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Abstract

A functional inequality, called supermigrativity, was recently introduced for bivariate semi–

copulas and applied in various problems arising in the study of aging properties of stochastic

systems. Here, we revisit this notion and extend it to the case of aggregation functions

in higher dimensions. In particular, we show how supermigrativity can be expressed via

monotonicity of a function with respect to logarithmic majorization ordering of real vectors.

Various alternative characterizations of supermigrativity are illustrated, together with some

of its weaker versions. Several examples show similarities and differences between the

bivariate and the general case.

Keywords: Aggregation functions, Copulas, Functional Inequalities, Multicriteria

decision making, Supermigrativity.

1. Introduction

When the main interest is to describe and predict a system with d components, it is

often convenient to represent its behavior in the language of probability theory by assuming

the existence of a random vector X = (X1, . . . , Xd), defined on a suitable probability space,

such that Xi may interpret the uncertainty of the i–th system component.

In many cases, the study of a random vector X can be carried out by representing its

probability joint distribution function FX(x) = P(X1 ≤ x1, . . . , Xd ≤ xd) as a composition

of the marginal distributions F1, . . . , Fd and a copula C, via the formula FX = C(F1, . . . , Fd)
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due to the celebrated Sklar’s Theorem (see, e.g., [17, 24, 29, 31]). Moreover, it is also

of interest to study the aging properties of X, namely those properties that can help

interpreting the evolution of the system at different future times (see, e.g., [28, 34]).

Such studies are related to various real situations. For instance, one can interpret X as

the vector of lifetimes of the components of an engineering disposal and, hence, the aging

properties serve to indicate possible strategies in presence of the wear-out of the system.

In another context, X can be related to lifetimes of individuals (linked, for instance, in a

partnership) and the behaviour of the system in time may help in the pricing of joint life

insurance policies.

While univariate notions of aging are by-now classical in the literature, when dealing

with the analysis of dependent lifetimes, analogous definitions are rather controversial. A

seminal contribution was provided in [5], where the non-trivial interactions between de-

pendence properties (as described by the copula) and the aging properties were considered.

Furthermore, this latter work highlighted that:

• a possible framework to study aging properties of a vector of lifetimes, in particular

in the exchangeable case, is the class of semi–copulas (see, e.g., [14, 16, 35]), which

are (fuzzy) connectives that generalize both copulas and triangular norms and have

also been used in several fuzzy integrals (see, e.g., [26, 27]);

• notions of multivariate aging can be expressed in terms of functional inequalities

among semi–copulas (see, e.g., [4, 5, 11]), which have been also developed in various

related problems (see, for instance, [10, 20, 21]).

Here we focus on the so–called supermigrativity, whose definition is given below. In the

following, we denote by I the real unit interval [0, 1].

Definition 1.1. A function F : I2 → I is called supermigrative if, and only if

• it is symmetric, i.e. F (x, y) = F (y, x) for every (x, y) ∈ I2;

• it satisfies the inequality

F (αx, y) ≥ F (x, αy) (1)
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for all α ∈ I and for all x, y ∈ I such that y ≤ x.

When the inequality (1) is strict for any α ∈ ]0, 1[ and for all 0 < y < x, we refer to strict

supermigrativity.

The term “supermigrative” was used in [12] to underline the connection of this inequal-

ity with the concept of migrativity of triangular norms (t–norms, for short), originally

formulated to study the preservation of associativity under convex combinations [15] and,

hence, extended in different situations (see [7, 9, 18, 19]). The study of supermigrativity

in various classes of bivariate functions was considered in [12, 13]. Since then, several

investigations in reliability theory have underlined further applications of this concept in

the comparison of random vectors (see, for instance, [6, 32, 36]).

Here, we aim at revisiting some results about supermigrativity for bivariate semi–

copulas (section 2) and present the supermigrativity of more general classes of aggregation

functions by discussing similarities and differences. Then, we extend the notion of super-

migrativity to arbitrary dimensions (section 3) and present some related inequalities that

may arise in a natural way when one is interested in providing bounds for the aggregation

process once some of the input values are multiplied by a given rescaling factor (section 4).

2. Supermigrativity of binary semi–copulas and aggregation functions

In this section, we will devote the symbol S to an arbitrary 2-semi–copula, i.e. a binary

aggregation function with neutral element 1 (see, e.g., [17]). Note that every semi-copula

S satisfies S(x, 0) = S(0, x) = 0 for every x ∈ I and, hence, Eq. (1) can be considered only

for α ∈ ]0, 1[.

