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Summary. — In many experimental applications, starting from a random variable, it
is possible to evaluate the moments and to define the probability density function
(PDF) in different ways. In this paper a new approach is shown in order to estimate
the PDF by moments according to Gram-Charlier method (GCm). The approach
consists of a choice of standard deviation (s new ) in GCm which optimizes the values of
the input moments. In particular three s new are selected in order to minimize: 1) the
sum of absolute relative deviations among theoretical and experimental moments; 2)
the relative per cent of negative probabilities coming from GC expansion; 3) the
product between the two previous functions. A theoretical application of the above
approach is made where the input moments data set comes from the vertical velocity
distribution estimated for one level of the convective mixed layer. This application
consists of two different simulations. The first evaluates the moments up to 10th
order, having as input data the moments up to 3rd order. The second gives the
moments up to 10th order considering both the moments of the previous simulation
and the 4th-order moment calculated with Gaussian closure as input data.

PACS 92.60.Fm – Boundary layer structure and processes.
PACS 47.27 – Turbulent flows, convection, and heat transfer.
PACS 01.30.Cc – Conference proceedings.

1. – Introduction

The purpose of this paper is to optimize the determination of the probability density
function (PDF) by data moments.

In the probability theory an estimate of the characteristic function, related to
Fourier transformation of PDF, comes from Mc Laurin’s series development whose
coefficients are related to the moments [1].

Another well-known method of the characteristic function theory is the asymptotic

(*) Paper presented at EUROMECH Colloquium 338 “Atmospheric Turbulence and Dispersion
in Complex Terrain” and ERCOFTAC Workshop “Data on Turbulence and Dispersion in
Complex Atmospheric Flows”, Bologna, 4-7 September 1995.
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expansion derived from the normal distribution. In this theory the estimate of the PDF
is made in terms of the semi-invariant moments (called cumulants) and it is called
Edgeworth’s development [2].

The GCm [3] obtains the PDF as an orthogonal expansion derived from the normal
distribution. The input data are the experimental moments.

An alternative method uses a bivariate Gaussian development to estimate the PDF
by moments [4]. In this case the solution of an algebraic system gives the means and
the standard deviations connected with Gaussian distribution. One observes that in [4]
the PDF is always positive by definition, while this is not always verified in previous
approaches [1-3].

The estimate of PDF is very important in many applications.
An example consists in the simulation of turbulent fluxes having statistical

properties [5]. Other applications concern the computation of the probability density of
the velocity components in the atmospheric turbulence [6]. Lagrangian models on
turbulent diffusion use statistical information on the real turbulent flux to evaluate the
trajectories of traces and their spatial concentration [7, 8].

Moreover, an interesting application is related to the determination of pollutant
concentration by K-theory dynamical equations on moments [9]. The pollutant levels
are obtained involving classic GCm and the moments coming from the solution
equivalent K-equation.

The present paper illustrates the improvements of the classic GCm in order to
estimate the PDF by moments data in univariate case.

2 – Mathematical background

A classical method to approximate a given distribution is Gram-Charlier’s type-A
(GC) expansion [10]. Input data are the moments up to order k and the expansion gives
the PDF for the continuous random variable x.

The general relations on univariate distribution are described below.
The PDF F(x) is evaluated using a truncated expansion in terms of Hermite’s

polynomials (Hn (x) ) :

F(x)4
exp [2(x2m)2 /2s 2]

sk2p
!

n41

k

Cn (m k ; m ; s) QHn (x ; m ; s)4(2.1)

4a m , s (x) !
n41

k

Cn QHn (x) ,

where a m , s (x) is the Gaussian distribution having m as mean and s as standard
deviation, and the terms m k are k-order input moments defined as

m k4 �
2Q

1Q

x k F(x) dx .(2.2)

The Cn coefficients are determined by the orthogonalization process applied to (2.1),
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see appendix B:

