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Summary. — In weakly dissipative media governed by the magnetohydrodynamics
(MHD) equations, any efficient mechanism of energy dissipation requires the forma-
tion of small scales. Using numerical simulations, we study the properties of Alfvén
waves propagating in a compressible inhomegeneous medium, with an inhomogeneity
transverse to the direction of wave propagation. Two dynamical effects, energy pinch-
ing and phase mixing, are responsible for the small-scales formation, similarly to the
incompressible case. Moreover, compressive perturbations, slow waves and a static en-
tropy wave are generated; the former are subject to steepening and form shock waves,
which efficiently dissipate their energy, regardless of the Reynolds number. Rough es-
timates show that the dissipation times are consistent with those required to dissipate
Alfvén waves of photospheric origin inside the solar corona.

PACS 96.60.Pb – Corona; coronal loops, streamers, and holes.
PACS 52.35.Bj – Magnetohydrodynamic waves.
PACS 01.30.Cc – Conference proceedings.

1. – Introduction

The dissipation of the energy of magnetohydrodynamic (MHD) waves represents one
of the mechanisms which have been proposed to explain the high temperature observed in
the plasma of the solar corona. The waves have a probable origin in the photospheric mo-
tions and propagate along the magnetic field, which completely threads the corona. The
corresponding energy flux [1] compares favorably with that required to heat the corona.
However, in order to heat the plasma the wave energy must be significantly dissipated
before it leaves the system, i.e. due to the smallness of the dissipative coefficients in the
corona, the energy must be transferred to small scales. This can be achieved by the inter-
action between the wave and the inhomogeneities of the coronal structures. This process
has been first studied analyzing the normal modes of inhomogeneous MHD structures.

(�) Paper presented at the VII Cosmic Physics National Conference, Rimini, October 26-28, 1994.
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It has been found that these solutions develop small scales either localized in thin lay-
ers where resonance conditions are satisfied (resonant modes, [2-12]) or across the whole
inhomogeneity region (resistive modes, [13, 14]).

The study of normal modes gives useful indications on the dissipation mechanisms and
on the associated time scales, but it leaves some important questions open: how are these
modes formed? How long does it take to form the small-scale structures? The answers to
these questions require the study of the dynamical evolution of an initial wave in its propa-
gation in a nonuniform medium. Using an asymptotic analysis Lee and Roberts [15] found
two main dynamical effects responsible for small-scale formation: i) energy pinching: the
energy of the wave concentrates at the resonance locations; ii) phase mixing [16], due
to inhomogeneities of the Alfvén speed, transfers the disturbance energy to increasingly
small-scale structures. Malara et al. [17], using numerical simulations of the MHD in-
compressible equations showed that the both mechanisms are at work, but phase mixing
or energy pinching dominates, according to the disturbance wavelength. In the former
case the small-scale formation time �ss is roughly proportional to S�1=3 [4], S being the
Reynolds number. However, due to the large values of S, �ss is too large to achieve an
efficient dissipation within the corona.

In the present paper we will discuss, using a numerical simulation code, the properties
of Alfvén waves propagation in a compressible medium, in oblique propagation. The aim is
to elucidate the main differences in the mechanism of small-scale formation with respect
to the incompressible case [17], and to see whether the coupling between compressible
and incompressible modes can speed up the dissipation. Compressive fluctuations un-
dergo steepening and can give origin to shocks; this process corresponds to the formation
of infinitely small lengths in a finite time (catastrophe), and the dissipation time is inde-
pendent of S. This process is of interest in a medium where S is very large, like the solar
corona.

2. – Numerical model

The basic equations of our model are the compressible, dissipative, MHD equations,
which can be written in the following form, using dimensionless variables:
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where � is the density normalized to a characteristic value �0; b is the magnetic field
normalized to a value B0; v is the velocity normalized to the Alfvén velocity cA0 =
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B0=(4��0)
1=2; T is the temperature normalized to �mpc

2
A0=kB (with � the mean molec-

ular weight, mp the proton mass, and kB the Boltzmann constant). The space variables
and the time � are normalized to a characteristic length a and to a=cA0, respectively. The
quantities S� = acA0=� and S� = 4�acA0=(�c

2) represent, respectively, the kinetic and
magnetic Reynolds numbers, while S� = [�=(�mp�)]S� , and  is the adiabatic index.

Equations (1)-(4) are solved in a rectangular spatial domain D = [�l;+l] � [0; �Rl].
The parameter l gives a measure of the domain width in units of the shear length a, while
R determines the aspect ratio of the domain.

Since we will describe waves which essentially propagate along the y-direction, we
impose periodic boundary conditions at y = 0 and y = �Rl, and free-slip boundary condi-
tions at x = �l (vanishing normal derivatives).

