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Abstract

Carbon price is a key variable in management and risk decisions in activities related
to the burning of fossil fuels. Di¤erent major players in this market, such as polluters,
regulators, and �nancial actors have di¤erent time horizons. Using innovative multi-
variate wavelet analysis tools, including partial wavelet coherency and partial wavelet
gain, we study the link between carbon prices and �nal energy prices in the time and
frequency dimensions in California�s carbon market, o¢ cially known as the California
cap-and-trade program. We �nd that gasoline prices lead an anti-phase relation with
carbon prices. This result is very stable at lower frequencies (close to one-year period
cycles), and it is also present before mid-2015 in the 20 � 34 weeks frequency-band.
Regarding electricity, we �nd that at about 1 year frequencies, a rise in carbon prices is
re�ected in higher electricity prices. We conclude that the �rst �ve years of compliance
of the California cap-and-trade program supports the idea that emissions�trading is
a signi�cant measure for climate change mitigation, with visible rising carbon prices.
The quantitative �nancial analytics we present here supports the continuation of the
program after 2020.
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1 Introduction

In the current economic context with climate change concerns, variations of energy prices,

and numerous emission trading schemes that have multiplied around the world, there is

an urge to develop quantitative tools to model and understand the origins of variations in

carbon prices and its e¤ects in energy prices.Information on the movement of these variables

has operational and political implications highly relevant to the main players in the market:

polluters, regulators, and �nancial actors. While the latter are mostly interested in knowing

daily connections between commodities prices, the polluting industries and regulators are

also interested in longer cycles tendencies.

Previous work on carbon prices proliferated after 2008 and focused on the European

Emission Trading Scheme (EU ETS). Studies of the Californian ETS were mostly concerned

with market design features; [1, 2, 3, 4, 5]. The exceptions are Bushnell [6], and Sousa and

Aguiar-Conraria [7], who looked into the impact on daily electricity prices.

This paper adds two critical perspectives to the current research on carbon price dy-

namics. First, we study the California carbon market, a recent example. Second, we study

relations between variables in cycles of di¤erent periodicities.

The emission trading scheme in California is one of the World�s latest emerging green-

house gas (GHG) markets, created under the Assembly Bill 32 (AB32), as intended by the

Western Climate Initiative (WCI), signed in 2007. It is operational since 2012, and it is an

important instrument to meet the goal of reaching the state�s 1990 GHG levels by 2020. The

California market has signi�cant structural di¤erences from the EU ETS that should allow to

control previously encountered EU market misconceptions. Namely, volatility of prices and

overallocation are dealt with cost containment mechanisms, which include a price �oor, for

auctions, and an allowance price containment reserve. There is another relevant di¤erence

between EU ETS and the California ETS features, which regards the sectors included. The

California program includes electricity importers, and, since 2015 (second phase), also road

sector transport activities, such as suppliers of natural gas, fuel oil, LPG and gasoline. In

Europe, GHG emissions from road transport activities are controlled by other carbon pricing
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mechanisms.

Whereas there has been extensive research on carbon prices, built mainly on data from

Europe, we present an analysis of the California Carbon Allowances (CCA), representing

one metric ton of CO2 equivalent, and their relation to �nal energy consumers, after 2014,

when Québec joined the Californian market.

The above-mentioned second critical perspective, brought by this work, concerns the

methodology, where we rely on multivariate continuous wavelet analysis, to understand how

carbon and energy prices relate at di¤erent cycle lengths.

Initial studies on carbon prices mostly explained the price or volatility of one variable

in terms of others. They used Granger causality method to �nd unidirectional relations

between pairs of variables, including daily carbon and energy prices; [8, 9]. More recently,

new studies consider e¤ects between variables � also daily energy and carbon prices � but in

both directions. They include vector auto-regressive studies, with multivariate analysis, and

estimate impulse-response functions that show the daily impact of innovations of a variable,

namely carbon; [10, 11, 12, 13, 14]. Other carbon price issues, such as volatility, risk-premia

and forecasting, have lately been the focus of attention; e.g [15] and [16].

Following previous studies, we relate CO2 prices to �nal energy prices, electricity and

gasoline, which connect �nal consumers to the carbon cost. These are critical variables for

carbon markets that include both electricity and transport sectors.