Cn4
sF(x) Hn (x) dx

sH 2
n (x) a(x) dx

4
s 2n

n!
�F(x) Hn (x) dx .(2.3)

In the classic case [10], Hermite’s terms and the Cn coefficients refer always to the
standardized variable Z:

Z4
x2m

s
,(2.4)

so that in (2.1) the random variable Z and the parameters m40 and s41 in order to
determine Cn and Hn are chosen (standard assumptions). If one considers x as the
distribution variable, the equivalent standard choice of the Gaussian parameters, m
and s , is expressed by

.
/
´

m4m 1 ,

s4km 22 (m 1 )2 .
(2.5)

In ref. [10] the GC calculation refers always to the standardization assumption so that
the Gaussian parameters are fixed.

In order to generalize the GC expansion, other values of the Gaussian parameters
are to be considered. This implies that Hermite’s polynomials Hn and the Cn coefficients
depend on m and s .

In the classic case the mean and the standard deviation are calculated from
experimental moments by (2.5).

The GC expansion is convergent when the following integral is convergent [10]:

�
2Q

1Q

exp k x 2

4
l F(x) dx .(2.6)

By Taylor’s expansion of the exponential term, the convergence criterion is obtained by
using the series of the experimental moments

�
2Q

1Q

exp k x 2

4
l F(x) dx4m 01

m 2

4
1

m 4

32
1

m 6

384
1

m 8

6144
1

m 10

122880
1O(m 11 ) .(2.7)

2.1. Hermite’s polynomials determination. – Hermite’s polynomials are evaluated
by two equivalent methods [11] (definition and theoretical background are given in
appendix A). The first uses the iteration rules:

Hn (x)2
(x2m)

s 2
Hn21 (x)1

(n21)

s 2
Hn22 (x)40 ,(2.8)

where the Hn term is calculated from of Hn21 and Hn22 terms.
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The second uses the characteristic polynomials defined as:

Hn (x)4
(21)n

a m , s (x)
D n

x a m , s (x) .(2.9)

From eqs. (2.8) or (2.9), the following Hermite’s polynomials terms are obtained:

.
`
`
`
/
`
`
`
´

H0 (x)41 ,

H1 (x)4
(x2m)

s 2
,

H2 (x)4
(x2m)2

s 4
2

1

s 2
,

H3 (x)4
(x2m)3

s 8
23

(x2m)

s 4
,

H4 (x)4
(x2m)4

s 8
26

(x2m)2

s 6
1

3

s 4
,

H5 (x)4
(x2m)

s 2 g (x2m)4

s 8
210

(x2m)2

s 6
1

15

s 4 h .

(2.10)

2.2. Cn coefficients determination. – The Cn coefficients are calculated substituting
Hermite’s polynomials in (2.3) and using the definition (2.2) of the moments.
Performing the above calculations the following formula is derived (all steps are shown
in appendix B):

C(2n1d d )4 !
a40

n s 2a

2a a!
!

b40

2n1d d22a (21)2n1d d2a2b

(2n1d d22a2b) ! b!
m 2n1d d22a2b m b ,(2.11)

where n40, 1 , 2 , 3 , R and d d is defined as

d d4
.
/
´

11

0

if (2n1d d ) is odd ,

if (2n1d d ) is even .
(2.12)

It is to be noted that the Cn coefficients (2.11) are more generally determined than the
calculation in [10], (in which m40 and s41) because the latter refers to any choice of
m and s .

An alternative approach to calculate the Cn coefficients makes use of iteration rules
(2.8) to evaluate Hn terms in (2.3). With this assumption, every Cn coefficient is
determined by Cn21 and Cn22 . The only C0 and C1 terms must be directly calculated
by (2.11).

