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Summary. — The properties of a stochastic model with non-Gaussian random noise
describing turbulent dispersion have been investigated, with reference to its mathe-
matical structure and to its behaviour simulating the inertial subrange. The process
is Markovian, mean-square continuous and with �-correlated increments. The model
is influenced by the turbulence inhomogeneities also at the smallest scales, that is, it
does not correctly simulate the existence of a well-developed inertial subrange. Some
numerical computations have been performed confirming the theoretical results.

PACS 92.60.Ek – Convection, turbulence, and diffusion.
PACS 47.27.Qb – Turbulent diffusion.
PACS 01.30.Cc – Conference proceedings.

1. – Introduction

The Lagrangian description of turbulent dispersion by means of stochastic pro-
cesses was initiated by Taylor (1921) [1] with reference to homogeneous turbulence.
Obukhov (1959) [2] made explicit use of a stochastic differential (Langevin) equation
to deal with the same problem, whereas more recently Thomson [3, 4] generalized the
Langevin equation in the case of inhomogeneous turbulence.

Thomson [4] outlined some general conditions that have to be satisfied by a stochastic
model for describing the turbulent dispersion of marked fluid particles, that is:

1. At small time scale, the accelerations of the fluid particles are independent of each
other [5], so that the stochastic process describing the velocity is a Markov process.

(�) Paper presented at EUROMECH Colloquium 338 “Atmospheric Turbulence and Dispersion in
Complex Terrain” and ERCOFTAC Workshop “Data on Turbulence and Dispersion in Complex
Atmospheric Flows”, Bologna, 4-7 September 1995.
(��) The authors of this paper have agreed to not receive the proofs for correction.
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2. The small time behaviour of the statistics of the particle velocity has to be consis-
tent with the Kolmogorov hypothesis referring to the inertial subrange, that is, the
correlation of the velocity increments has to be independent of the initial conditions
and grow linearly with time [5, 6].

3. A true fluid particle is characterized by a continuous trajectory, so that it seems
reasonable to require the stochastic process to be continuous (this is the assumption
leading to the model choice made by Thomson [4] and other authors).

4. If the particles of tracer are initially well mixed, they will remain so. This criterion
is referred to as well-mixed condition and applies to general, unsteady situations.
A weaker condition was used in [3], that is, for times larger than the time scale of
the inertial subrange the unconditioned statistics of the particle velocities has to be
the same as the Eulerian statistics of the fluid velocity.

A detailed analysis of the previous points has been performed by [4] and by [6] referring
to stochastic models with noise described by a Wiener process. In particular, [4] proposed
a model based on the previous assumptions, which has been used to investigate dispersion
in complex flows (see, for istance, Luhar and Britter [7] and Näslund et al. [8]). The
main shortcomings of this type of model have been also discussed in details, for istance by
Sawford [9]. Namely, in the 3D case, the equation leading to define the drift term in the
Langevin equation does not have in general a unique solution.

On the other hand, the model described by Thomson [3], characterized by a non-
Gaussian noise, appears to be of easy application, although there are some problems with
respect to the conditions outlined above. In particular, the trajectories of the stochastic
process do not display sample-path continuity (a strong continuity condition, as will be
discussed after), thus lacking to satisfy condition 3). In spite of this, implementations of
this model turn out to describe quite well dispersion experiments in perturbed boundary
layers (see Thomson [10], Tinarelli et al. [11], Brusasca et al. [12], Tampieri et al. [13]).

In this paper we shall discuss the structure of the stochastic process with non-
Gaussian noise, as derived by Thomson [3], in order to discuss the applicability condition
of the model.

2. – An outline of the model

According to the model proposed by Thomson [3], and referring to a monodimen-
sional case, the motion of each particle in the phase space (x; v) is described by a Langevin
equation, as follows: 8<

:
dv = �

v

T
dt+ d�(t) ;

dx = vdt ;
(2.1)

where T has the meaning of a decorrelation time (in homogeneous turbulence T is the
Lagrangian correlation time) and � is a random function with

h�(ti)�(tj)i = �(ti � tj) ;(2.2)

where h�i indicates the ensemble average.
Information about the structure of turbulence is put into the explicit form of T and

of the probability distribution (PDF) of �, so that in general they will be function of posi-
tion x.
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In the following we shall examine the properties of the discretized form of the
model (2.1), that is: 8><

>:
vi+1 =

�
1�

�t

Ti+1

�
vi + �i+1 ;

xi+1 = vi�t+ xi ;

(2.3)

where now �k is a discrete random process whose PDF is determined, according to Thom-
son [3], imposing that the unconditioned steady-state distribution of the particles in the
(x; v) space is the same as the Eulerian distribution of the fluid.