In line with [17], we rely on multivariate wavelet analysis (MWA) and work in the time-

frequency domain, estimating how carbon price relationships behave at di¤erent frequencies

and how they evolve over time. We chose to work with MWA mainly for two reasons.

First, it has been shown that energy price dynamics is strongly non-stationary and so it

is important to use methods that do not require stationarity; [18]. Second, we note that

decisions of market regulators include long term plans, and also, decisions of investment and

management strategy in power and transport supply, on a large scale, are neither easy nor

quick. Therefore, from both angles, it makes sense to consider the presence of short and long-

term decisions, meaning that these relations should be studied simultaneously at di¤erent

frequencies. This can be easily done with wavelet analysis. The papers [19, 20, 21, 22, 23]
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have already relied on wavelets to study the evolution of energy prices, including oil, gasoline,

natural gas, biofuels and other commodities. To the best of our knowledge, speci�cally about

carbon markets, the only previous work performed in the time-frequency domain is [17].

The paper proceeds as follows. Section 2 provides a description of the methodology.

Section 3 describes our data and the Californian Carbon market. Section 4 contains our

empirical results. Finally, Section 5 concludes and discusses some policy implications of our

�ndings.

2 Continuous Wavelet Analysis

2.1 Continuous wavelet transform

Time-scale wavelets are characterized in reference to a mother wavelet,  (t), a function of a

real variable t. For a function to qualify to be a mother wavelet it has to satisfy a certain

admissibility condition which, in practice, amounts to requiring that the function integrates

to zero and also has fast decay towards zero. The fact that  tends quickly to zero means

that we can view it as a window function; on the other hand, demanding that  integrates

to zero implies that  must be oscillatory, enabling us to associate a certain frequency to

this function.

The mother wavelet  provides a source function for generating a family of daughter

wavelets,  �;s; these functions are obtained from the mother by performing two operations,

scaling by s and translation by � :

 �;s (t) =
1p
jsj
 

�
t� �

s

�
; s; � 2 R; s 6= 0:1

The scaling parameter s controls the width of the wavelet and the translation parameter �

controls the location of the wavelet along the t-axis. For jsj > 1, the windows  �;s become

larger (hence, correspond to functions with lower frequency) and for jsj < 1, the windows

become narrower (hence, become functions with higher frequency).

Given a time series x(t), its continuous wavelet transform with respect to the wavelet  
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is a function of two variables, Wx (� ; s), given by

Wx(� ; s) =

Z 1

�1
x (t) �;s(t) dt =

1p
jsj

Z 1

�1
 

�
t� �

s

�
dt:

In the above formula and throughout the paper the over-bar is used to denote complex

conjugation.

The speci�c wavelet we use in this paper is a complex-valued function selected from the

so-called Morlet wavelet family, �rst introduced in [24],

 !0 (t) = ��
1
4 ei!0te�

t2

2 ;

and corresponds to the particular choice of !0 = 6. Although, strictly speaking, the above

function is not a true wavelet, since it has no zero mean, for su¢ ciently large !0, namely

for the value used in this paper, !0 = 6, for numerical purposes it can be considered as a

wavelet; see [25] and also [26] for some properties of this wavelet which justify our choice.

Remark 1 As for the wavelet transform, all the wavelet quantities we are going to introduce

below are functions of two variables, time (�) and scale (s ). To simplify the notation, we

will describe these quantities for a speci�c value (� ; s) of the argument which will be omitted

from the formulas.

2.2 Univariate wavelet tools

In analogy with the terminology used in the Fourier case, the (local) wavelet power spectrum

of series x(t), denoted by (WPS)x, is de�ned as

(WPS)x = WxW x = jWxj2 :

The wavelet power spectrum (sometimes called scalogram or wavelet periodogram) gives us

a measure of the variance distribution of the time-series in the time-scale (time-frequency)

plane.
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When the wavelet  (t) is chosen as a complex-valued function, as in our case, the wavelet

transform Wx is also complex-valued and, therefore, it can be separated into its real part,

<(Wx), and imaginary part, =(Wx); alternatively, the transform can be expressed in polar

form as

Wx = jWxj ei�x ; �x 2 (��; �]:

The angle �x is known as the (wavelet) phase.
2 For real-valued wavelet functions, the imagi-

nary part is zero and the phase is unde�ned. Therefore, to separate the phase and amplitude

information of a time-series, it is necessary to use complex wavelets.