However, using one of these approaches, the GC coefficients are obtained as a
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function of the Gaussian parameters. The first six coefficients are

.
`
`
`
`
/
`
`
`
`
´

C04m 0 ,

C14m 12mm 0 ,

C24
1

2
(m 222m 1 m1m 0 m 22s 2 m 0 ) ,

C34
1

3!
(m 323m 2 m13m 1 m 22m 0 m 3 )2

s 2 m 1

2
1

m 0 s 2 m

2
,

C44
1

4!
[m 424m 3 m16m 2 (m 22s 2 )2

24m 1 (m 323s 2 m)1m 0 (m 413s 4 )26s 2 m 2 ] ,

C54
1

5!
[m 525m 4 m110m 3 (m 22s 2 )210m 2 (m 323s 2 m)1

15m 1 (m 426s 2 m 213s 4 )2m 0 (m 5210s 2 m 3115s 4 m) ] .

(2.13)

3. – GC expansion improvement

The basic idea to improve the GC expansion is to consider the standard variable
(2.5) or dispersion in the distribution (2.1) as being not necessarily related to the
standard variable choice. In fact, there is no a priori assumption of why the standard
deviation of the Gaussian of GC must be related to experimental standard deviation
(2.5). For example, this statement is evident in the bimodal PDF, in which the
normalized s is always larger than the average amplitude around every modal value, so
that the s of the Gaussian could be lower than the standard choice. The standard
deviation is the best choice when the input moments come from a Gaussian distribution.
Probably the best s value may not coincide with the standard if the starting
distribution is different from that Gaussian PDF.

According to these considerations and having performed all the calculation with m
and s variable, a new value for the Gaussian of GC is obtained. This is calculated by the
determination of three functions. For each function the minimum value is extracted and
is taken into account for the best standard deviation in GCm.

The chosen reference functions are described below.

3.1. Moments error function. – The first function uses an estimate of moments
derived by the GC distribution (2.1)

m k
0 (s)4 �

2Q

1Q

F(x ; s) x k dx ,(3.1)

where it is shown that such moments are s-dependent. From the above expression it is
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possible to determine a s function defined as

S(s)4
1

n
!

k41

n Nm k
inp2m k

0N

m k
inp

100 ,(3.2)

which gives the deviations between the estimated (3.1) and input moments m inp , and
expresses the average of Absolute Relative Error (ARE) in per cent.

A new s value (s s ) comes from the minimization of the above equation.
The minimization of the S(s) function is related to the distribution reproducibility

because it regards the optimization of two moments data sets: the first set is
experimental and the second is calculated from GC distribution.

3.2. Negative PDF minimization terms. – As known, the F(x) distribution coming
from GC is either positive or negative. The last case happens as a consequence of some
xmin value for which the following product is negative:

Cn (m k ; m ; s) QHn (xmin ; m ; s)E0 .(3.3)

These xmin values are not to be considered in GC distribution and then the related
negative probabilities are to be set to zero.

To weight the total negative probabilities coming from expansion (2.1), the following
s function is chosen:

A(s)4
NA(2)N

A(1)1NA(2)N
100 ,(3.4)

where A(2) is the negative probabilities sum deriving from GC expansion and the
denominator A(1)1NA(2)N is the PDF total area. The function A(s) expresses the
Relative Percent of Negative probability (RPN) of GC expansion and gives an estimate
of the negative values of the PDF. It is be to noted that A(s) has no correlation with the
optimization of input moments.

3.3. Moments error and negative minimization area. – The third s function is
defined as

P(s)4S(s) QA(s) .(3.5)

P(s) is related both to the input moments reproducibility and to the negative values
minimization in the PDF.

The impact of s choices on the GC distribution are evaluated considering four
values in the expansion, three coming from the minimization process and one coming
from the classic case (standard choice (2.5)).

3.4. The GC model performance. – In order to estimate the model performance, the
following relative error function is defined:

RE (k)4
m k

inp2m k
0

m k
inp

100 .(3.6)

This mathematical relation has the purpose to weight the goodness of the different s
choices for the reproducibility of the input moments at any order k.
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4. – Results and discussion

To evaluate the goodness of the proposed methodology, two simulations are
performed.