The initial condition is represented by the superposition of an (ideal) equilibrium struc-
ture and a perturbation. The equilibrium structure is defined by

�eq = 1 ; veq = 0 ;(5)
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where  is the angle between beq and the propagation direction y; � measures the am-
plitude of the inhomogeneity (which is in the x-direction). The temperature profile Teq(x)
satisfies the total (magnetic + kinetic) pressure equilibrium. The total pressure peq is
determined by peq = �b2eq(l)=2; the temperature Teq is positive in the whole domain, pro-
vided that � > 1. The parameter � determines the plasma �:
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where cs(x) =
p
Teq(x) is the local sound velocity and cA(x) = beq(x) is the local Alfvén

speed. Large values of � correspond to large average � values.
Since waves in the corona of photospheric origin are believed to be essentially

Alfvénic [18,19], we have modeled such disturbances by superimposing on the above equi-
librium structure the following perturbation:

�v(x; y) = �b(x; y) = r� [A1Re [(1=�) exp[i�y]]ez] ;(9)

where A1 is the amplitude of the perturbation and � is the wave number. This form cor-
responds to a plane wave front initially propagating along the y-direction, with �v and �b
polarized along the x-axis.

Equations (1)-(4) have been numerically solved using a 2 1
2

-D pseudospectral code [20].
At the initial time the equilibrium structure is homogeneous along the y-direction, while
the perturbation has a vanishing space average along the same direction. Then we
consider any variable f as the superposition of two contributions: the average in the
y-direction f0, which we ascribe to the equilibrium structure, and the fluctuating part
�f = f � f0.
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Fig. 1. – Power dissipated on fluctuations as a function of the time for: S = 2000, � = 1:01 (thick
line); S = 104, � = 1:01 (dashed line); S = 2000, � = 3:01 (thin line).

3. – Numerical results

In the first run we used the following values for the parameters of the model: � = 1,
corresponding to a wavelength in the y-direction �y = 2�, i.e. of the same order as the
inhomogeneity scale length; the propagation angle is  = �=4; the initial normalized
perturbation energy is "(� = 0) = 2:5�10�5 (corresponding to a small amplitude pertur-
bation); we chose � = 1:01 and � = 0:25, corresponding to � ranging between 8 � 10�3

and 1:49; the Reynolds numbers are S� = S� = S�=( � 1) = 2000; the domain size
in the x-direction, determined by l, has been chosen sufficiently large (l = 20) to avoid
that the boundary conditions affect the time evolution; finally, the domain length in the
y-direction has been chosen equal to �y, in order to have the maximum spatial resolution
in that direction (this corresponds to R = 2=l).

This configuration, in the case of homogeneous equilibrium structure, would corre-
spond to an Alfvén monochromatic wave in oblique propagation, the wave vector being
parallel to the y-axis. The interaction of such a disturbance with the equilibrium inhomo-
geneity generates both a modulation in the x-direction and an energy transfer to the y
and z components, thus destroying the initial Alfvénic character of the disturbance. In
fig. 1 we plotted the fluctuation dissipated power, which is defined by
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where E(0)(0) is the initial equilibrium energy. It is seen that w(�) increases up to a maxi-
mum and then it decreases, roughly exponentially, in time. This indicates that an effective
generation of small scales takes place; the time �ss when w(�) is maximum represents the
small-scale formation time, and it gives a measure of the time necessary to dissipate a
relevant part of the fluctuation energy. The dissipation time �hom = S=�, which the same
perturbation propagating in a homogeneous structure would have taken to be dissipated,
is much longer than �ss. Increasing the Reynolds numbers by a factor 5 (fig. 1), we verified
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Fig. 2. – Profiles of the density fluctuation as function of y, in the large-amplitude run, at x = 0.

that �ss / S0:32, which is the scaling law typical of phase mixing [4]. Then, similarly to the
incompressible case [17], for wavelengths of the order of the inhomogeneity length, phase
mixing dominates in the small-scale formation process. However, increasing the value of
� (fig. 1), we verified that larger values of � correspond to larger �ss, i.e. the dissipation
process is faster in the more compressible case.

