electron donor, electron acceptor and π-spacer groups have

already been studied for the preparation of push-pull chromophores.
In principle, the NLO response of an organic push-pull system de-

pends on the number of polarizable π-electrons, the extent of the ICT,
the polarization of the given π-system by suitable and strong electron
donors and acceptors and the overall planarity [1b,9]. The tuning of
such molecular systems to adjust the respective properties for the de-
sired applications can be achieved through modification of the electron
donor or electron acceptor moieties, modification of the spacer (elec-
tronic nature and relative position of the aromatic or heteroaromatic
rings, conjugation length), and varying the overall chromophore ar-
rangement (planarity, and further auxiliary functionalization).

Among the numerous classes of π-conjugated organic systems,
donor-acceptor substituted heterocyclic compounds are of great interest
because it has been experimentally and theoretically demonstrated that
they increase the second-order molecular NLO response of push-pull
chromophores with respect to aryl analogues. The incorporation of
heterocycles into the π-conjugated systems is a powerful approach for
tuning the optoelectronic properties. The heterocycles bring higher
polarizability, modulate the conjugation pathway, promote thermal and
chemical robustness, and behave as auxiliary electron donors/
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acceptors, while constituting moieties for further modification [9a,10].
Functional oligothiophenes are one of the most frequently used π-
conjugated materials for active components in organic devices due to
their enhanced stability, excellent charge-transport properties, and
large nonlinearities that can be attributed not only to the bathochromic
effect of sulfur, but also to the partial decrease of aromatic character
and the increased π-overlap between the thiophene units [4b,9b-d,10a-
h,11].

Motivated by previous studies, as well as our experience in the
design, synthesis and characterization of push-pull heterocyclic π-con-
jugated systems bearing (bi)thiophene spacers for a variety of nonlinear
optical [10] photovoltaic [12] and photochromic applications [13],
here we report on theoretical and experimental studies of ten ar-
ylbithiophene-based push-pull heterocyclic systems. These NLOphores
bear cyanoacetic or rhodanine-3-acetic acid as electron withdrawing
group [14], and N,N-dialkylamino donor groups, with the aim of im-
proving their second harmonic generation efficiency.

2. Results and discussion

2.1. Design of arylbithiophene-based derivatives 1-3

Motivated by the several interesting characteristics stated above, we
designed and synthesized ten push-pull heterocyclic systems, from
which eight are new compounds, based on an aryl-bithiophene spacer/
auxiliary donor, and cyanoacetic acid or rhodanine-3-acetic acid as
electron acceptor moieties in order to study their performance as
second harmonic generators (SHG) (Fig. 1). The final push-pull systems
were obtained by transformation of the versatile formyl heterocyclic
precursors 1a-e, reported recently by our research group [15], to the
cyanoacetic acid 2a-e, or rhodanine-3-acetic acid 3a-d derivatives.
These molecular structures permit a comparative study of the optical
properties among the different chosen electron donor, electron-acceptor
groups, as well as the introduction of an ethyne linker (Scheme 1).

2.2. Theoretical calculations for arylbithiophene-based derivatives 2–3

In order to achieve an understanding of the differences in the
structure and electronic properties of these dyes, and establish a com-
parative computational basis for this series, density functional theory
(DFT) calculations were undertaken. The obtained results are sum-
marized in Table 1 and Fig. 2. The energy levels for chromophores 2–3,
and the respective electron density maps were computed in a polarized
solvent continuum of 1,4-dioxane. In addition, their dipolar moments
and hyperpolarizabilities β were calculated.

Each chromophore can exist as several different conformers, de-
pending on the relative arrangement of some of their units, however we
only present the lowest energy forms, which are responsible for the
respective properties. For all the presented conformers, the cyano and
the carboxylic groups, as well as the rhodanine moiety, are coplanar
with the bithiophene spacer, showing a strong conjugation between the

π-orbitals of the aforementioned groups, which translates into efficient
electron transfer from the π-bridge to the electron acceptor group
(Fig. 2).

The HOMO of chromophores 2–3 is essentially localized on the
functionalized arylbithiophene donor group/π-spacer. The electron
density of the LUMO for cyanoacetic chromophores 2 is localized on the
cyano and carboxylic group with some overflow to the arylbithiophene
spacer. For chromophores 3, the LUMO is mainly centered on the
rhodanine heterocycle with some overflow to the arylbithiophene
spacer, and isolated from the carboxylic endcap group [12b,d,14].