Firstly, all moments up to 3rd order are included and secondly, the Gaussian
closure is imposed on the 4th input order.

In both simulations the input moments up to the 10th order have been calculated
from a given PDF.

In every simulation the output moments up to the 10th order are estimated starting
from input moments of smaller orders. Moreover, the reproducibility calculation for
every order is made by the relative error (3.6).

With reference to PDF, the velocity distribution is considered at the level Z/Zi4
0.25 in the convective boundary layer [12]. The moments calculated by this PDF are

TABLE I. – Moments obtained from the velocity distribution at one level in the convective
boundary layer [12].

m 041.000
m 440.387
m 841.668

m 1420.006
m 540.297
m 941.612

m 240.396
m 640.591
m 1042.663

m 340.122
m 740.678

Fig. 1.
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shown in table I. These values form the input data set that will be considered in the
simulations.

Convergence of the series of moments must be verified before calculating the GC
expansion. Substituting the theoretical input moments (table I) in eq. (2.7), the series
converges as:

�
2Q

1Q

exp [x 2 /4 ] f (x) dx4m 01
m 2

4
1

m 4

32
1

m 6

384
1

m 8

6144
1

m 10

122880
1o(m 11 ) .

The standard Gaussian parameters are obtained from (2.5) with mean and variance
values of table I:

.
/
´

m4m 1420.006 ,

s Gauss4km 22 (m 1 )240.63 .
(4.1)

4.1. First simulation: input data are all the moments up to the 3rd order. – The
input moments are:

m 041.000 , m 1420.006 , m 240.396 , m 340.122 .(4.2)

Fig. 2.
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The first step is to find the three standard deviation values which minimize the
reference functions S(s), A(s), P(s). The determination of minimum values (one for
each function) is very important to obtain the best PDF associated with input
moments.

The search for minimum values is not realizable by analytical solution because
solvable algebric equations are not given.

The three reference functions, summarized in fig. 1, are obtained both by
calculation of the GC expansion and the estimation (3.1) of the related moments. In
fig. 1, there is a well-marked minimum of the S(s) function. This minimum is
characterized by an averaged reproducibility value (R) of about 2% at s S40.39.

The A(s) function never goes to zero in the example and, therefore, some negative
probabilities are always predicted from the GC expansion. The smaller contribution to
negative probabilities comes at s A40.45 with the value 0.008% of the A(s) function.

The function product (P(s) ) has a minimum of s P40.46.
From fig. 1, another important result comes out. The choice (4.1) corresponding to

classic GC expansion is not the best. In fact s Gaus40.63 gives both a moment
reproducibility (30%) and an area value (0.2%) higher in comparison to s S , s A , s P

ones.
In fig. 2 the estimate (3.1) of moments up to the 10th order are given. In this figure,

the moments coming from the input and from the classic choice of s are also shown.

Fig. 3.
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The estimate is evaluated both for the three minimizing standard deviation values
(s S , s A , s P ) and for the classic choice of (s Gaus ). From the comparison between the
reproduced and the experimental moments, a bad fitting results when the order
moments are higher than the input ones.

This behaviour is evident in fig. 3, where the mean moments reproducibilities
(RE (k)) up to the 10th order are given. As long as the orders of the moment are equal
to the input ones, the reproducibility is not bad, but when the orders increase, bad
reproducibility of the moments is evident. Higher-order moments are highly
overestimated in the classic case (s Gaus ), where RE (k) increases up to 470% to the 10th
order. All of the above indicates that the classic Gram-Charlier method (referred
always to standard variable) is not qualified to reproduce experimental PDF.

On the contrary, all three minimum s have moments’ reproducibility ranging from
20% to 70%.

In this simulation the best s, that comes out from the P(s) function, has an average
of about 15% reproducibility.

The above simulation indicates that it is possible to improve the classic
Gram-Charlier method by choosing, objectively, some standard deviation values not
related to the standardization.