2.3 Bivariate wavelet tools

In many applications, one is interested in detecting and quantifying the time-frequency

relations between two non-stationary time series. Generalizations of the wavelet tools, ap-

propriate for this purpose, are now brie�y described; for more details, the reader is referred

to e.g. [26].

Given two time-series, y(t) and x(t), we de�ne their cross-wavelet transform (or cross-

spectrum), Wyx, by

Wyx = WyWx (1)

where Wy and Wx are the wavelet transforms of y and x, respectively. The absolute value

of the cross-wavelet transform, jWyxj, will be referred to as the cross-wavelet power .

We also de�ne the complex wavelet coherency of y and x, %yx, by

%yx =
S (Wyx)p

S (jWyj2)
p
S (jWxj2)

;

where S denotes a smoothing operator in both time and scale.3 For notational simplicity,

we will denote by Syx the smoothed cross-wavelet transform of two series y and x and also

2Recall that the phase-angle �x of the complex number Wx can be obtained from the formula: tan(�x) =
=(Wx)
<(Wx)

; using the information on the signs of <(Wx) and =(Wx) to determine to which quadrant the angle
belongs to.

3As in the Fourier case, smoothing is necessary, otherwise the magnitude of coherency would be identically
one.
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use �y and �x to denote, respectively,
p
S(jWyj2) =

p
Syy and

p
S(jWxj2) =

p
Sxx. With

these notations, the formula for the complex coherency is written simply as

%yx =
Syx
�y�x

:

By analogy with the Fourier case, we de�ne the wavelet coherency, Ryx, of two series y and

x, as the absolute value of their complex wavelet coherency, i.e.

Rxy =
jSxyj
�x�y

:

With a complex-valued wavelet, we can compute the wavelet phases of both series and, by

computing their di¤erence, we are able obtain information about the possible delays of the

oscillations of the two series, as a function of time and frequency. It follows immediately from

(1) that the phase-di¤erence, which we will denote by �yx, can also be computed simply as

the phase-angle of the cross-wavelet transform. The obtained values for the phase-di¤erence

may be interpreted as follows. If �yx = 0, then the series are totally in phase, while if

�yx = �, the series show a total anti-phase relationship; if �yx lies between 0 and �=2, then

the series are in-phase, but the variable y leads x; if �yx is between ��=2 and 0, the series

are also in-phase, with x leading; when �yx is between �� and ��=2 or between �=2 and �,

the series show in anti-phase relation and, in the �rst case, y leads x, while in the second

case, is x which leads.

Remark 2 The wavelet-phase di¤erence is sometimes de�ned as the phase-angle of the com-

plex wavelet coherency; although this is not fully consistent with the di¤erence between the

individual phases, since it is a¤ected by the smoothing, the results obtained are not substan-

tially di¤erent; this alternative de�nition has the advantage of being simpler to generalize to

the multivariate case.

Finally, we de�ne the complex wavelet gain of y over x, denoted by Gyx, by

Gyx =
Syx
Sxx

= %yx
�y
�x
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and, following Mandler and Scharnagl in [27], we de�ne the wavelet gain of y over x, which

we denote by Gyx, as the modulus of Gyx. Recalling the interpretation of the Fourier gain as

the modulus of the regression coe¢ cient of y on x at a given frequency (see, e.g. [28]), it is

perfectly natural to interpret the wavelet gain of y over x as the modulus of the regression

coe¢ cient in the regression of y on x, at each time and frequency.

2.4 Multivariate wavelet tools

Some wavelet tools specially designed to use when more than two series are involved, namely

the so-called partial wavelet coherency and partial phase-di¤erence are also available; see,

e.g. [29] for the case of three series and [26] for the more general case. More recently, in [30],

the authors introduced the concept of partial wavelet gain, a generalization the wavelet gain

for the case of more than two variables. Here, we will only display the formulas for the case

of three variables, which are the ones we use in this paper. For the other cases, the reader

is referred to the appendices of the aforementioned references [26] and [30].

Given a series y(t) and two other series x(t) and z(t), the squared multiple wavelet co-

herency between the series y(t) and the other two series, denoted by R2y(xz), is given by

R2y(xz) =
R2yx +R2yz � 2<

�
%yx %xz %yz

�
1�R2xz

;

and multiple wavelet coherency Ry(xz) is de�ned as the positive square root of the above

quantity.