A comparison of the energy levels of the HOMO and LUMO of the
chromophores, shows that the substitution of the cyanoacetic group for
the rhodanine-3-acetic acid leads to a stabilization of the LUMO with a
destabilization of the HOMO, resulting in the decrease of the electro-
chemical band gap, and justifying bathochromic shifts of the wave-
length of maxima absorption. The stronger electron donor ability of the
N,N-dialkylamino groups also results in smaller band gaps for chro-
mophores 2b-d and 3b-d compared to the unsubstituted derivatives 2a
and 3a. Comparison of the band gap values for cyanoacetic derivatives
2b (2.37 eV) and 2e (2.25 eV) shows that the introduction of an ethyne
linker between the bithiophene spacer and the functionalized aryl
group also decreases the band gap due to an additional increase of the
π-conjugation and an increase of the planarization of the conjugated
system.

The calculated dipole moments, in 1,4-dioxane, for chromophores
2–3 are in the range of 5.7–12.5 Debye. As expected, a general increase
of the dipole moment with the strength of the electron donating or
withdrawing ability of the donor or acceptor groups, was observed for
compounds 2–3. The estimation of the hyperpolarizabilities β|| and βtot
for the designed systems 2–3 gave moderate to high values of 192-
2255 × 10−30 esu and 320-3757 × 10−30 esu, respectively, and
generally follows the same trend as the DFT calculated dipole moments.
One exception lies in chromophores 2e and 3e: the presence of the
ethyne linker significantly increases the hyperpolarizability, probably

Fig. 1. Molecular structure of the designed push-pull heterocyclic systems 1–3 bearing an aryl-2,2′-bithiophene spacer moiety.

Scheme 1. Synthesis of push-pull arylbithiophene dyes 2a-d, 3a and 3c-d: (i) 2-cya-
noacetic acid, acetonitrile, piperidine, reflux; (ii) rhodanine-3-acetic acid, ethanol, pi-
peridine, reflux.
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due to a longer conjugation path length. Nevertheless, this has a weak
influence on the dipole moment, for which the N,N-dialkylamino
groups are more relevant. Moreover, the cyanoacetic acid derivatives 2
exhibit stronger dipole moments when compared to the respective
analogous rhodanine-3-acetic acid derivatives 3, while the latter show
higher hyperpolarizabilities. This can be ascribed to the fact that the
cyanoacetic acid group has a stronger electron withdrawing ability,
whereas the rhodanine-3-acetic acid moiety has longer π-conjugation.

The overall analysis of the computational calculations gives reason

to believe that these chromophores can be excellent candidates as SHG
chromophores.

2.3. Synthesis and characterization of arylbithiophene-based derivatives 2-
3

Earlier we reported the synthesis and evaluation of the linear and
nonlinear optical properties for several families of push-pull thiophene
derivatives [10a-h, 13, 15]. Our earlier work, as well as the DFT

Table 1
Computational result summary of chromophores 2a-e and 3a-e hyperpolarizability calculations.

Cpds μ (D) β|| (10−30 esu) βtot(10−30 esu) EHOMO (eV) ELUMO (eV) Eg (eV)

2a 6.28 192 320 −5.87 −3.01 2.86
2b 11.70 950 1582 −5.23 −2.86 2.37
2c 11.79 1036 1726 −5.20 −2.86 2.35
2d 12.46 1104 1840 −5.17 −2.85 2.32
2e 12.25 1688 2813 −5.22 −2.97 2.25

3a 5.72 277 461 −5.69 −3.01 2.68
3b 11.10 1383 2302 −5.16 −2.89 2.27
3c 11.24 1529 2546 −5.13 −2.88 2.25
3d 11.94 1647 2743 −5.10 −2.87 2.23
3e 11.49 2255 3757 −5.16 −2.98 2.18

Fig. 2. Optimized geometry of the lowest energy conformer, and frontier molecular orbitals of aryl-bithiophene derivatives 2–3.
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calculations presented above for new arylbithiophene derivatives
bearing cyanoacetic acid and rhodanine-3-acetic acid acceptor groups,
motivated us to extend our studies in order to explore the effect of these
different electron acceptor groups as well as the introduction of an
ethyne linker on the optical properties of the novel push-pull systems.