The results of the simulation are: a) the standardization parameters are not the
best to reproduce the input moments; b) the best model performances are obtained

Fig. 4.
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from the s minimization related to S(s) reproducibility, A(s) negative contribution, and
P(s) function product.

4.2. Second simulation: Gaussian closure up to 4th input order. – This second
simulation has both the purpose to evaluate the implications of Gaussian closure for
input moments on the reproducibility of experimental data and to compare the GC
model performance of the first simulation with the results. The Gaussian closure of the
moments consists in the numerical estimation of higher-order moments in order to
offset the experimental data scarsity [13].

This choice for the closure is very simple and was taken into account only to give an
example of the possible utility of the expansion with the proposed improvement.

The moments in their even order for Gaussian closure are evaluated by the
formula [14]:

m 2n4
(2n21) !

2n21 (n21) !
(m 2 )n .(4.3)

Applying the (4.3) estimate to the 4th-order term, a new set of input moments for the

Fig. 5.
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GC expansion is obtained

m 041.000 , m 1420.006 , m 240.396 , m 340.122 , m 440.470 .(4.4)

By these input moments the GC expansion is computed for any s in a range (0.20–0.80).
In fig. 4 the S(s), A(s), P(s) functions are shown. The S(s) function (fig. 4) presents a
broad minimum of 1026 % at s S40.42 .

This small minimum value means that the Gaussian closure to the 4th order has
improved the average reproducibility in comparison with the results in the 1st
simulation (in which the minimum of S(s) was 2%).

From the A(s) trend, it can be noted that the negative contribution to probability is
zero in a range of s (0.42–0.54). In this case the minimum is chosen to be the average of
extreme terms, which is s A4s P40.48 . Worthy of note is that the introduction of the
4th-order term in the input moments has deleted the small negative contribution found
in the first simulation.

Moreover in this simulation the classic choice s Gaus produces a very high value both
for mean reproducibility (30%) and for negative area (0.2%).

In fig. 5 the reproduced moments up to the 10th order and the experimental ones
are shown. The moments of the same order as in entry are well fitted with the input
moments for all three s choices. The behaviour of higher-order moments is similar

Fig. 6.
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TABLE II. – Reproducibility (RE (k) in %) of moments values up to 10th order. The comparison is
made with input data set in table I.

1st simulation 2nd simulation

s S
0.39

s A
0.45

s P
0.46

s Gaus
0.63

s S
0.42

s A4s P
0.45

s Gaus
0.63

m 1

m 2

m 3

m 4

m 5

m 6

m 7

m 8

m 9

m 10

10.74
20.7

3.1
23.7
39.9
46.8
58.9
62.5
69.4
71.7

224.5
20.6

3.5
6.2

20.1
16.0
27.3
22.5
28.1
22.8

224.5
20.6

3.7
3.4

16.7
10.2
20.8
13.7
18.3
10.3

278.3
22.4
17.6

232.7
231.4

92.9
2123.3

215.3
2307.3
2474.6

20.0000013
0.0000025
0.0000026

221.5
28.1

230.7
42.6
33.0
49.8

237.7

20.001252
0.000129
0.000576

221.6
4.7

245.9
0.71

276.6
216.3
2124.5

275.3
22.3
17.0

232.9
32.7

294.2
2125.9
2218.8
2313.2
2483.2

Average of absolute reproducibility values

MD
SD

39
26

18
9

12
7

137
144

24
17

29
39

137
144

to previous simulations where the s Gaus corresponding to the classic choice yields a
very high overestimate of the theoretical values.

The reproducibility RE (k) for the moments is shown in fig. 6. When the moments
order is the same as in the input, the best reproducibility is within 22% for the s values
related to the minimization process and within 75% for the s Gaus choice.

Similarly to the previous simulation, higher-order moments are also overestimated
in the classic case.

4.3. Discussion. – The comparison of the results points out that the Gaussian
closure gives slightly worse results than in the first simulation.

In table II a summary of the moments reproducibility which comes from the two
simulations is given.