Given a supermigrative semi–copula S, it follows from Eq. (1), with x = 1, that S point-

wise dominates the product t–norm (in symbols, S ≥ Π2, where Πd(x) = Πd(x1, x2, . . . , xd) =

x1 · x2 · · · xd for any d ∈ N). By borrowing a terminology from copula theory (see, for

instance, [17]), a binary aggregation function A is said to be PQD (respectively, NQD)

when A ≥ Π2 (respectively, A ≤ Π2). Thus, any supermigrative semi–copula is PQD.
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Remark 2.1. We emphasize that, unlike supermigrative semi–copulas, a supermigrative

aggregation function need not be PQD. Consider, for instance, the aggregation function

given by A(x, y) = xy2, if y ≤ x, while A(x, y) = x2y, otherwise. Thus, A is strictly

supermigrative and, at the same time, A(x, y) < Π2(x, y) for all x, y ∈ ]0, 1[.

The supermigrativity of Definition 1.1 can be reformulated in various equivalent ways,

as indicated in [12, Proposition 2.7] (see also [30]). First, for any dimension d ≥ 2 we set

∆d := {x ∈ Id : 0 < xd ≤ xd−1 ≤ · · · ≤ x1}.

Definition 2.1. Let x,y ∈ Id. We say that x is logarithmically majorized by y (in sym-

bols, x ≺L y) if, and only if, x,y ∈ ∆d and the following conditions hold:Πk(Tk(x)) ≤ Πk(Tk(y)) for all k = 1, . . . , d− 1;

Πd(Td(x)) = Πd(Td(y)),

where Tk(x) is the truncated vector given by the first k components of x, with Td(x) = x.

Let us introduce the notion of Schur geometrical concavity (see, for instance, [33]).

Definition 2.2. A function F : Id → I is called Schur geometrically concave if, and only

if, the following conditions hold:

• it is symmetric, i.e. F (x) = F (xπ) for all x ∈ Id and for all permutations π on

{1, 2, . . . , d}, where xπ := (xπ(1), . . . , xπ(d));

• it satisfies the inequality F (x) ≥ F (y) whenever x ≺L y.

In particular, for d = 2, the following result follows.

Theorem 2.1 (see Proposition 1 in [13]). A (bivariate) semi–copula is supermigrative if,

and only if, it is Schur geometrically concave.

In particular, as a consequence of [23, Theorem 1.6], the following result holds.
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Corollary 2.2. Let S be a symmetric 2–semi–copula that admits continuous first-order

partial derivatives on ]0, 1[2. Then S is supermigrative if, and only if, for all (x, y) ∈ ∆2

x∂xS(x, y)− y∂yS(x, y) ≤ 0.

Next lemma will be useful in the sequel.

Lemma 2.3 (see Corollary 2.8 in [12]). A symmetric semi–copula S is supermigrative

if, and only if, S(x) ≥ S(y) whenever x,y ∈ ∆2 satisfy the conditions x1 ≤ y1 and

Π2(x) ≥ Π2(y).

Remark 2.2. Notice that Theorem 2.1 and Lemma 2.3 still hold if we consider aggregation

functions instead of semi–copulas.

Now, for the class S
SM

of supermigrative bivariate semi–copulas some facts are easily

proved:

• S
SM

is a closed set in the class of semi–copulas, i.e. pointwise limit of supermigrative

semi–copulas (if it exists) is supermigrative;

• S
SM

is a convex set, i.e. for every β ∈ I and S1, S2 ∈ S
SM

, βS1 + (1− β)S2 ∈ S
SM

.

• The pointwise infimum of S
SM

is Π2, while the pointwise supremum of S
SM

is the

minimum t–norm M2(x, y) = min{x, y}. In general, supremum and infimum of two

supermigrative semi–copulas is supermigrative.

Although supermigrativity was implicitly introduced for continuous functions (in fact, the

semi–copulas considered in [5] need to be continuous), it is easy to show that supermigrative

non–continuous semi–copulas do exist.

Example 2.1. Let S be the symmetric semi–copula given, for y ≤ x, by

S(x, y) =

x
βy, x < γ,

min{x, y}, x ≥ γ,

where β > 0 and γ ∈ ]0, 1]. It is quite easy to see that:
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• S is both supermigrative and continuous for β ≤ 1 and γ = 1;

• S is continuous but not supermigrative for β > 1 and γ = 1;

• S is supermigrative but not continuous for β ≤ 1 and γ < 1;

• S is neither supermigrative nor continuous for β > 1 and γ < 1.

In order to enrich our knowledge of the class of supermigrative semi–copulas, it could

be of interest to check whether supermigrativity is preserved by special transformations.

We start by considering distortions of semi–copulas (see, e.g., [17]). We recall that, if

h is an increasing bijection of I, then the distortion of a semi–copula S is the semi–copula

Sh(x, y) = h−1(S(h(x), h(y))).

However, it should be noticed that supermigrativity is not preserved by distortions.

In fact, strict Archimedean t–norms are obtained as distortions of the supermigrative

semi–copula Π2, but there are strict and continuous Archimedean t–norms that are not

supermigrative (consider, for instance, Frank t–norms that are NQD).