Therefore, we synthesized push-pull cyanoacetic acids 2, and rho-
danine derivatives 3, in order to evaluate their experimental linear and
nonlinear optical properties. The synthesis of arylbithiophene-2-car-
baldehyde precursors 1a-d [15] and 1e [12b,16] were reported by us
elsewhere, as were cyanoacetic derivative 2e [12b,16] and rhodanine-
acetic derivative 3b [11b]. Compounds 2a-d, 3a and 3c-d were pre-
pared in fair to good yields (24–81%) by Knoevenagel condensation of
the corresponding aldehydes 1a-d with 2-cyanoacetic acid in refluxing
acetonitrile, or rhodanine-3-acetic acid in refluxing ethanol, and using
piperidine as catalyst (Scheme 1, Table 2).

The structures of the push-pull heterocyclic compounds 2–3 were
confirmed by standard analytical and spectroscopic techniques. The
most characteristic signals in the IR spectra of compounds 2a-d are the
carbonyl (1635-1658 cm−1), and nitrile (2199-2207 cm−1) groups. 1H
NMR spectroscopy was also used to identify the singlet that corresponds
to the vinylic proton of the ethylenic bridge (C=CH) linked to the cy-
anoacetic acid moiety at δ ∼ 8.03–8.64 ppm. The most characteristic
signals in the 1H NMR spectra of compounds 3a and 3c-d are a singlet
corresponding to the vinylic proton of the ethylenic bridge linked to the
rhodanine-3-acetic acid moiety at δ ∼8.07–8.10 ppm; and a singlet at δ
∼4.49–4.56 ppm that corresponds to the CH2 protons of the acetic acid
unit. IR spectroscopy was also used to identify the typical absorption
bands, the carbonyl (1581-1585 cm−1), the hydroxyl (3360-
3366 cm−1), and the thiocarbonyl (1275-1281 cm−1) groups of the
rhodanine-3-acetic acid moiety.

2.4. Study of the linear and nonlinear optical properties of arylbithiophene-
based derivatives 2a-e and 3a-d

The optical properties of push-pull heterocyclic compounds 2a-e
and 3a-d were investigated in 1,4-dioxane and/or ethanol at room
temperature, and the experimental data are presented in Fig. 3 and in
Table 3. All push-pull chromophores 2a-e and 3a-d exhibit a strong and
broad band absorption (in 1,4-dioxane) between 430 and 494 nm that
can be assigned to an internal charge transfer transition (ICT) between
the electron donor and acceptor groups through the π-spacer, which is
dependent on the electronic strength of the donor groups. Generally,
greater π-conjugation length, stronger electron donating ability of the
donor moiety, stronger electron withdrawing ability of the acceptor
group, and longer alkyl chains, all induce bathochromic shifts in the
wavelength of absorption maxima of the π-conjugated molecules. The
substitution of the cyanoacetic acid acceptor moiety for the rhodanine-
3-acetic acid, introduces longer π-conjugation onto the systems,

inducing bathochromic shifts of about 20–28 nm. The introduction of
N,N-dialkylamino groups in position 4- of the phenyl moiety, again
leads to bathochromic shifts (20–44 nm), due to its higher electron
donating ability, as do the longer ethyl chain (2c and 3c) when com-
pared to the methyl group (2b and 3b) (5–8 nm). On the other hand,
the cyclized pyrrolidino group induces hypsochromic shifts in the range
of 17–25 nm (2d and 3d) relative to the analogous N,N-diethylamino
moiety (2c and 3c). These results are in agreement with the estimated
band gap values for the chromophores. The novel compounds 2a-e and
3a-d exhibit molar extinction coefficients in the range of
10,794–27,249 M−1 cm−1.

The push-pull dyes 2e and 3a-d were excited at the wavelength of
maximum absorption in ethanol, at room temperature, to study their
fluorescence properties (Table 3). The nature of the donor and acceptor
groups significantly influences their emissive properties. Generally, an
increase in the extent of the π-electron system (degree of conjugation)
or substitution with stronger electron donor or acceptor groups leads to
a shift of the spectra to longer wavelengths. Arylbithiophenes 2e and
3a-d, display emission peaks at 621, 533, 663, 671, and 582 nm, re-
spectively. The emission spectra of compounds 3a-d followed the same
trend described for the absorbance. A bathochromic shift of the λem of
the compounds is observed for dyes 3a-c that can be attributed to the
increasing electron donating ability of the donor groups (phenyl <
N,N-dimethylanilino < N,N-diethylanilino). Moreover, a comparison
of the fluorescence properties between dyes 2e and 3b show that the
loss of the ethynyl linker, and the additional substitution of the cya-
noacetic acid acceptor group by the rhodanine-3-acetic acid moiety,
leads to a bathochromic shift that is ascribed to the longer π-conjuga-
tion of dye 3b. We have estimated the optical HOMO-LUMO gap as the

Table 2
Yields, IR and 1H NMR data for push-pull arylbithiophene dyes 2a-d, 3a and 3c-d.