The complex partial wavelet coherency between y and x after controlling for z, denoted

by %yx:z, is the quantity given by

%yx:z =
%yx � %yz%xzq

(1�R2yz)(1�R2xz)
:

The partial wavelet coherency of y and x after controlling for z, denoted byRyx:z, is simply

the absolute value of the complex partial wavelet coherency, and the partial phase-di¤erence

of y over x, given z, denoted by �yx:z, is the phase-angle of %yx:z.
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The complex partial wavelet gain of y over x after controlling for z, denoted by Gyx:z, is

given by

Gyx:z =
%yx � %yz%xz
1�R2xz

�y
�x
;

and the partial wavelet gain of y over x after controlling for z, denoted by Gyx:z, is simply the

absolute value of Gyx:z. The partial wavelet gain Gyx:z can be interpreted as the coe¢ cient

(in modulus) in the multiple linear regression of y in the explanatory variables x; z, at each

time and frequency.

2.5 Statistical signi�cance

Naturally, it is important to assess the statistical signi�cance of the computed wavelet mea-

sures. Torrence and Compo, in their in�uential paper [31], were among the �rst authors to

discuss this issue. Based on a large number of Monte Carlo simulations, Torrence and Compo

concluded that the wavelet power spectrum of a white or red noise process, normalized by

the variance of the time-series, is well approximated by a chi-squared distribution. This

problem was reconsidered more recently by Zhang and Moore in [32]. For the speci�c case of

the use of a wavelet  !0 from the Morlet family, Zhang and Moore established, analytically,

that the wavelet power spectrum of a Gaussian white noise with variance �2 is distributed

as

jWxj2 _
�2

2
(1 + e�!

2
0)X2

1 +
�2

2
(1� e�!

2
0)X2

2 ;

where X1 and X2 are independent standard Gaussian distributions. In the case of a Morlet

wavelet with parameter !0 > 5, we have e�!
2
0 � 0; and so we obtain

���W 2
x

�2

���_ 1
2
�22 ; con�rming,

for this speci�c type of wavelet and particular underlying process, the result obtained by

Torrence and Compo. To assess the signi�cance of the wavelet power spectrum we will rely

on this theoretical distribution.

References [33, 34, 35] have some important theoretical results on signi�cance testing for

the wavelet coherency. The results, however, are for speci�c ways of smoothing (namely in

the time domain only) and do not apply directly to our case. To our knowledge, no work has
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been done on signi�cance testing for the partial wavelet coherency. All our signi�cance tests

are obtained using surrogates. We �t an ARMA(1,1) model to the series and construct new

samples by drawing errors from a Gaussian distribution with a variance equal to that of the

estimated error terms. For each time-series (or set of time-series) we perform the exercise

5000 times, and then extract the critical values at 5% and 10% signi�cance.

Related to the phase-di¤erence (or partial phase-di¤erence), there are no good statistical

tests. This is so because it is very di¢ cult to de�ne the null hypothesis. In fact, Ge, in [33],

argues that one should not use signi�cance tests for the phase-di¤erence. Instead, one should

complement its analysis by inspecting coherency, and only focus on phase-di¤erences whose

corresponding coherency is statistically signi�cant. The same kind of procedure should be

used when interpreting the gain (or partial gain).

3 The carbon market in California and our data

The California cap-and-trade system, called California ETS for simpli�cation, took e¤ect in

early 2012 and is linked to Québec�s since January 2014. The �rst period occurred between

2012-2014, with compliance since 2013; the second compliance period started in 2015, and

lasts until 2017, including distributors of transportation fuels, natural gas, and other fuels;

and �nally 2018-2020 will cover the third period. Currently, prospects for post-2020 and

linkage to Mexico�s carbon pricing are being considered.

California is one of the largest economies in the world. On energy information, the state

has a consumption of 7,676 trillion BTU (2015), producing internally around 2,353 trillion

BTU of primary energy (crude oil and natural gas account for 49% and 11%, 8% from

nuclear electric power and 31% for renewables).4 California�s electricity system generates

more than 290 TWh per year. The installed capacity shares in 2016 included approximately

54% natural gas, 18% hydroelectric, 25% other renewables, 3% nuclear. In fact, California

produces 70% of the electricity it uses. The remaining amount is imported.5

The California challenge on electricity under AB32 is to secure supply with 33% of renew-
4All energy data and further statistics are available at the Energy Information Association (www.eia.gov).
5All electricity data was retrieved from the California Energy Almanac (www.energy.ca.gov).
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able sources, while reducing greenhouse gases (GHG) emissions. California has an emission

goal of 427 MMTCO2e (million metric tonnes of CO2 equivalent) in 2020, i.e. equalling