The expressions for the moments �i are reported in [3], (eq. 10), at first order in �T ,
and in appendix A at the second order in �t following [14] (eq. 3.7).

To generate the realizations of the process �k we shall use random numbers sampled
from a distribution with the first four moments �i; i = 1; : : : ; 4 given by (A.1). We note here
that only using the moments of the random forcing expressed at order (�t)2 the Gaussian
case can be recovered exactly (because �4 turns to be equal to 3(�2)2). Moreover the
Schwartz inequality �2�4 > (�3)2 is satisfied, at least as far as the order of magnitudes are
concerned, for all but the case of Gaussian inhomogeneous turbulence. In this respect, we
note that this is a quite unphysical case, and does not describe the atmospheric boundary
layer [15–17].

Condition (2.2) ensures that the process described by (2.1) is Markovian [18].
A few comments on the local structure of the increments of the process are in order.

For small times i�t� T , being T the scale of the decorrelation times Ti, there results

vi+1 � v0 =

i+1X
k=1

�k � v0�t

i+1X
k=1

1

Tk

+O(�t2) :(2.4)

The correlation of the velocity increments results, for i� j + 1

h(vi+1 � vi)(vj+1 � vj)i =
�t2

Ti+1Tj + 1
hvivji+ h�i+1�j+1i �

�t

Tj+1

�j;i+1h�i+1�ji;(2.5)

but h�i+1�j+1i = 0 by (2.2) and hvivji = 0 by Markovianity. Thus, the process is �-
correlated.

3. – Continuity of the trajectories

The continuity of the trajectories of the particles in the phase space is a physical re-
quirement, if real trajectories have to be simulated. Because the stochastic model is used
to describe the average properties over an ensemble of trajectories, we are not interested
in the behaviour of the single trajectory, but only in the average behaviour of the ensem-
ble, thus we argue that the relevant continuity condition for the process is a condition
requiring the continuity in probability.

An appropriate continuity condition is a criterion [19] which reads

lim
�t!0

h(vi+1 � vi)
2i = 0 :(3.1)

In fact there results

(vi+1 � vi)
2 =

�t2

T 2
i+1

v2i + �2i+1 � 2
�t

Ti+1

vi�i+1(3.2)
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and thus

h(vi+1 � vi)
2i = �t2

�
v2i
T 2
i+1

�
+ h�2i+1i ;(3.3)

so

lim
�t!0

h(vi+1 � vi)
2i = 0:(3.4)

Thus, the present process is mean-square continuos, a weaker condition with respect to
the sample path continuity, which could be expressed following a condition given by Kol-
mogorov [20]. This criterion implies the existence of positive constants p; r; L such that

h(vi+1 � vi)
pi �

Lj�tj

jlg2j�tjj1+r
; p < r ;(3.5)

where vi+1, vi are the velocities at times (i+ 1)�t and i�t. This stronger continuity con-
dition is verified in the Gaussian case, and in general by the Thomson [4] model, because
the noise is a Wiener process and the stochastic process has locally the same form as a
process with independent increments.

4. – The small time behaviour

The existence of the inertial subrange has some implications on the behaviour of the
trajectories of the stochastic model (as outlined by [6]). The Kolmogorov hypothesis states
that in the inertial subrange the structure of the turbulence is locally homogeneous and
isotropic. Because the accelerations are shown to be almost independent of each other [6],
any process describing the trajectories has to be a Markovian process with �-correlated
increments.

In the inertial subrange the correlation of the velocity increments is given by

h(vi � v0)
2; v0i = c0�i�t ;(4.1)

where � is the dissipation rate, and the constant c0 takes a value between 2 and 7, accord-
ing to the literature.