Cpds η (%) IRa ν (cm−1) 1H NMRb δ (ppm)

C=O O-H C≡N C=S =CHvinylic CH2

2a 81 1658 3335 2207 – 8.64 –
2b 40 1655 – 2199 – 8.03 –
2c 50 1635 – 2201 – 8.03 –
2d 75 – – – – 8.03 –

3a 69 1581 3360 – 1275 8.10 4.52
3c 24 1585 3363 – 1279 8.09 4.56
3d 38 1585 3366 – 1281 8.07 4.49

a IR spectra for compounds 2a-d were performed in nujol, and in liquid film for
compounds 3a and 3c-d.

b 1H NMR spectra for compounds 2a-d were performed in CDCl3, and DMSO-d6 for
compounds 3a and 3c-d.

Fig. 3. Absorption spectra of cyanoacetic acid based dyes 2a-e and rhodanine-3-acetic
acid based dyes 3a-d, in 1,4-dioxane.
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energy corresponding to the onset of absorption and included these
values in Table 3. These values are consistently lower than computa-
tional results quoted in Table 1, but follow the same general trends. All
dyes exhibit weak emissive properties, with relative fluorescence
quantum yields ranging from 0.05 to 0.27, which can be due to the
nitrogen heteroatom being involved in the π-system. In these situations,
the n→π* transition may be the lowest lying transition, which is
characterized by a longer radiative lifetime than that of low lying π→π*
transitions. Such a slow process cannot compete with the dominant
non-radiative processes, explaining the low fluorescence quantum
yields of many compounds containing carbonyl and/or nitrogen based
groups [17]. All push-pull systems exhibit large Stokes shifts in the
range of 83–184 nm.

The molecular first hyperpolarizabilities β of push-pull bithiophene
derivatives 2a-d and 3a-d were obtained by the hyper-Rayleigh scat-
tering (HRS) technique [18] at a fundamental wavelength of 1064 nm
of a Nd:YAG Q-switched pulsed laser beam. Dioxane was used as the
solvent, and the β values were measured against a reference solution of
p-nitroaniline (pNA) [19] in order to obtain quantitative values, while
care was taken to properly account for possible fluorescence of the dyes
(see experimental section for more details). The static hyperpolarisa-
bility β0 values [20] were calculated using a very simple two-level
model neglecting damping. They are therefore only indicative and
should be treated with caution.

From Table 3 it is noticeable that the longer π-conjugation and the
progression of the electronic donating/withdrawing ability of the
donor/acceptor groups, respectively, have a clear influence on the
nonlinearities of compounds 2a-c, 2e and 3a-c. The results show an
enhancement of the hyperpolarizabilities β from R = H
(β = 325 × 10−30 esu for 2a, β = 2585 × 10−30 esu for 3a) to the
N,N-dimethylamino group (β = 4270 × 10−30 esu for 2b,
β = 5150 × 10−30 esu for 3b), and then to a N,N-diethylamino group
(β = 9870 × 10−30 esu for 2c, β = 7300 × 10−30 esu for 3c). Gen-
erally, higher hyperpolarizabilities were also observed for rhodanine
derivatives 3, when compared to chromophores 2 that can be attributed
to the longer π-conjugation of the system introduced by the rhodanine-
3-acetic acid acceptor moiety. Chromophore 2e showed the highest first
hyperpolarizability β value of all synthesized derivatives. This result
can be explained not only by the longer π-conjugation, but also to the
less distortion of the system brought by the ethyne linker when com-
pared to chromophores 2b-c. In fact, comparison of the hyperpolariz-
ability β between 2b (4270 × 10−30 esu) and 2e (10440 × 10−30 esu)
shows that the introduction of the ethyne linker alone induces an in-
crease of the hyperpolarizability β value by more than the double.

Due to a strong signal from overlapping fluorescence, it was not
possible to measure the β value for chromophores 2d and 3d.

3. Conclusions

Starting from previously prepared aldehyde precursors, ar-
ylbithiophene chromophores 2a-e and 3a-d were obtained in good to
fair yields, by Knoevenagel condensation.