It is evident that in the second simulation, the 4th moment is reproduced with about
21.5%, while in the first case it was at 9.6% on average. This means that the value of the
4th experimental moment is not well reproduced and the Gaussian closure can also be
considered a very strong hypothesis.

For every s choice, table II also gives the mean (MD) and the standard deviation
(SD) of absolute reproducibility values so defined:

.
`
/
`
´

MD4
1

10
!

k41, 10
NRE (K)N ,

SD4o 1

9
!

k41, 10
(NRE (k)N2MD )2 .

(4.5)



A. PELLICCIONI448

The best result comes from the first simulation s P40.46 with the average of the
absolute reproducibility of 12% and 7% for MD and SD, respectively.

From table II it is clear that it is possible to improve not only the reproducibility of
all the input moments (up to 3rd and up to 4th order), but also the moments up to 10th
order.

Starting from m 3 and for the s P40.46 choice, the higher-order moments have an
average reproducibility of 13.3%.

It is worth noting that in the table the bad result is given by a classic choice s (s Gaus )
in both simulations (in which the MD values are about 137%).

Sometimes Gaussian closure can improve the moments reproducibility but makes it
compulsory to introduce a further hypothesis in the original PDF. Each time, it is
possible to measure the quality of this hypothesis through the moments reproducibility
for the same input order.

5. – Conclusion

The GC expansion calculates the probability density function using as input terms
the moments data of any order.

The classic method uses a standardized random variable Z and is related to the
Gaussian distribution with mean equal to zero and standard deviation equal to one.
This assumption is too strong and it is possible to regulate the standard deviation of the
Gaussian distribution which may not necessarily relate to the classic choice.

The proposed approach improves the performance of the GC expansion.
The new formulation of the expansion optimizes the standard deviation of the

Gaussian by the minimization of three functions related to the input moments. For
every function a minimal value can be found.

Two simulations are performed using a given data set of input moments.
The resulting output moments, obtained from the minimization of the

reproducibility and of the negative contributions, reproduce both the input moments in
the best way possible and minimize the negative probabilities coming from GC
expansion. Further, the new s choices give a good approximation of the moments of
higher orders.

The s related to the standardization choice of the RV produces bad results in both
simulations.

AP P E N D I X A

Determination and characterization of Hermite polynomials

The Hermite polynomials are a particular class of classic orthogonal polynomials
(COP) in the range of (2Q ; 1Q), with respect to weight function of the Gaussian
type [3]. As a particular weight function the non-standard Gaussian function chosen
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is defined as follows:

a s (x)4
1

sk2p
exp [x2m]2 /2s 2 ,(A.1)

where m and s are the mean and standard deviation of the Gaussian.
The Hermite polynomials are defined through a particular Rodriguez formula [11]

and are computable as follows:

Hn (x)4
(21)n

a s (x)
D n

x a s (x) ,(A.2)

where the operator is defined as

D n
x 4

dn

dx n
.(A.3)

All orthogonal polynomials take into account the “generating functions” F(x) so that
every polynomial Pn , x is substantially the coefficient of t n in the series expansion of the
t function F(x , t). In the specific case of Hermite polynomials, the generating function
is defined as

exp y t(x2m)

s 2
2

t 2

2s 2
z4!

j40

Q t j

j!
Hj (x) .(A.4)

From (A.4) it can be deduced that the polynomials are defined as:

Hj (x)4D j
t gexp y t(x2m)

s 2
2

t 2

2s 2
zh

t40

.(A.5)

The above formulae (A.4) and (A.5) are fundamental for the deduction of the analytical
properties of Hermite polynomials. Deriving (A.4) with respect to x and equalling the
coefficients of t j, the derivation rules for Hj are obtained as

Dx Hj (x)4
j!

( j21) !

Hj21 (x)

s 2
4 j

Hj21 (x)

s 2
.(A.6)

Generalizing the procedure, that is deriving (A.4) with respect to x for n times, the n-th
derivative of Hn is calculated as

D n
x Hj (x)4

j!