1990 estimated emissions, and aims to an 80% reduction in 2050 below 1990 levels. In 2015,

California emitted of a total of 440 MMTCO2e, from which 39% originates in transportation,

23% from industrial sources and 19% from electricity generation (8% imported plus 11% in

state).6

California Carbon Allowances, or CCAs, each corresponding to one tonne of CO2 equiv-

alent, are traded in the Intercontinental Futures Exchange US (The ICE Futures US), a

leading trade for commodity markets. Currently, traded products are CCAs Vintage Fu-

tures for 2017, and corresponding options on futures, available as product number 6747558

at The ICE.7 Monthly contract sets for the current year plus 3 years.

An important di¤erence between the California Cap-and-Trade Program and the Euro-

pean Emission Trading Scheme (EU ETS) regards the inclusion of importers of electricity

from out of state (through its primary energy source mix), and of distributors of transporta-

tion fuels, natural gas, and other fuels, that do not exist in Europe. All other CA trading

sectors are, in their essence, energy intensive and/or high emission sectors, such as the EU

sectors. Sectors included in the carbon trading since 2013 are: �rst deliverers of electricity

(in-state and imported) and large industrial facilities (such as petroleum re�neries; crude

petroleum and natural gas extraction; cement; industrial gas; mineral mining and lime; fruit

and vegetable canning; glass; paper; dairies; iron, steel, and aluminium; chemical, biological,

and pharmaceutical; breweries, wineries, and juice). Distributors of transportation fuels,

natural gas, and other fuels are also included since 2015. Sousa and Aguiar-Conraria [7]

and the International Carbon Action Partnership (icapcarbonaction.com) provide further

comparisons between the EU ETS and the CA ETS.

Considering the above-mentioned CA ETS fundamentals and other previous work on

European CO2 prices causality, namely, [8, 10, 36, 14, 39, 38, 37], our model considers three

variables associated to the energy and carbon markets in California: CO2 (CCA), electricity,

6Inventory data was retrieved from California�s Greenhouse Gas Inventory o¢ cial page at the California
Air Resources Board (www.arb.ca.gov).

7www.theice.com.
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and gasoline prices.

On carbon prices, we use the available series on the CCA Future Vintage for each year

released by Climate Policy Initiative S. Francisco of The ICE data at the California Carbon

Dashboard program. Data in Figure 1 includes 1452 observations, starting in 2014. The

average value was of 12.93 US$ per CCA, reaching a maximum level of 15.43 US$ and a

minimum of 11.66 US$. The bottom limit on US$ axis is intentionally 10 US$, representing

the minimum CCA value at auctions.

Figure 1: California carbon prices, 2014/2017 (Data source: The ICE, retrieved from CPI,
California Carbon Dashboard)

The California cap-and-trade program covers nearly 600 emitting facilities, responsible

for 85% of CA emissions. Phase one included electric utilities and large industrial facilities

that emit more than 25 MtCO2/year, and, in phase two, distributors of transportation,

natural gas and other fuels were added. We include in this category representative �nal

energy prices, namely electricity and gasoline prices, to analyse the connection from carbon

to �nal consumers.

Regarding the electricity variable, we considered the wholesale day ahead price of SP15

EZ Generation Hub, located in California. Data source is The ICE exchange.8 Prices are in

US$/MWh and were included from 02/01/2014 to 24/10/2017. Gasoline prices regard the

Los Angeles Reformulated RBOB Regular Gasoline Spot Price, also available at the US EIA

information page, in Dollars per Gallon.9

8Retrieved from the US Energy Information Association (EIA) information page for ten major electricity
trading hubs in USA (www.eia.gov/electricity).

9www.eia.gov/petroleum.
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Figure 2: California selected energy prices, 2014/2017 (On the left axis we refer to gasoline and
the right axis refers to electricity prices. Data sources: US EIA.)