Experimental and theoretical studies concerning the optical and
electronic properties were performed in order to study the effect of
different electron donor and acceptor groups as well as a different
linker on the arylbithiophene push-pull systems. These comparative
studies demonstrated that the substitution of the cyanoacetic acid for
the rhodanine-3-acetic acid acceptor introduces longer π-conjugation
into the system and enhances the internal charge transfer of the mo-
lecules. The same was observed with the increase of the electron do-
nating ability, by introducing different N,N-dialkylamino groups to the
phenyl ring. The highest hyperpolarizability β value obtained was
10440 × 10−30 esu for 2e, due to a combination of strong electron
donating ability of the N,N-diethylamino group, and long conjugation
path length brought by the ethyne linker. Further tuning of the mole-
cular structure of all chromophores is likely to produce further en-
hanced hyperpolarizabilities.

4. Experimental

4.1. Theoretical calculations

All theoretical calculations were performed in Gaussian 09 [21].
The geometry of each molecule was optimized using the density func-
tional theory (DFT) at the B3LYP level by employing the 6-311G** basis
set and using polarizable continuum model with dioxane as the solvent.
[keyword: SCRF=(PCM,Solvent = 1,4-Dioxane)]. Frequency calcula-
tions were performed to ensure the absence of negative frequencies.
Hyperpolarizability factors were estimated at the same level of theory
using an incident wavelength of 1064 nm (keywords: freq = raman,
cphf = rdfreq, polar) and with a polarized solvent continuum model
using dioxane as the solvent.

4.2. Materials and methods

2-Cyanoacetic acid was purchased from Aldrich. Rhodanine-3-acetic
acid was purchased from Alfa Aesar. All commercially available re-
agents and solvents were used as received. The synthesis of the

Table 3
UV-vis absorption and emission data in 1,4-dioxane and/or ethanol, β and β0 values for chromophores 2a-e and 3a-d.

Cpds
Ethanol 1,4-Dioxane

λmax

(nm)
ε

(M−1 cm−1)
λem

(nm)
ΦF Stokes' Shift

(nm)
λmax

(nm)
ε
(M−1 cm−1)

ΔEopt

(eV)
β a,b

(10−30 esu)
βo b,c

(10−30 esu)

2a – – – – – 430 27,249 2.44 325 94
2b – – – – – 466 21,008 2.02 4270 800
2c – – – – – 474 20,661 2.01 9870 1630
2d – – – – – 449 22,523 2.05 d –
2e 452 35,323 621 0.05 169 469 26,808 2.07 10440 1875

3a 450 23,667 533 0.05 81 467 25,542 2.23 2585 480
3b 479 14,877 663 0.08 184 489 15,016 1.89 5150 630
3c 489 13,505 671 0.22 182 494 14,259 2.07 7300 790
3d 469 11,787 582 0.27 113 477 10,794 1.86 d –
pNA – – – – – 352 – 40.1 20.1

a Experimental first hyperpolarizabilities β and spectroscopic data measured in dioxane solutions.
b All compounds are transparent at the 1064 nm fundamental wavelength and the hyperpolarizability values are reported using the T-convention.
c Data corrected for resonance enhancement at 532 nm using the two-level model with β0 = β [1-(λmax/1064)2][1-(λmax/532)2]; damping factors not included 1064 nm.
d Due to overlapping fluorescence it was not possible to measure the β value.
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arylbithiophene-2-carbaldehyde precursors 1a-d [15] and 1e [12b,16]
are reported elsewhere, as is cyanoacetic derivative 2e [12b,16] and
rhodanine-acetic dericivative 3b [12b]. Reaction progress was mon-
itored by thin layer chromatography, using 0.25 mm thick precoated
silica plates (Merck Fertigplatten Kieselgel 60 F254), and spots were
visualized under UV light. Purification was achieved by silica gel
column chromatography (Merck Kieselgel, 230–400 mesh). NMR
spectra were obtained on a Bruker Avance II 400 at an operating fre-
quency of 400 MHz for 1H, using the solvent peak as internal reference.
The solvent is indicated in parenthesis before the chemical shift values
(δ relative to TMS). Peak assignments were made by comparison of
chemical shifts, peak multiplicities and J values. UV-vis absorption
spectra were obtained using a Shimadzu UV/2501PC spectro-
photometer. Fluorescence spectra were collected using a FluoroMax-4
spectrofluorometer. The relative fluorescence quantum yields were
determined using fluorescein in a 0.1M aqueous solution of NaOH
(ϕF = 0.79) [22]. Mass spectrometry analysis were performed at the
C.A.C.T.I. – Unidad de Espectrometria de Masas of the University of
Vigo, Spain.