( j21) !

Hj2n (x)

s 2
.(A.7)

The iteration rules for Hj are very important because they are pratically used in the
calculations of polynomials of n-order as a function of polynomials to the (n21) and
(n22) order; deriving (A.4) with respect to t and equalling the coefficients, the
following formula is finally obtained:

Hj (x)2
(x2m)

s 2
Hj21 (x)1

( j21)

s 2
Hj22 (x)40 .(A.8)

The differential equation for Hermite polynomials is deduced from the Hj21 .
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In fact from the Hj21 and the Hj22 terms, calculating by (A.6) and (A.7) and
substituting this expression in eq. (A.8), the equation below is derived:

jHj (x)2 (x2m)
d

dx
Hj (x)1s 2 d2

dx 2
Hj (x)40 .(A.9)

As a last step, the orthogonalization polynomials rules must be obtained and the
following integral must be considered:

�
2Q

1Q

Hm (x) Hn (x) a s (x) dx4 (21)n �
2Q

1Q

Hm (x) D n
x a s (x) dx4

4 (21)n Hm (x) D n21
x a s (x)N1Q

2Q1 (21)n21 �
2Q

1Q
d

dx
Hm (x) D n21

x a s (x) dx ,

where the partial integral rules are evidently used. The first term shall be

(21)n Hm (x) Hn (x) a s (x) ]Q40 ,(A.10)

because, obviously,

a s (6Q)40 .

The second term is similar to the integral of the first step. Performing the calculations,
the ortogonalization rules are

�
2Q

1Q

Hm (x) Hn (x) a s (x) dx4d m
n

n!

s 2n
.(A.11)

AP P E N D I X B

Determination of Gram-Charlier coefficients

The development of GC consists in determining the PDF as

f (x)4 !
j40

Q

Cj Hj (x) a s (x)4a s (x) !
j40

Q

Cj Hj (x) .(B.1)

From (B.1), multiplying by Hn and integrating by (A.11), the following formula
results:

�
2Q

1Q

f (x) Hn (x) dx4Cn
n!

s 2n
,(B.2)
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from which the coefficients are

Cn4
s 2n

n!
�

2Q

1Q

f (x) Hn (x) dx .(B.3)

From (A.4) it is possible to explicity deduce the Hermitian polynomial for different
values of n:

H2n1d d
4

1

s 2(2n1d n )
!
z40

n

(21)z (x2m)2n1d d22z (2n1d d ) !s 2z

(2n1d d22z) ! 2z z!
,(B.4)

where n40, 1 , 2 , R and d d is

d d4
.
/
´

11

0

if (2n1d d ) is odd ,

if (2n1d d ) is even .
(B.5)

Replacing (B.4) in (B.3), the following formula is obtained:

C(2n1d d )4 !
z40

n (21)z s 2z

(2n1d d22z) ! 2z z!
�

2Q

1Q

f (x)(x2m)2n2d d22z dx .(B.6)

Substituing the (x2m)k in (B.6) and taking into account the decomposition:

(x2m)k4 !
n40

k

(21)k2n x n m k2nu k

k2n
v ,(B.7)

the calculation of the coefficients Cn is

C(2n1d d )4 !
z40

n (21)z s 2z

(2n1d d22z) ! 2z z!
Q(B.8)

Q !
n40

2n1d d22z

4 u 2n1d d22z

2n1d d22z2n
v (21)2n1d d22z2n m 2n1d d22z2n m n ,

where the m k moments are explicitly introduced.
Replacing the binomial coefficient in (B.7) the final Cn determination is

C(2n1d d )4 !
z40

n s 2z

2z z!
!

n40

2n1d d22z (21)2n1d d2z2n

(2n1d d22z2n) ! n!
m 2n1d d22z2n m n .(B.9)

This formula is the most general possible form with which coefficents are represented
in the development of GC because it refers to any choice of s and m .
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