Contrarily, supermigrativity is preserved under ordinal sum constructions of semi–copulas,

as the following result shows.

Proposition 2.4. Let K be a finite or countable subset of N. Let ( ]ak, bk[)k∈K be a family

of nonempty, pairwise disjoint open subintervals of I. Let (Sk)k∈K be a family of super-

migrative semi–copulas. Then, the ordinal sum S of (Sk)k∈K with respect to ( ]ak, bk[)k∈K,

denoted by S = (〈ak, bk, Sk〉)k∈K and defined by

S(x, y) =

ak + (bk − ak)Sk
(
x−ak
bk−ak

, y−ak
bk−ak

)
, (x, y) ∈ ]ak, bk[

2;

min{x, y}, elsewhere,

is supermigrative.

Proof. First of all, it is well-known that an ordinal sum of semi–copulas is also a semi–

copula (see [16]). Hence, by Theorem 2.1, the claim reduces to showing that S(x) ≥ S(y)
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whenever x ≺L y. Recall that, for the 2-dimensional case, x ≺L y is equivalent to the two

conditions x1 ≤ y1 and Π2(x) = Π2(y).

First, suppose that both x and y belong to ]ak, bk[
2 for some k ∈ K. Set xk := (xk1, x

k
2)

and yk := (yk1 , y
k
2), where xki = (xi−ak)/(bk−ak) and, similarly, yki = (yi−ak)/(bk−ak) for

i = 1, 2. It is immediate to see that xk,yk ∈ ∆2, with xk1 ≤ yk1 . Moreover, since x ≺L y, it

is an elementary task to check that x1 + x2 ≤ y1 + y2. Thus, a simple algebraic calculation

yields Π2(x
k) ≥ Π2(y

k). Consequently, being Sk supermigrative, we can apply Lemma 2.3

to obtain Sk(x
k) ≥ Sk(y

k), which is equivalent to S(x) ≥ S(y), so closing this first case.

Here, notice that, since y2 ≤ x2 ≤ x1 ≤ y1, it is not possible that there exist x ∈ ]ak, bk[
2

and y ∈ ]aj, bj[
2 for different indices k, j ∈ K.

Secondly, consider the case when ak < y2 and x1 < bk ≤ y1 for some k ∈ K. Conse-

quently, the claim easily becomes

ak + (bk − ak)Sk(xk) ≥ y2. (2)

Since every supermigrative semi–copula is PQD and in view of inequality Π2(x
k) ≥ Π2(y

k),

we obtain

ak + (bk − ak)Sk(xk) ≥ ak + (bk − ak)Π2(y
k). (3)

Now, it can be seen by an elementary calculation that the assumptions of this second case

ensure that the right-hand side of Eq. (3) dominates y2 and, hence, in conclusion, Eq. (2)

is shown.

Finally, if consider y2 ≤ ak < x2 and y1 < bk for some k ∈ K, then the claim is a

direct consequence of the fact that S(xk) > ak. Moreover, in all the remaining cases, the

condition y2 ≤ x2 ensures the claim, so the proof is completed.

In the framework of copulas, as known, the ordinal sum construction is a kind of

mixture obtained from the initial family of copulas and some affine transformation of their

arguments (see [17]). Roughly speaking, the previous result says that the supermigrativity

of the initial copulas is preserved under this special mixing transformation. As a matter of

fact, several notions of positive dependence for copulas (like positive quadrant dependence

and stochastic increasingness) are also preserved under ordinal sum constructions.
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Curiously, Proposition 2.4 cannot be directly extended to the case of aggregation func-

tions. Specifically, we can say that an aggregation function A = (〈ak, bk, Ak〉)k∈K is an

ordinal sum if it is defined as in Proposition 2.4 where a binary aggregation function Ak

replaces Sk for every k ∈ K. In fact, in such a case, the property PQD is the key point for

the preservation of supermigrativity, as stated by the following result.

Proposition 2.5. Let A = (〈ak, bk, Ak〉)k∈K be an ordinal sum of supermigrative aggrega-

tion functions. Then, A is supermigrative if, and only if, Ak is PQD for every k ∈ K.