4.3. General procedure for the synthesis of cyanoacetic arylbithiophene
derivatives 2a-d through Knoevenagel condensation

One drop of piperidine was added to a solution of the appropriate
aldehydes 1a-d (2.5 mmol) and 2-cyanoacetic acid (3 mmol) in acet-
onitrile. The mixture was refluxed for 2–3 h then cooled down to 0 °C.
The precipitate was filtered and washed with ethyl ether to give the
pure products.

4.3.1. 2-Cyano-3-(5″-phenyl-2′,2″-bithiophen-5′-yl)acetic acid (2a)
Yellow solid (81%). Mp. 179–180 °C. IR (nujol) ν 3335 (O-H), 2207

(C≡N), 1658 (C=O) cm−1. λmax(dioxane)/nm 430 ε/dm3 mol−1 cm−1

27,249.1H NMR (CDCl3, 300 MHz) δ 7.34 (m, 1H, 4‴-H), 7.42 (m, 2H,
3‴ and 5‴-H), 7.47 (d, 1H, J = 3.9 Hz, 4′-H), 7.96 (d, 1H, J = 3.9 Hz,
3″-H), 7.57 (d, 1H, J = 3.9 Hz, 3′-H), 7.69 (m, 3H, 2‴, 6‴ and 4″-H),
8.64 (s, 1H, CHvinylic), 9.00 (s, 1H, COOH) ppm. 13C RMN (DMSO-d6,
75.4 MHz) δ 79.1, 108.8, 119.1, 124.5, 125.2, 126.9, 128.2, 129.3,
132.9, 134.8, 135.8, 136.8, 140.4, 141.3, 143.9, 163.4 ppm. MS
(microTOF) m/z (%) = 338 ([M+1]+, 100), 318 (33), 305 (32), 296
(29), 284 (20), 261 (15), 245 (15), 217 (16), 201 (64), 158 (22). HRMS:
m/z (microTOF) [M+1]+ found 338.0312; C18H11NO2S2 requires
338.0304.

4.3.2. 2-Cyano-3-(5’’-(4‴-N,N-dimethylaminophenyl)-2′,2″-bithiophen-
5′-yl)acetic acid (2b)

Red solid (40%). Mp. 219–221 °C. IR (nujol) ν 2199 (C≡N), 1655
(C=O) cm−1. λmax(dioxane)/nm 466 ε/dm3 mol−1 cm−1 21,008.1H
NMR (CDCl3, 300 MHz) δ 2.94 (s, 6H, N(CH3)2), 6.73 (d, 2H, J = 9.0
Hz, 3‴ and 5‴-H), 7.30 (d, 1H, J = 3.9 Hz, 4′-H), 7.37 (d, 1H, J = 3.9
Hz, 3″-H), 7.40 (d, 1H, J = 3.9 Hz, 3″-H), 7.51 (d, 2H, J = 9.0 Hz, 2‴
and 6‴-H), 7.64 (d, 1H, J = 3.9 Hz, 4″-H), 8.03 (s, 1H, CHvinylic), 8.90
(s, 1H, COOH) ppm. 13C RMN (DMSO-d6, 75.4 MHz) δ 39.8, 108.8,
112.3, 119.3, 120.7, 122.2, 123.6, 126.3, 126.8, 132.1, 135.1, 136.5,
140.1, 141.7, 145.4, 150.1, 163.2 ppm. MS (microTOF) m/z (%) = 381
([M+1]+, 100), 359 (10), 312 (4). HRMS: m/z (microTOF) [M+1]+

found 381.0735; C20H16N2O2S2 requires 381.0726.

4.3.3. 2-Cyano-3-(5’’-(4‴-N,N-ethylaminophenyl)-2′,2″-bithiophen-5′-yl)
acetic acid (2c)

Red solid (50%). Mp. 171–173 °C. IR (nujol) ν 2201 (C≡N), 1635
(C=O) cm−1. λmax(dioxane)/nm 474 ε/dm3 mol−1 cm−1 20,661.1H
NMR (CDCl3, 300 MHz) δ 1,09 (t, 6H, J = 6.9 Hz, N(CH2CH3)2), 3.35
(q, 4H, J = 6.9 Hz, N(CH2CH3)2), 6.66 (d, 2H, J = 9.0 Hz, 3‴ and 5‴-
H), 7.26 (d, 1H, J = 3.9 Hz, 4′-H), 7.36 (d, 1H, J = 3.9 Hz, 3′-H), 7,40
(d, 1H, J = 3.9 Hz, 3″-H), 7,46 (d, 2H, J = 9.0 Hz, 2‴ and 6‴-H), 7.64
(d, 1H, J = 3.9 Hz, 4″-H), 8.03 (s, 1 H, CHvinylic), 8.90 (s, 1H, COOH)

ppm. 13C RMN (DMSO-d6, 75.4 MHz) δ 12.4, 43.7, 108.7, 111.6, 119.3,
119.7, 121.8, 123.5, 126.5, 126.6, 131.8, 135.0, 136.5, 140.2, 141.8,
145.6, 147.4, 163.4 ppm. MS (microTOF) m/z (%) = 409 ([M+1]+,
100), 391 (10), 318 (4). HRMS: m/z (microTOF) [M+1]+ found
409.1055; C22H21N2O2S2 requires 409.1039.