In general, we have

h(vi � v0)
q ; v0i = (c0�i�t)

q

2 ;(4.2)

but the odd moments have to be zero to the leading order due to isotropy.
In particular, we must note that the moments are independent of the value of the

initial velocity v0.
The present model is characterized by a non-Gaussian random noise, and then its

PDF does not satisfy a Fokker-Planck equation (at variance with models with Gaussian
noise). The relevant equation is a Kramers-Moyal equation, which does not give an ex-
pression for the PDF that can be used for the present purposes. More simply, it is possible
to compute the first moments of the velocity increments directly from (2.3). The velocity
increment may be written as

vi+1 � v0 = �v0�t

0
@i+1X

j=1

1

Tj

1
A+

i+1X
j=1

�j +O(�t2) :(4.3)
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Fig. 1. – h(vi+1 � v0)
2i as a function of time � , for � � T , in the case of homogeneous turbulence.

Continuous line: first term of eq. (4.6); stars: numerical simulation average over 104 trajectories.

In general, the value of the decorrelation time T and the PDF of the noise vary with
the position along the trajectory. However, for small times (k�t � T ) we assume that
on average the total distance covered by each particle is small with respect to the spatial
scale of variation of the turbulence. Consequently, in the following computations we will
use the values of the time scale T and of the moments of the noise computed in the initial
points of the trajectories. Obviously this is not a restriction in homogeneous turbulence.
Averaging over the ensemble of trajectories we have

h(vi+1 � v0)
2i = G1� �G2�t� +

�
v20
T 2

�
2v0A1

T

�
�2 +O(�t)2)(4.4)

and

h(vi+1 � v0)
3i = H1� �H2�t� � 3v0

G1

T
�2 + 3v0

G2

T
�t�2+(4.5)

+

�
3v20

A1

T 2
+ 3v0

G1

T 2

�
�3 +

�
�3v20

A2

T 2
� 3v0

G2

T 2

�
�t�3 +O(�t2)
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Fig. 2. – As in fig. 1, but for the third moment h(vi+1 � v0)
3i, eq. (4.7).

where � = (i+ 1)�t.

The expressions for the coefficients are reported in appendix A.

In homogeneous, non-Gaussian turbulence the previous expression reduces to

h(vi+1 � v0)
2i = 2

k2

T
� �

k2

T 2
�t� +

v20
T 2

�2 +O(�t2)(4.6)

and

h(vi+1 � v0)
3i = 3

k3

T
� � 3

k3

T 2
�t� � 6v0

k2

T 2
�2 + 3v0

k2

T 3
�t�2 + 6v0

k2

T 3
�3 �(4.7)

�3v0
k2

T 4
�t�3 +O(�t2) :
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Fig. 3. – As in fig. 1, but in the case of inhomogeneous turbulence, eq. (4.4). The initial position
of the trajectories is such that turbulence in the mixed region is strongly inhomogeneous and non-
Gaussian.

At order � the second moment is consistent with (4.2), holding in the inertial subrange,
that is, it does not depend on the initial velocity v0 and the coefficient of � is exactly c0�.
The dependence on the initial velocity appears at second order in � . The independence
from v0 at first order has a relation with the mean-square continuity discussed above. In
fact Borgas and Sawford [6] showed that in a discontinuos process (with jump) this depen-
dence appears at first order in � ; the weak continuity condition of the present process is
then consistent with a good behaviour of the velocity correlation.

The third moment is different from zero at leading order, contradicting the above
considerations on the odd moments, and showing that in this model the physical informa-
tion derived from the large scale structure of the turbulence has an effect on the small
time behaviour, being present in the structure of the noise. Consistently, in inhomoge-
neous turbulence, the moments of the velocity increments depend at first order in � on
the derivatives of the moments of the random forcing.

We notice that (4.5) and (4.7) highlight a contradiction with the inertial subrange be-
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Fig. 4. – As in fig. 3, but for the third moment h(vi+1 � v0)
3i, eq. (4.5).

haviour condition, namely (4.2) above. However, if the model is applied to describe disper-
sion over scales larger than the integral turbulence scale (or over times larger than T ), we
can neglect the small time behaviour of the dispersion. Thus, the model should be applied
properly under these conditions.