Proof. If Ak is PQD for every k ∈ K, then the thesis follows by mimicking the proof of

Proposition 2.4. Conversely, if A is supermigrative, we assert that Ak(1, y) ≥ y for all y ∈ I

and for any k ∈ K. Suppose ab absurdo there exists a t ∈ ]0, 1[ such that Ak(1, t) < t for

some k ∈ K. Set yt := ak + (bk − ak)t and fix any x ∈ ]ak, bk[: the supermigrativity of A

implies A(x, yt) ≥ A(bk,
xyt
bk

), or, equivalently,

ak + (bk − ak)Ak
( x− ak
bk − ak

, t
)
≥ xyt

bk
. (4)

By the monotonicity of Ak in each argument, letting x tend to bk, the left hand-side of

Eq. (4) tends to a finite limit dominated by ak + (bk − ak)Ak(1, t), which is, in its turn,

strictly lower than yt, as consequence of the fact that Ak(1, t) < t. Since the right hand-

side of Eq. (4) trivially tends to yt, we obtain the contradiction yt > yt, so showing the

assertion. Owing to the supermigrativity of every summand, given any (x, y) ∈ I2 and any

k ∈ K, we have that Ak(x, y) ≥ Ak(1, xy) ≥ xy, where the last inequality is due to the

assertion.

This result should be compared with Proposition 2.4. Intuitively, it seems that a kind

of “positive dependence” property should be required on the summands of an ordinal sum

in order to guarantee that the overall construction preserves the supermigrative property.

3. Supermigrativity in a multivariate setting

In this section, we will denote by A an arbitrary d–dimensional aggregation function

(d–aggregation function, for short), where d is any natural number with d ≥ 2.
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The characterizations of supermigrativity that have been formulated in Section 2 may

give raise to different, alternative definitions of supermigrativity in high dimensions. In

our view, a natural version of supermigrativity for d–aggregation functions coincides de

facto with the notion of Schur geometrical concavity, as stated below.

Definition 3.1. A symmetric function F : Id → I is called supermigrative if F (x) ≥ F (y)

whenever x ≺L y.

Remark 3.1. Notice that x ≺L y implies the existence of a uniquely determined vector

of real numbers (α0, α1, . . . , αd) belonging to ]0, 1]d+1, with α0 = αd = 1, such that

xk = αk

αk−1
yk for all k = 1, . . . , d.

By using this representation, we can easily derive the supermigrativity of the semi–

copulaMd(x) = min{x1, x2, . . . , xd} for every dimension d. In fact, Md(y) = yd = αd−1xd ≤

xd = Md(x). Accordingly, any function F of the kind F (x) = Πd(x)β ·Md(x)γ is supermi-

grative for any β, γ > 0.

Obviously, according to Theorem 2.1, the above general notion of supermigrativity

reduces to the one given in Definition 1.1 for d = 2.

Here, we present two basic properties of supermigrative aggregation functions.

Lemma 3.1. Let A be a supermigrative aggregation function. Then:

(a) 0 is an annihilator of A, i.e. A(x) = 0 for all x ∈ Id such that xj = 0 for some

j ∈ {1, . . . , d};

(a) if A has neutral element 1, then A(x) ≥ Πd(x) for every x ∈ Id.

Proof. The property of supermigrativity ensures that A(x) ≥ A(1, . . . , 1,Πd(x)) for every

x ∈ Id. In particular, when all the components of x are equal to 0, we immediately have that

A(1, . . . , 1, 0) = 0 and, hence, A(u1, . . . , ud−1, 0) = 0 for all u1, . . . , ud−1 ∈ I, which entails

the claim (a) by the symmetry of A. Moreover, part (b) follows by considering in previous

inequality that, if 1 is a neutral element for A, then A(1, . . . , 1,Πd(x)) = Πd(x).
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Now, we address the problem of supermigrativity for two relevant families of symmetric

d-aggregation functions, namely d–dimensional t–norms and quasi–arithmetic means.

In [12], the authors study the property of supermigrativity for continuous Archimedean

t–norms. Associativity of these operations allows us to extend in a unique way any binary

t–norm to a d-dimensional one (see, for instance, Definition 10.2 in [25]). Specifically, for

a continuous and strictly decreasing function f : I → [0,∞], with f(1) = 0, the explicit

form of a continuous Archimedean d–dimensional t–norm is

T (x) = f (−1) (f(x1) + · · ·+ f(xd)) for all x ∈ Id. (5)

Analogously to the classical case, Eq. (5) defines a strict- t–norm if f(0) = +∞, otherwise

the t–norm is called nilpotent. We will see that the main properties regarding supermigra-

tive continuous Archimedean t–norms maintain their validity passing from the bivariate

to the multivariate case. From now on, it is intended that T is a t–norm of arbitrary

dimension d ≥ 2, unless otherwise stated.

In [5], the conditions under which the additive generator f of a strict, binary t–norm

T ensures that T is supermigrative are given. We recall their result.

Proposition 3.2. Let T be a binary continuous Archimedean t–norm generated by f .

Then, T is supermigrative if, and only if, T is strict and f−1 is log-convex.

In order to extend such a characterization to d–dimensions, we need a preliminary

result.

Lemma 3.3. Let f : [a, b]→ [0,∞] be a strictly decreasing bijection, where 0 ≤ a < b ≤ 1.