4.3.4. 2-Cyano-3-(5’’-(4‴-pyrrolidinophenyl)-2′,2″-bithiophen-5′-yl)
acetic acid (2d)

Red solid (75%). Mp. 214–216 °C. λmax(dioxane)/nm 449 ε/dm3

mol−1 cm−1 22,523.1H NMR (CDCl3, 300 MHz) δ 1.95 (m, 4H, N
(CH2CH3)2), 3.28 (m, 4H, N(CH2CH3)2), 6.57 (d, 2H, J = 8.7 Hz, 3‴
and 5‴-H), 7.27 (d, 1H, J = 3.9 Hz, 4′-H), 7.36 (d, 1H, J = 4.2 Hz, 3″-
H), 7.40 (d, 1H, J = 3.9 Hz, 3′-H), 7.50 (d, 2H, J = 8.7 Hz, 2‴ and 4‴-
H), 7.62 (d, 1H, J = 4.2 Hz, 4″-H), 8.01 (s, 1 H, CHvinylic), 8.65 (s, 1H,
COOH) ppm.

4.4. General procedure for the synthesis of arylbithiophene rhodanine
derivatives 3a and 3c-d through Knoevenagel condensation

Four drops of piperidine was added to a solution of the appropriate
aldehydes 1a or 1c-d (2.5 mmol) and rhodanine-3-acetic acid (3 mmol)
in ethanol. The mixture was refluxed for 6 h then cooled down to room
temperature. The crude product was concentrated and ethyl ether was
added to induce precipitation. The precipitate was filtered and washed
with ethyl ether to give the pure product.

4.4.1. 2-(5’-((5’’-(5‴-Phenyl-2″,2‴-bithiophen-5″-yl)methylene)-4′-oxo-
2′-thioxothiazolidin-3′-yl)acetic acid (3a)

Orange solid (69%). IR (liquid film): 3360 (O-H), 1581 (C=O),
1275 (C=S) cm−1. λmax(dioxane)/nm 457 ε/dm3 mol−1 cm−1

25,542.1H NMR (DMSO-d6, 400 MHz) δ 4.52 (s, 2H, CH2COOH),
7.33–7.47 (m, 3H, 3‴’-H, 5‴’-H, 4‴-H), 7.57–7.62 (m, 3H, 4″-H, 3‴-H,
4‴-H), 7.71 (d, 2H, J = 8.4 Hz, 2‴’-H, 6‴’-H), 7.76 (d, 1H, J = 4.4 Hz,
3″-H), 8.10 (s, 1H, =CH) ppm. MS (ESI) m/z (%) = 443 (30), 379 (53),
271 (100). HRMS: m/z (ESI) [M]+ found 442.9775; C20H13NO3S4 re-
quires 442.9778.

4.4.2. 2-(5’-(5’’-(5‴-(4‴’-N,N-Diethylaminophenyl)-2″,2‴bithiophen-5″-
yl)methylene)-4′-oxo-2′-thioxothiazolidin-3′-yl)acetic acid (3c)

Red solid (24%). IR (liquid film): 3363 (O-H), 1585 (C=O), 1279
(C=S) cm−1. λmax (dioxane)/nm 494 ε/M−1cm−1 14,259.1H NMR
(DMSO-d6, 400 MHz) δ 1.13 (m, 6H, N(CH2CH3)2), 3.01 (m, 4H, N
(CH2CH3)2), 4.56 (s, 2H, CH2COOH), 6.68 (d, 2H, J = 8.2 Hz, 3‴’-H,
5‴’-H), 7.30 (d, 1H, J = 3.6 Hz, 4‴-H), 7.47-7-53 (m, 4H, 2‴’-H, 6‴’-H,
3‴-H, 3″-H), 7.75 (d, 1H, J = 4.0 Hz, 4″-H), 8.09 (s, 1H, =CH) ppm.
MS (ESI) m/z (%) = 514 (1), 342 (100), 313 (17). HRMS: m/z (ESI)
[M]+ found 514.05078; C24H22N2O3S4 requires 514.05133.