The results obtained for the behaviour of the model at small times have been tested
numerically using data on turbulence in a mixing region. The turbulent mixing region
that develops when a high-velocity flow mixes with a low-velocity one presents a case of
highly inhomogeneous turbulence. Detailed measurements of high-order moments and of
many other quantities are available from laboratory experiments using high-pressure air
inflated trough a nozzle in a chamber with still air [21].

For these experiments the PDF of the random forcing has been assumed to be given
by the sum of two Gaussian distributions. Given only the first four moments the problem
is not closed; we have adopted a closure presented by [14] wich minimizes the difference
between the amplitude of the two Gaussian distributions. Because the time step was cho-
sen to be quite small, the PDF of the random noise turns out to be quite skewned. This
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fact leads to random numbers chosen more frequently from one Gaussian curve than from
the other one. On the other hand, small time steps are necessary to obtain stable numer-
ical results in the integration of the Langevin equation. Comparing the statistics of the
particle velocity with those prescribed for the fluid, a good agreement results, showing
that the ensemble average is made on a sample large enough to ensure stability of the
computed moments [14].

Equations (4.4) and (4.5) have been verified using different values of the initial veloc-
ity v0. The numerical tests have shown the independence of velocity correlation on v0.

In figs. 1-4 the behaviours of h(vi+1�v0)2i and h(vi+1�v0)3i are reported for v0 = 0 as
a function of time: there results that the theoretical formula at order �t, i.e. the first term
of eqs. (4.4)-(4.7) (continuous line), agrees with the numerical estimate (stars) within 10%.

5. – Conclusions

Some properties of a stochastic model for turbulent dispersion based on the Langevin
equation with non-Gaussian noise have been examined.

The model turns out to be Markovian, with �-correlated increments. Moreover, a
continuity condition for the trajectories has been verified.

The main difference with models characterized by a Gaussian noise lies in the be-
haviour in the inertial subrange. The non-Gaussian model shows odd moments of the
velocity increments which account for the inhomogeneous structure of turbulence. Thus
this model does not describe in a proper way the existence of the inertial subrange, but
can be applied to dispersion problems with time scale larger than that of the inertial sub-
range. This was, in fact, done in the practical implementations of the model, already cited
in the introduction. Moreover, the possibility to use such models in conditions when the
inertial subrange is not developed, or is not explicitly described by the velocity field, has
to be investigated.

APPENDIX A.

In this appendix we consider the explicit expression of the first four moments of the
PDF of the random forcing used in (2.3). According to [14] (par. 3), we have

8>>>>>><
>>>>>>:

�1 = �tA1 � (�t)2A2 ;

�2 = �tG1 � (�t)2G2 ;

�3 = �tH1 � (�t)2H2 ;

�4 = �tL1 � (�t)2L2 ;

(A.1)

with
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>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

A1 =
dk2
dx

;

A2 =

�
dk2
dx

1

T
+

1

2

d2k3
dx2

�
;

G1 =

�
2
k2

T
+

dk3
dx

�
;

G2 =

"
k2

T 2
+

2

T

dk3
dx

+
5

2
k2
d2k2
dx2

+

�
dk2
dx2

�2
+

1

2

d2k4
dx2

#
;

H1 =

�
3
k3

T
+

dk4
dx

+ 3k2
dk2
dx

�
;

H2 =

�
3k3
T 2

+
3

T

dk4
dx

+
3

T
k2

dk2
dx

+
7

2
k2
d2k3
dx2

+
9

2
k3

d2k2
dx2

+ 4
dk2
dx

dk3
dx

+
1

2

d2k5
dx2

�
;

L1 =

�
4

T
k4 + 6k3

dk2
dx

+
dk5
dx

+ 4k2
dk3
dx

�
;

L2 =

"
�

12

T 2
k22 +

6k4
T 2

+
4

T

�
dk5
dx

+ k2
dk3
dx

+ 3k3
dk2
dx

�
+ 7k4

d2k2
dx2

+ 8k3
d2k3
dx2

+

+
9

2
k2
d2k4
dx2

+ 6k22
d2k2
dx2

+ 3k2

�
dk2
dx

�2
+ 4

�
dk3
dx

�2
+ 7

dk2
dx

dk4
dx

#
;

(A.2)

where ki; i = 1; : : : ; 5 are the cumulants of the flow velocity, and we choose k1 = 0 accord-
ing to the data [10].
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