Since small scales form in the x-direction, the effective wave vector is quasi-
perpendicular to B0. Then, the direction perpendicular to B0 and to the x-axis (z0) cor-
respond to the Alfvénic polarization, while the direction parallel to B0 (y0) to the mag-
netosonic polarization. The time evolution shows that the perturbation energy, initially
polarized in the x-direction, in the inhomogeneity region is completely transferred to
the other directions (y0 and z0); these two polarizations evolve in different ways. The
y0-polarized fluctuations are formed by a superposition of two kinds of perturbations:
1) A slow magnetosonic disturbance; we verified that the fluctuations �� and �By0 asso-
ciated to such a disturbance are correlated as in a slow magnetosonic wave with quasi-
perpendicular wave vector. Moreover, it oscillates with the local value of the cusp fre-
quency !cusp = cAcs=[�k(c

2
A + c2s )

1=2]; since both the Alfvén velocity cA and the sound
velocity cs vary across the inhomogeneity, the disturbance profile undergoes phase mix-
ing which is responsible for small-scale formation in that polarization. The propagation
direction is the same as that of the initial wave. 2) A static entropy wave, in which �� and
�T are anticorrelated, and the gas pressure fluctuation �p is vanishing. This perturbation
is due to the coupling between the initial wave and the entropy transverse modulation
associated to the equilibrium.

The z0-polarized fluctuation is essentially Alfvénic: �Bz0 ' �vz0 . It oscillates at the local
value of the Alfvén frequency !A = cA=�k and then it undergoes both energy pinching
and phase mixing. The time evolution is similar to that observed in the incompressible
case; actually, due to its Alfvénic character, this disturbance should not be affected by the
compressibility of the medium. Globally, � 10%–15% of the energy of the initial Alfvénic
wave is converted into a compressive disturbance, while the remaining part keeps the
non-compressive character.

We have performed one more run characterized by larger values of the initial ampli-
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tude (�vx = �bx ' 0:29). In this case, nonlinear effects play an important role in the wave
dissipation. The dissipated power, rescaled to take into account that the amplitude is dif-
ferent with respect to the previous run, increases faster and its maximum value is larger
by a factor � 1:5. This maximum is reached before the corresponding time of the small-
amplitude case. The increase of w(�) is due to the formation of compressive shocks in the
simulation domain. In fig. 2 the profiles of �� as functions of y at different times in the in-
homogeneity region are shown. The small scales associated to the shock front contribute
to dissipate the initial wave energy. This shock belongs to the slow mode, the density fluc-
tuation being anticorrelated with �By0 ; its formation follows the steepening of the slow
magnetosonic perturbation which form in the inhomogeneity region. The shock normal is
strongly oblique with respect to the y-direction as a consequence of the dependence on x
of both cA and cs.

4. – Discussion and conclusions

In this paper we studied the formation of small scales in the propagation of an ini-
tial Alfvénic disturbance in a compressible medium along an inhomogeneous equilibrium
structure, in the case where the inhomogeneity direction is perpendicular both to the ini-
tial propagation direction and to the background magnetic field. The main differences
between the compressible and incompressible [17] simulations can be summarized as fol-
lows:

i) In both cases small scales are efficiently formed by the same dynamical effects (phase
mixing and, to a lower extent, energy pinching). However, the efficiency of these processes
increases in the compressible case, i.e. decreasing �.

ii) In the compressible case the interaction between the Alfvénic disturbance and the
inhomogeneous equilibrium structure generates slow and entropy waves. When the dis-
turbance amplitude is sufficiently high the compressible perturbations steepen and then
form shock waves.

As a consequence, the propagation of an Alfvénic perturbation in a compressible in-
homogeneous medium could be more efficient in producing small scales than the corre-
sponding propagation in an incompressible medium, in that in the former case a sort of
catastrophe can be observed, due to the production and steepening of compressible fluc-
tuations.

Now let us assume a wave period of say 10 s and an Alfvén velocity cA � 103 km/s, an
inhomegeneity length a � 1:6� 103 km (corresponding to � = 1). We have found for the
typical time of small-scale formation �ss � 55 a=cA for S = 104. Using the scaling �ss /
S0:31, and assuming S � 108, we obtain a dissipation length lss � cA�ss � 1180 a � 1:9�
106 km, i.e. small scales are formed by phase mixing and the wave energy is efficiently
dissipated when the wave propagates less than 3R� above the photosphere.

For a fluctuating velocity to Alfvén velocity ratio of about 0:29 (corresponding to veloc-
ity fluctuations of the order of� 290 km/s) we have found that the shock wave is formed at
a time �sh ' �ss � 20–25 a=cA. The shock formation time is proportional to the perturba-
tion amplitude, which, for our simulation, is larger than the velocity fluctuations observed
in the corona by at least a factor 6. Multipling by the same factor �sh, in coronal conditions
the shock formation length is lsh ' cA �sh ' 120–150 a � 1:9–2:4� 105 km, i.e. of the or-
der of or smaller than one third R� and thus much smaller than the length for small-scale
formation lss due to phase mixing. The energy associated with these shock waves can be
as high as 10%–15% of the initial perturbation energy.
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