4.4.3. 2-(5’-(5’’-(5‴-(4‴’-Pyrrolidinophenyl)-2″,2‴bithiophen-5″-yl)
methylene)-4′-oxo-2′-thioxothiazolidin-3′-yl)acetic acid (3d)

Black solid (38%). IR (liquid film): 3366 (O-H), 1585 (C=O), 1281
(C=S) cm−1. λmax (dioxane)nm 477 ε/M−1cm−1 10,794.1H NMR
(DMSO-d6, 400 MHz) δ 1.95 (m, 4H, 2 × 3‴’’-H, 2 × 4‴’’-H), 2.93–2.95
(m, 4H, 2 × 2‴’’-H, 2 × 6‴’’-H), 4.49 (s, 2H, CH2COOH), 6.56 (d, 2H,
J = 8.8 Hz, 3‴’-H, 5‴’-H), 7.32 (d, 1H, J = 4.4 Hz, 4‴-H), 7.46–7.53
(m, 3H, 2‴’-H, 6‴’-H, 3‴-H), 7.73 (d, 1H, J = 4.0 Hz, 4″-H), 7.96 (d,
1H, J = 4.4 Hz, 5″-H), 8.07 (s, 1H, =CH) ppm. MS (ESI) m/z
(%) = 512 (4) 391 (21), 339 (100). HRMS: m/z (ESI) [M]+ found
513.03551; C24H20N2O3S4 requires 513.03568.

4.5. Nonlinear optical measurements

Hyper-Rayleigh scattering (HRS) was used to measure the or-
ientationally averaged first hyperpolarizability β of the push-pull
chromophores 2a-e and 3a-d. The experimental set-up for hyper-
Rayleigh scattering measurements is similar to that presented by Clays
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and Persoons [18b]. The incident laser beam comes from a Q-switched
Nd:YAG laser, operating at a 10 Hz repetition rate with approximately
2 mJ of energy per pulse and a pulse duration (FWHM) close to 12 ns at
the fundamental wavelength of 1064 nm. The incident beam is focused
into the solution contained in a long cuvette (1 × 5 cm), and its power
can be varied using a combination of a half wave plate and Glan po-
larizer. The hyper-Rayleigh signal is collimated by a high numerical
aperture lens, passed through an interference filter with a full width at
half maximum transmission of 3.3 nm centered at the second harmonic
wavelength (532 nm), and then detected by a photomultiplier (Hama-
matsu model H9305-04). The electronic pulses from the photo-
multiplier were integrated using a Stanford Research Systems gated
box-car integrator (model SR250) with a 20 ns gate centered on the
temporal position of the incident laser pulse. The hyper-Rayleigh signal
was normalized at each pulse using the second harmonic signal from a
1 mm KH2PO4 plate to compensate for fluctuations in the temporal
profile of the laser pulses due to longitudinal mode beating. 1,4-Di-
oxane was used as solvent for the compounds, and the β values were
calibrated using a solution of p-nitroaniline (pNA) in 1,4-dioxane (10−2

M) as the external reference [23]. The concentrations of the solutions
under study were chosen so that the corresponding hyper-Rayleigh
signals fall well within the dynamic range of both the photomultiplier
and the integrator. All solutions were previously filtered (0.2 μm por-
osity) to avoid other signals from suspended impurities. Measurements
are carried out using two interference filters with different transmission
pass bands centered near the second harmonic at 532 nm. The trans-
mission of each filter at the second harmonic wavelength was carefully
determined using a crystalline quartz sample: the transmission band for
the narrower filter is 1.66 nm (full width at half maximum) with a
transmission of 47.6% at the second harmonic; for the wider filter, the
transmission band is 3.31 nm, with a transmission of 63.5% at the
second harmonic. By comparing the signals obtained by the use of the
two filters, the relative contributions of the hyper-Rayleigh and possible
fluorescence signals is determined [11b]. Following reference [19b] we
have chosen to report our values using the so-called T (Taylor expan-
sion) convention in which the β333 of pNA in dioxane at 1064 nm is
40 × 10−30 esu. This value includes a correction factor of 1.88 that
accounts for the most recent measurement of the CCl4 hyper-Rayleigh
scattering signal which was used as a reference [24]. The standard two-
level model that ignores damping was used to estimate the static
second-order hyperpolarizability β0 [20]. Due to the simplicity of the
model, these extrapolated values should be treated with some caution.
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