Then, f−1 is log-convex if, and only if,

f(αx) + f(y) ≤ f(x) + f(αy) (6)

for all a ≤ y ≤ x ≤ b and for all α ∈ I such that αy ≥ a.

Proof. Due to a basic property of decreasing and convex real functions, f−1 is log-convex

if, and only if, the mapping fexp : [log a, log b] → [0,∞] given by fexp(t) = f(exp(t)) is
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convex. Then the claim is based upon the clear equivalence between Eq. (6) and

fexp(t+ h)− fexp(t) ≥ fexp(w + h)− fexp(w),

through the assignments t := log(αx), w := log(αy) and h := − log(α).

Proposition 3.4. Let T be a continuous Archimedean t–norm generated by f . Then, T is

supermigrative if, and only if, T is strict and f−1 is log-convex.

Proof. Suppose that T is supermigrative. Then T cannot be nilpotent since T (x, . . . , x) ≥

Πd(x, . . . , x) for every x ∈ I (Lemma 3.1, part (b)). In this case, by Lemma 3.3, it suf-

fices to prove the validity of Eq. (6) applied to the additive generator f for a = 0 and

b = 1. It is quite easy to check that this task amounts to showing that the inequal-

ity T (1, . . . , 1, αx, y) ≥ T (1, . . . , 1, x, αy) holds true for all α ∈ I and for all (x, y) ∈

∆2. Actually, this is assured by the supermigrativity of T , since (1, . . . , 1, αx, y) ≺L
(1, . . . , 1, x, αy), so closing the first part of the proof. Conversely, by Proposition 4.2 that

will be presented below, we may limit ourselves to prove that T (x1, . . . , xi−1, αxi, . . . , xd) ≥

T (x1, . . . , xi, αxi+1, . . . , xd) for all α ∈ I, for all x ∈ ∆d and for any index i ∈ {1, . . . , d−1}.

Again, it is quite easy to see that this task is equivalent to showing that f(αxi)+f(xi+1) ≤

f(xi) + f(αxi+1), which is the same as Eq. (6) applied to the additive generator f , with xi

and xi+1 in place of x and y, respectively, so definitely concluding the proof.

Since log–convexity of a real function implies convexity, if T is a binary continuous

Archimedean t–norm that is supermigrative, then T is a copula. However, in the multi-

variate case, convexity of the additive generator does not guarantee that the associated

t–norm is a copula. Thus, there are continuous Archimedean and supermigrative t–norms

that are not copulas, as the following example shows.

Example 3.1. Let T be the 3–dimensional strict t–norm generated by f(t) = t−2 − t2

with f−1(u) = 0.5
√

(u2 + 1)0.5 − u/2. As a consequence of [1, Example 4.4.8(b)], T is not

a copula, however T is supermigrative since f is log–convex.
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Now, we consider the case of quasi–arithmetic means (see, e.g., [22]) that, as known,

are not semi–copulas. In the sequel, let g : I → [c, d] be a strictly monotone bijection,

where [c, d] ⊆ [−∞,+∞]. Moreover, the algebraic convention −∞ +∞ equal to −∞ or

+∞ is adopted, according to the increasing or decreasing monotonicity of g, respectively.

The d-aggregation function Mg given by

Mg(x) = g−1

(
1

n

n∑
i=1

g(xi)

)
for all x ∈ Id

is called a quasi-arithmetic mean. Afterwards, we will call g a generator of the quasi-

arithmetic mean Mg. It is well-known that if g generates Mg, then also gβ,γ generates Mg,

where gβ,γ := β · g + γ, for any β, γ ∈ R such that β 6= 0. This allows us to assume for

the rest of the section, without loss of generality, that any generator of a quasi-arithmetic

mean is strictly decreasing and its range is exclusively one of the following:

(a) c ∈ R; d = +∞;

(b) c ∈ R; d ∈ R;

(c) c = −∞; d = +∞;

(d) c = −∞; d ∈ R.

Proposition 3.5. A quasi-arithmetic mean Mg is supermigrative if, and only if, g is in

the case (a) and g−1 is log-convex.

Proof. By Lemma 3.1, Mg cannot be supermigrative in the cases (b) and (d), because in

such cases 0 is not an annihilator. In case (c), given any α ∈ ]0, 1[, we immediately have

that (α, α2, . . . , α2) ≺L (1, α, . . . , α, αd+1). Therefore, if Mg were supermigrative, we would

find

Mg(α, α
2, . . . , α2) ≥Mg(1, α, . . . , α, α

d+1),

or, equivalently,

−∞ > (d− 1)g(α2) + (3− d)g(α)− g(αd+1) ≥ g(1) = −∞,
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which is a contradiction. Finally, in case (a), we can simply mimic the proof of the second

part of Proposition 3.4.