4 Our Results

In Figure 3, we do a preliminary analysis with our data. On the left, we plot the monthly

returns of CCA, and the monthly rate of price increases of electricity and gasoline. On the

right, we plot the wavelet power spectra. Our data is weekly and runs from the beginning

of 2014 until the 42nd week of 2017 (mid-October).10

The wavelet power indicates, for each moment and frequency, the intensity of the variance

of the time-series for each frequency of cyclical oscillations. In the plots of the wavelet power,

the black conic line identi�es the region (usually referred to as the cone-of-in�uence �

COI) where edge e¤ects � unavoidable artefacts appearing when computing the continuous

wavelet transform for a �nite series � are important; outside this line, the results should

be interpreted with caution; see, e.g. [26] for more details. The degree of variability is

distinguished by a colour spectrum, ranging from dark blue (low variability) to red (high

variability). The white lines in the power spectra indicate local maxima. The black contours

signify 5% signi�cance levels, while the grey contours represent 10% signi�cance level. These

were computed using the already referred theoretical distribution for the power, assuming a

�at spectrum as the null.

10Instead of working with daily data, we use weekly averages.
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Figure 3: (a) Plot of the monthly rate of return of each time-series. (b) The wavelet power
spectrum. The black/gray contour designates the 5%/10% signi�cance level. The

cone-of-in�uence, which is the region a¤ected by edge e¤ects, is indicated with a black line. The
color code for power ranges from blue (low power) to red (high power). The white lines show the

maxima of the undulations of the wavelet power spectrum.

In the case of carbon prices, the volatility is spread across the sample, but it is stronger

at higher frequencies. The red regions correspond to cycles of period smaller than 17 weeks.

It is interesting to note that in the case of electricity prices there are two dominant

cycles that coexist at the same time. One cycle has 24 week (about half-year) period and it

became apparent in the second half of 2015. There is also a 1-year cycle that appeared in

the beginning of 2015.

Finally, in the case of gasoline, most of the volatility is concentrated in the middle of the
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sample, between late 2014 and late 2016, especially at high frequencies. However, even for

longer frequencies, the wavelet power spectrum is still statistically signi�cant.

Figure 4: Wavelet Multiple Coherency between CO2 and energy (electricity and gasoline) prices
The black/gray contour designates the 5%/10% signi�cance level. The color code for coherency

ranges from blue (low coherency� close to zero) to red (high coherency� close to one).

Based on the preliminary analysis of the wavelet power spectra, it is di¢ cult to discern

any inter-relations between these markets. Figure 4 helps us on this task and tell us when

and at which frequencies are these inter-relations the strongest. We estimate the multiple

coherency between CO2 and the other two variables, electricity and gasoline. There are

no relevant regions of high coherency after 2017. Until then, we identify three main regions

with statistically signi�cant coherency. The most important one is located at low frequencies

(corresponding to cycles of about one year periodicity) and runs from the beginning of the

sample until the third quarter of 2016. In the 20 � 34 week frequency-band, there are two

regions of statistically signi�cant coherence. One runs from 2014 until the third quarter of

2015. The other, smaller, occurs near mid-2016. Multiple coherency tell us how important

strong is the relation between energy prices (electricity and gasoline) and CO2. However,

just with that information one cannot di¤erentiate the impact of both variables. For that

purpose, one must rely on the partial coherency, which we do next.
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Figure 5: On the left �partial wavelet coherency between carbon prices and electricity (top) or
gasoline (bottom) prices. The black/gray contour designates the 5%/10% signi�cance level. The
color code for coherency ranges from blue (low coherency �close to zero) to red (high coherency �
close to one). In the middle �partial phase-di¤erences. On the right �partial wavelet gain.

In Figure 5, we have our most important set of results. We estimate the partial coherency

between CO2 prices and each of the energy variables (after controlling for the other), the

partial phase di¤erence, and the partial wavelet gain, which will give us information about

the magnitude of the impact that a shock in one variable will have on the other.

To facilitate the presentation, we display the mean values for the phase-di¤erences and

partial gains corresponding to the two considered frequency bands, namely for cycles of

period 20 � 34 weeks and 46 � 58 weeks. For the phase-di¤erences, which are measured on

a circular scale, the mean is computed as a circular mean, which is the appropriate notion

of mean in this case; see, e.g. [40].

