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On the resting abyss of a two-layered ocean
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Summary. — In the framework of the theory of geostrophic contours, a sufficient
condition is pointed out in order that the lower layer of a two-layered ocean be
motionless.

PACS 92.10.Dh – Dynamics of the deep ocean.

1. – Introduction

The complexity of the vertical structure of the horizontal flow in geophysical fluid
dynamics has induced investigators to resort to a hierarchy of schematizations of the
fluid in motion, in order to circumvent the mathematical complexity of the problem at
hand, and to make any progress possible. In making an analysis of basin scale ocean
circulation, we note the coexistence of two different kinds of simple models since the
very beginning of modern physical oceanography [1-3]: those with homogeneous
density in a single layer, and those with two layers with different density values. The
second case represents the simplest baroclinic extension of the first one and it is
sometimes further simplified, assuming the lower layer to be at rest, so that the ocean
circulation is dynamically described as the motion of a single fluid layer above a resting
abyss. A typical case is reported in [4]. However, as far as the choice of a moving or a
resting layer depends on the subjective judgement of the investigator, the resulting
model can be satisfactory at most for its given purpose, but certainly not deductive
enough. This difficulty has only been overcome [5-7] in the early years of the past
decade, through the theory of the geostrophic contours, which deals with the
mechanism of motion transmission from the upper to the lower layer with the possible
formation of a pool of recirculating fluid in the lower layer. On the basis of this theory,
we deduce a sufficient condition for the lower layer to be at rest. While the motion in
the pool region (if any) is completely determined by resorting to a weak frictional
coupling between the layers, our criterion purely depends on the leading vorticity
equations in the limit of low dissipation. On grounds of uniformity, we keep our
notation to be the same as in Pedlosky [8], who has extensively discussed the two-layer
model in his recent monograph.
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2. – The criterion

The dimensional vorticity equations controlling the basin dynamics of a two-layered
ocean model are
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where Hi , i41, 2 is the layer thickness, Fi4 f 2
0 OgHi is the Froude number and

g4g(DrOr 0 ) is the reduced gravity. The Ekman pumping vertical velocity wE plays the
role of forcing, since it is established by the external wind stress curl field.

Multiplying eq. (1) by H1, eq. (2) by H2 and adding the results, we obtain
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Once the barotropic transport streamfunction c B4 (H1 c 11H2 c 2 )OH is introduced
(H4H11H2 is the total fluid depth), we have from eq. (3)
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In eq. (4) xe is the longitude of the eastern boundary, where the Sverdrup transport
streamfunction c B vanishes. Differentiating (4) with respect to y results in, as a function
of c 1 and c 2 ,
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Consider now the lower layer, where eq. (2) holds. In order to decouple this equation
from eq. (1), we express ¯c 1 O¯x and ¯c 1 O¯y as a function of c 2 and wE by using
eqs. (3) and (5) in eq. (2). The result is
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where F×4 f 2
0 HOgH1 H2 . Equation (6) means that a functional dependence between the
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two arguments of the Jacobian operator holds and therefore we can write
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About the dependence of C 2 on its argument, we observe that the eastern boundary is
a streamline of c 2 . Without loss of generality we can assume c 2 (xe , y)40. This
boundary condition implies, via eq. (7), that C 2 (by)40 for every y in the latitudinal
strip of the basin, say for 0GyGL. As by is here the argument of C 2 , putting by4j,
we are able to state the explicit functional dependence of C 2 on j within the interval
[0 , bL]:

C 2 (j)40 (j� [0 , bL] .(8)

In particular, if, for every longitude x of the fluid domain
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that is to say
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then c 2 (x , y)40 (for xExe as well) and the lower layer is at rest. We clarify this
point. If (x–, y–) is such that
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so c 2 takes the same vanishing value along the line connecting (x–, y–) to (xe , y) which
therefore belongs to a blocked geostrophic contour. Inequality (9) states a sufficient
condition in order that the sole upper layer be in motion. On the contrary, a necessary
condition for the formation of a pool region in motion in the lower layer is that there
exists a point xr such that
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Obviously, if inequality (9) is fulfilled, then c 1fc B . We stress once again that the
dependence of C2 on j for jDbL, outside the interval [0 , bL], cannot be obtained
readily since, to determine in this case the amplitude of c 2 , eqs. (1) and (2) must be
supplemented by higher-order viscosity terms (see ref. [8] for details).
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3. – Concluding remarks

We apply the criterion above to an idealized subtropical gyre whose northernmost
latitude y4L satisfies, by definition, the equation wE (L)40, assuming moreover, for
simplicity, a longitude-independent Ekman pumping. If the gyre extends in longitude
from xw to xe , by using the truncated expansion wEB [¯we O¯y]y4L (y2L) into
inequality (9), the criterion itself takes the form

b 2 H

F×f0 [¯wE O¯y]y4L

Fxe2xw .(11)

Inequality (11) is equivalent to the statement that the zonal Sverdrup transport
uB42 ¯c B O¯y evaluated from (4) is not large enough to arrest, at some longitude and
at the latitude L where uB is strongest, the baroclinic propagating Rossby wave on the
interface, whose speed is bOF×. In fact the condition
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that just coincides with inequality (11). The same analysis but for the reverted
condition (10) is reported in [8].

Finally, we note from inequality (11) that the criterion is sensitive to the east-west
extension of the basin in the sense that a large extension does not favour a resting abyss.

* * *

The author wishes to thank Prof. J. PEDLOSKY for a useful discussion on the subject
of the present paper.
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