4. Supermigrativity and related inequalities

Here, we present three inequalities, which coincide in the bivariate case with Eq. (1),

clarifying their possible meaning and investigating their reciprocal relationships with Def-

inition 3.1 in any dimension. From an application point of view, the proposed inequalities

provide bounds for the aggregation process under a proportional rescaling of some of the

input values, a property that could be particularly beneficial in image processing (see, e.g.,

[7, 8]).

We denote by xα,i the vector that coincides with x, except for its i-th component

that is equal to αxi. Let A be a symmetric d–aggregation function, x ∈ ∆d, α ∈ I and

i ∈ {1, . . . , d}. For such an A, we introduce the following three inequalities.

(I1) The first inequality states that, if we multiply the largest input value by a constant

α, then the output of the aggregation procedure driven by A is larger than anyone

obtained by multiplying any other input by the same α. This statement is translated

into the following inequality:

A(xα,1) ≥ max
i=2,...,d

A(xα,i). (7)

(I2) The second inequality states that, if we multiply the smallest input value by a constant

α, then the output of the aggregation procedure driven by A is smaller than anyone

obtained by multiplying any other input by the same α. Formally, this entails

min
i=1,...,d−1

A(xα,i) ≥ A(xα,d). (8)

(I3) The third inequality states that, if we multiply the i-th larger input value with a

constant α, then the output of the aggregation procedure driven by A is larger than

the one obtained by multiplying the subsequent input value with the same α, for any

i ∈ {1, . . . , d− 1}. It translates into the following form:

A(xα,i) ≥ A(xα,i+1) for i = 1, . . . , d− 1. (9)
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Remark 4.1. The inequality (9) was introduced for semi–copulas in [11, Definition 2.1].

In that work, given a vector of exchangeable lifetimes X = (X1, . . . , Xd), the aim was

to find suitable multivariate notions of ageing that can extend the analogous properties

well-studied in the univariate case. The idea, which dates back to the seminal paper [5],

consists of expressing these properties via a suitable semi–copula (the so-called ageing

function B), derived from a distortion of the survival copula of X. It turned out that

the Schur–concavity of the probability survival function FX of X, which was recognized

as a notion of multivariate IFR (i.e., increasing failure rate) already in [2, 3], could be

equivalently expressed in terms of the supermigrativity of the associated aging function

BFX
in dimension d = 2, as proved in [5], and, for any dimension d, in terms of inequality

(9), as shown in [11].

In the sequel, we may omit the trivial cases α = 0 or α = 1.

Remark 4.2. Note that if x ∈ ∆d, the vector xα,i does not generally belong to ∆d. The

following rearrangement of xα,i, denoted by x′α,i, belongs to ∆d: set si := max{k ≥ i :

αxi < xk} and let x′α,i coincide with xα,i if si = i. Otherwise, x′α,i is obtained from xα,i

by shifting its components xi+1, . . . , xsi of one place to the left and moving the component

αxi to the si-th place.

Lemma 4.1. Let x ∈ ∆d and α ∈ ]0, 1[. Then, x′α,i ≺L x′α,i+1 for any i ∈ {1, . . . , d− 1}.

Proof. Due to the previous remark, we only need to show that there exists an index ki ∈

{2, . . . , d} such that

Πk(Tk(x
′
α,i)) ≤ Πk(Tk(x

′
α,i+1)) for all k < ki, (10)

and

Πk(Tk(x
′
α,i)) = Πk(Tk(x

′
α,i+1)) for all k ≥ ki. (11)

Since xi ≥ xi+1, it follows that si+1 ≥ si.

In the first case si+1 = si, all the components of the two vectors x′α,i and x′α,i+1 coincide,

except for the i-th one and the si-th one, given by xi+1 and αxi for x′α,i, and by xi and
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αxi+1 for x′α,i+1. This implies that Eq. (10) boils down to xi+1 ≤ xi for k < si, while

Eq. (11) is trivially satisfied for k ≥ si, so concluding the first case with ki = si.

In the second case si+1 ≥ si + 1, the only different components of the two vec-

tors x′α,i and x′α,i+1 are the i-th one and the ones between the si-th and the si+1-th

place, given by xi+1 and (αxi, xsi+1, . . . , xsi+1−1, xsi+1
) for x′α,i, respectively, and by xi and

(xsi+1, xsi+2, . . . , xsi+1
, αxi+1) for x′α,i+1, respectively. Again, we immediately have that

Eq. (10) holds true for k < si. Instead, for k ∈ {si, . . . , si+1 − 1}, we derive that Eq. (10)

reduces to αxi+1 ≤ xk+1, which is assured by definition of si+1. Further, it is very easy

to see that Eq. (11) is satisfied for k ≥ si+1 and, hence, also the second case is concluded

with ki = si+1.

In the next result, we show that supermigrativity is actually equivalent to Eq. (9).