In the top of Figure 5, we have the partial coherency between CO2 price returns and

electricity. There are three important regions of high coherency that overlap with the high

coherencies estimated in Figure 4. The �rst one is located in the 20 � 34 week frequency-

band, and runs from the beginning of the sample until the third quarter of 2015 (in some
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areas, it is signi�cant only at 10%). The second is located at lower frequencies (46 � 58

week period) and runs from mid-2015 until the end of 2016. In both regions, the phase-

di¤erence is between 0 and �=2 showing that price returns of both variables are in-phase

with CO2 leading. Finally, there is a third region, again at higher frequencies (in the 20 � 34

week frequency-band, to be more precise) in the second half of 2016. In that region, the

phase di¤erence is between �� and ��=2: This means that, at this frequency, changes in

the CO2 prices still lead changes in electricity, however the relation is now negative. This

result illustrates one of the main advantages of using wavelets in Finance and Economics.

Economists have always known that some relations are time-varying. With wavelets, now

they can also estimate frequency varying relations.

In the bottom of Figure 5, it is interesting to note the impressive similarity between

the partial wavelet coherency of CO2 and Gasoline and the picture of the multiple wavelet

coherency. The two main statistically signi�cant regions that we found in Figure 4 can also

be seen in Figure 5.a.2. In those regions of high partial coherency, the partial phase-di¤erence

between CO2 and Gasoline is between �=2 and �, suggesting an anti-phase relation with the

gasoline prices leading. Economically, that means that, at these frequencies, an increase

in the gasoline price is followed by a decrease in CO2 prices in the �nancial markets. The

partial gain is very stable at both frequency bands, with a value close to 0.1 about twice as

large as the partial gain between CO2 and electricity.

5 Concluding remarks and policy implications

In this paper, we presented an analysis of the carbon prices in the California emission market.

After describing the main market features, we studied the interaction between carbon prices

and �nal energy prices, gasoline and electricity.

We applied multivariate wavelet analysis (MWA) tools, including the partial wavelet

coherency with the purpose of analysing the relation between the various prices at di¤erent

frequencies, and the partial wavelet gain to assess the magnitude of such relation. Energy

price dynamics is non-stationary, so it is important to use methods that do not require
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stationarity. MWA tools allow studying cycles of di¤erent lengths. In particular, we note

that, on the one hand, decisions of power supply investments, on a large scale, are neither

easy nor quick, and on the other, regulators actions are also planned for the long-term. So,

it makes sense to consider the presence of long-term decisions, or at lower frequencies, i.e.,

relations in longer temporal cycles. The results we obtain in MWA for lower frequencies are

of particular relevance for the above-mentioned actors because they provide a perception of

the annual relationships between decision variables.

Previous studies have shown that European carbon prices mostly re�ect economic de-

velopments, and in�uence the price of �nal energy - electricity; [7] and [17]. In contrast,

in California, we �nd the most important result in the relationship between gasoline prices

and carbon, with gasoline leading an anti-phase relation. This result is very stable at lower

frequencies (close to one-year period cycles), and it is also present before mid-2015 in the

20 � 34 weeks�frequency-band.

Regarding electricity, the results may re�ect the low price elasticity of electricity in the

short run, for a rise in carbon prices is only re�ected in higher electricity prices within

one year. Conversely, in the relationship between carbon and gasoline, it is the energy

that leads the impact, and in the opposite direction, what happens until the middle of

2016, when gasoline prices stabilise at lower values. The reading is that the carbon market

counterweights the reduction in prices of energies with high emission levels, such as gasoline,

penalising them via carbon prices.

It is evident in the analysis that the weight of the emissions from the transport sector,

together with the reduction in gasoline prices, had e¤ects on the carbon price, which were

stronger than the e¤ects of the electricity prices in the carbon market. We recall that the

transport sector corresponds to 39% of California�s total emissions, versus 19% of electricity

production and 23% of the industrial sector (2015 data, from the California Air Resources

Board). This conclusion is con�rmed in the results of multiple coherency and can be the

reason for the rise of carbon prices in 2017. As a result, there will be pressure for consumers

to seek less emitting products, and, thus, their production and distribution. A proposal to

accommodate the results with less economic impacts would be to channel the licenses not
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used by the power utilities to the fuels sector, an option that would not tamper with the

overall environmental goal.

In conclusion, we suggest that the �rst �ve years of compliance of the California-Québec

cap-and-trade program advocates emissions� trading as a signi�cant measure for climate

change mitigation, with visible rising carbon prices. The quantitative �nancial analytics we

present here supports the development of the program with the considered sectors, in the

post-2020.
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