Proposition 4.2. Let A be a symmetric d–aggregation function. Then, A is supermigrative

if, and only if, it satisfies Eq. (9).

Proof. Suppose first that A is supermigrative. By the symmetry of A, Eq. (9) amounts

to A(x′α,i) ≥ A(x′α,i+1), which holds true by Definition 3.1, seeing that x′α,i ≺L x′α,i+1 due

to the previous lemma. Conversely, given any x,y such that x ≺L y, denote by u(k)

the vector given by (y1, . . . , yk, xk+1, . . . , xd) for all k = 0, . . . , d: note that u(0) = x and

u(d) = y. Owing to Remark 3.1, there exists a uniquely determined (d + 1)-tuple of real

numbers (α0, α1, . . . , αd) belonging to ]0, 1], with α0 = αd = 1, such that xk = αk

αk−1
yk for

all k = 1, . . . , d. Accordingly, it is not difficult to see that

u
(i)
αi,i+1 = u

(i+1)
αi+1,i+1 for all i = 0, . . . , d− 1.

Particularly, the previous equation leads to x = u
(0)
α0,1

= u
(1)
α1,1

: applying Eq. (9) yields

A(x) = A(u
(1)
α1,1

) ≥ A(u
(1)
α1,2

).

Repeating the above argument for a finite number of steps, we get

A(x) ≥ A(u
(1)
α1,2

) ≥ A(u
(2)
α2,2

) ≥ · · · ≥ A(u
(d)
αd,d

) = A(y),

so the proof is finished.

15



Remark 4.3. According to the discussion in Remark 4.1, this latter result implies the

following equivalence: FX is Schur–concave (i.e. multivariate IFR) if, and only if, the

corresponding ageing function BFX
is Schur geometrically concave (i.e., supermigrative).

Since it is immediate to see that inequality (9) implies (7) and (8), by the previous

result we immediately derive that, if A is supermigrative, then it satisfies both (7) and (8).

However, the converse implications are not true, as shown in the following examples.

Example 4.1. Let S be the symmetric 3-semi–copula given by S(x) = x1x3 for any

x ∈ ∆3. Note that Eq. (8) amounts to S(xα,i) ≥ S(xα,3) for i = 1, 2, whose elementary

proof is left to the reader, taking into account that S(xα,3) = S(x′α,3) = αx1x3. However, S

is not supermigrative, because if we consider, for instance, x = (1
4
, 1
4
, 1
4
) and y = (1

2
, 1
5
, 5
32

),

one may easily check that x ≺L y, but S(x) < S(y).

Example 4.2. Let B be the 3-aggregation function given by B(x) = Π3(x)5/3 ·M3(x):

observe that B is supermigrative, according to Remark 3.1. Let A : I3 → I be the

symmetric function given, for x ∈ ∆3, by

A(x) =

x1x
3
2x

2
3, x1x3 > x22;

B(x), x1x3 ≤ x22.

We leave to the reader the relatively simple, but somewhat tedious, task of showing that

A is a continuous aggregation function. Note that Eq. (7) amounts to

A(xα,1) ≥ A(xα,i) for i = 2, 3. (12)

Being A continuous, we may limit ourselves to x ∈ ∆3 such that 1 > x1 > x2 > x3 > 0. We

emphasize that we shall not examine the cases when Eq. (12) goes back toB(xα,1) ≥ B(xα,i)

as consequence of the supermigrativity of B, seeing that xα,1 ≺L xα,i for i = 2, 3. Let us

start with Eq. (12) for i = 3, which presents a total of three cases each of which composed

by only one non-trivial subcase. In the first case αx1 ≥ x2, it is enough to consider the

subcase αx1x3 > x22: under these assumptions, Eq. (12) is equivalent to α ≤ 1. In the
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second case, given by x2 > αx1 ≥ x3, we immediately get αx1x3 < x2x3 < x22, hence

we may restrict our study to the subcase x2x3 > (αx1)
2: it is very easy now to see that

Eq. (12) amounts to αx41 ≥ (x2x3)
2, which is clearly implied by αx1 ≥ x3 and x1 > x2.

In the third case x3 > αx1, being again αx1x3 < x22, it suffices to consider the subcase

αx1x2 > x23, when Eq. (12) boils down to x1x3 ≥ (αx2)
2, which is evidently entailed by

αx2 < αx1 < x3, so definitely closing the proof of Eq. (12) for i = 3.

Now, let us examine Eq. (12) for i = 2, which presents a total of five cases each of

which composed by two non-trivial subcases, except for the fifth one. In the first case

αx1 ≥ x2 and αx2 ≥ x3, the first subcase is given by αx1x3 > x22 and x1x3 > (αx2)
2.

Under these assumptions, Eq. (12) is equivalent to the trivial condition α2 ≤ 1. Notice

that if x1x3 ≤ (αx2)
2, then we directly get αx1x3 < x1x3 ≤ (αx2)

2 < x22, hence the

second subcase is given by αx1x3 ≤ x22 and x1x3 > (αx2)
2: it is not difficult now to show

that Eq. (12) amounts to the assumption x1x3 > (αx2)
2. In the second case αx1 ≥ x2

and αx2 < x3, observe that αx1x2 ≥ x22 > x23, thus the first relevant subcase is given

by αx1x3 > x22, when Eq. (12) becomes x2 ≥ αx3, which obviously holds true. In the

second subcase, given by αx1x3 ≤ x22, Eq. (12) leads to αx2x3 ≤ x21, which is ensured by

the fact that αx2 < x3 < x1. In the third case x2 > αx1 ≥ x3 and αx2 ≥ x3, the first

subcase is given by x2x3 > (αx1)
2 and x1x3 > (αx2)

2, when Eq. (12) leads to x1 > x2.

Notice that if x1x3 ≤ (αx2)
2, then x2x3 < x1x3 ≤ (αx2)

2 < (αx1)
2, hence the second

subcase is x1x3 > (αx2)
2 and x2x3 ≤ (αx1)

2, when Eq. (12) is exactly equivalent to the

assumption x1x3 > (αx2)
2. In the fourth case x2 > αx1 ≥ x3 and αx2 < x3, notice that

αx1x2 ≥ x3x2 > x23, hence the first subcase is given by x2x3 > (αx1)
2, when Eq. (12) boils

down to αx21 ≥ x2x3, which is implied by αx1 ≥ x3 and x1 > x2. In the second relevant

subcase, given by x2x3 ≤ (αx1)
2, Eq. (12) goes to x21 ≥ αx2x3, which is clearly entailed

by x1 > x3 > αx2. Finally, in the fifth and last case αx1 < x3, it suffices to analyze the

subcase αx1x2 > x23, when Eq. (12) leads to x1 > x2, so definitely concluding the proof

that A satisfies Eq. (7).

However, A is not supermigrative, because if we consider, for instance, x = ( 9
10
, 3
5
, 3
5
)

and y = (1, 27
40
, 12
25

), one may easily check that x ≺L y, but A(x) < A(y).
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The relationship between the three inequalities formulated in (7), (8) and (9) may be

addressed also under a different point of view. Given any symmetric d-aggregation function

A, consider the binary aggregation function induced by A, denoted with A12, and defined

as

A12(x, y) = A(1, . . . , 1, x, y).

According to Definition 1.1, A12 is supermigrative if, and only if, it satisfies Eq. (1). In

this setting, Eq. (1) can be easily reframed as follows: given any α ∈ I and any (x, y) ∈ ∆2

A(vα,d−1) ≥ A(vα,d), (13)

where v := (1, . . . , 1, x, y). Thus, it can be easily show that, if A satisfies Eq. (8) (respec-

tively, Eq. (9)), then it fulfills Eq. (13) as well and, hence, it is supermigrative. In other

words, the supermigrativity of A entails the supermigrativity of A12, but, oddly enough,

the same implication holds assuming Eq. (8) rather than the stronger condition given by

Eq. (9). On the contrary, if A fulfills Eq. (7), then A12 need not be supermigrative, as the

following example shows.

Example 4.3. Consider the 3-aggregation function A illustrated in Example 4.2. It is not

difficult to see that the induced function A12 is given, for (x, y) ∈ ∆2, by

A12(x, y) =

x
3y2, y > x2;

x5/3y8/3, y ≤ x2.

As shown in Example 4.2, A verifies Eq. (7), but the above described A12 is not supermi-

grative, because, for instance, Eq. (1) fails for x = 3/5, y = 1/2 and α = 5/6.

Finally, notice that, if A is a d–dimensional symmetric aggregation function such that

A12 is supermigrative, then A need not be supermigrative, as the following example shows.

Example 4.4. Consider the following symmetric 3-aggregation function given, for x ∈ ∆3,

by

A(x) =

Π3(x), if x1 < 1;√
Π3(x), otherwise.
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It is immediate to see that A12(αx, y) = A12(x, αy) =
√
αxy, for any α ∈ I and for

all x, y ∈ I. However, A is not supermigrative, because if we consider, for instance,

x = (1
2
, 1
2
, 1
4
) and y = (1, 1, 1

16
), one may easily check that x ≺L y, but A(x) < A(y).

5. Conclusions

We have revisited the notion of bivariate supermigrativity for semi–copulas and ex-

tended it to the case of aggregation functions in higher dimensions. In particular, we have

shown how supermigrativity is related to logarithmic majorization of real vectors. Various

alternative characterizations are illustrated, together with some possible weaker versions

of supermigrativity. Relationships with notions of multivariate aging are emphasized.
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