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Abstract

A pattern of interpolation nodes on the disk is studied, for which the inter-
polation problem is theoretically unisolvent, and which renders a minimal
numerical condition for the collocation matrix when the standard basis of
Zernike polynomials is used. It is shown that these nodes have an excellent
performance also from several alternative points of view, providing a numer-
ically stable surface reconstruction, starting from both the elevation and the
slope data. Sampling at these nodes allows for a more precise recovery of the
coefficients in the Zernike expansion of a wavefront or of an optical surface.

Keywords: Interpolation, Numerical condition, Zernike polynomials,
Lebesgue constants

1. Introduction

Zernike or circular polynomials [1] constitute a set of basis functions,
very popular in optics and in optical engineering, especially appropriate to
express wavefront data due to their connection with classical aberrations.
Some of their applications in optics include optical engineering [2], aber-
rometry of the human eye [3, 4, 5], corneal surface modeling [6, 7, 8] and
other topics [9, 10, 11, 12] in optics and ophthalmology. Due to their optical
properties and pervasiveness, Zernike polynomials are included in the ANSI
standard to report eye aberrations [13].
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In almost every practical application, an optical surface or wavefront is
sampled at a finite set of points, followed by a fit of the collected data by a
linear combination of the Zernike basis with the purpose to determine the
corresponding coefficients (sometimes called modes). This is normally done
by means of the standard technique of linear least squares, which reduces
to interpolation when the size of the data and the dimension of the basis
match. The process is often ill-conditioned, as its stability strongly depends
on an adequate choice of the sampling nodes. Analogous situation arises, for
instance, when the Zernike basis is used to fit the slopes of the wavefront in
a Shack-Hartmann device [14]. Their partial derivatives are used in a least
squares fit and if the sampled nodes are not chosen carefully, the resulting
Zernike modes might be totally inaccurate.

Different sampling patterns can be found in [15, 16, 17]. Some of them
are based on random or pseudo-random points drawn according to a prob-
ability distribution on the disk. Other schemes include regular or quasi-
regular grids, such as squared or hexagonal Cartesian grids, regular po-
lar grids or hexapolar grids, that cover the surface of the disk more or
less uniformly. However, these sampling patterns generally produce an ill-
conditioned collocation matrix even for moderate Zernike polynomial orders.
This issue was addressed in [16] for the reconstruction of the wavefront from
its slopes, putting forward a spiral arrangement as the best best-performing
sampling pattern for this problem. However, the numerical results show
that even this pattern is not totally satisfactory for the elevation data.

The main goal of this paper is to discuss in a certain sense optimal
patterns for sampling and interpolation on the disk using the basis of the
Zernike polynomials for moderate degrees, used in practical applications in
optics and ophthalmology. They render well-conditioned collocation ma-
trices and provide numerically stable surface reconstruction, starting from
both the elevation and the slope data.

2. Methods

Zernike polynomials

Zernike polynomials are usually defined in polar coordinates using the
double-index notation (see e.g. [2, Ch. IX]),

Zm
n (ρ, θ) =

{
γmn R

|m|
n (ρ) cos(mθ), if m ≥ 0,

γmn R
|m|
n (ρ) sin(|m|θ), if m < 0,

(1)

2



where n ≥ 0, |m| ≤ n, and n −m is even, γmn are normalization constants,
and the radial part Rm

n is

R|m|n (ρ) =

(n−|m|)/2∑
s=0

(−1)s(n− s)!
s!((n+ |m|)/2− s)!((n− |m|)/2− s)!

ρn−2s,

which can be expressed in terms of shifted Jacobi polynomials P
(0,m−n)
n .

Alternatively, a single index notation is used, and the conversion from Zm
n

to Zj is made by the formula [13]

j =
n(n+ 2) +m

2
∈ N ∪ {0}. (2)

Functions Zm
n are actually polynomials in Cartesian coordinates (x, y).

Index n is called the radial order of Zm
n . It is easy to see that the number

of distinct Zernike polynomials of radial order ≤ n is

N =
(n+ 1)(n+ 2)

2
, (3)

which matches the dimension of algebraic polynomials in two variables of
total degree ≤ n. In fact, Zernike polynomials are a complete polynomial set
on the unit disk D = {(x, y) ∈ R 2 : x2 + y2 ≤ 1}, orthogonal with respect
to the area measure on the disk.

The normalization factor γmn for simplicity can be set to 1; however,
with γmn =

√
(2− δ0,m)(n+ 1), where δ is the Kronecker delta, the set of

polynomials is orthonormal:∫∫
D
Zm
n (ρ, θ)Zs

r (ρ, θ)ρ dρdθ = δn,rδm,s.

In what follows, notation Zm
n stands for the orthonormal Zernike polynomi-

als.
The standard Fourier theory can be easily extended to the circular poly-

nomials. In particular, any function W ∈ L2 defined over D can be repre-
sented as

W (ρ, θ) =
∑
m,n

cmn Z
m
n (ρ, θ), cmn =

∫∫
D
W (ρ, θ)Zm

n (ρ, θ)ρ dρdθ. (4)

However, in real applications function W is sampled only at a discrete (and
finite) set of nodes, and its Zernike (Fourier) coefficients cmn must be re-
covered using only this available information. A common and statistically
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meaningful procedure seeks a solution in the (weighted) least squares sense
to a linear system whose matrix (known as the collocation matrix ) consists
of evaluations of the Zernike basis in the given set of points or nodes (see
e.g. [18]). In the case when the number of nodes matches the dimension
of the polynomial subspace used for approximation (called “critical sam-
pling” in [16]), the problem boils down to the polynomial interpolation of
the function W at a given set of nodes.

It is worth mentioning an alternative approach, called hyperinterpolation
[19], where W is approximated by truncations of the series in (4), but the
Fourier coefficients cmn are computed using quadrature formulas evaluated
at the discrete set of nodes. The analysis of this method lies beyond the
scope of this paper.

Goodness of the sampling patterns

It is well known that in the multivariate case the unisolvence of the in-
terpolation problem for arbitrary nodes is not guaranteed, so not every sam-
pling pattern is acceptable (several configurations of interpolation points on
the disk that guarantee unisolvence are well-known and can be found in the
literature, see e.g. [20, 21, 22, 23]). Moreover, the error in approximating a
function by its interpolating polynomial depends on the interpolation nodes:
standard upper bounds for the error are based on the so-called Lebesgue con-
stants corresponding to these nodes, which give the norm of the interpolation
as a projection operator onto the polynomial subspace (see e.g. [23, 24]).

Thus, if we are interested in the set of interpolation points which gives
the smallest possible upper bound on the interpolation error in an arbitrary
continuous function, an optimal choice of interpolation points (at least, in
this sense) is given by those which minimize the Lebesgue constant. The
asymptotic theory of these interpolation sets is rather well understood. For
instance, as it was established in [25], the order of growth of the Lebesgue
constants on the disk for algebraic polynomials of total degree ≤ n is ≥
O(
√
n). Moreover, the sub-exponential growth of the Lebesgue constants

implies, among other facts, the weak-* convergence of the nodes counting
measure to the (pluripotential theory) equilibrium measure of the disk, given
by (2π

√
1− x2 − y2)−1dxdy (see [26] and [27]).

Closely related is the notion of admissible and weakly admissible meshes
(see [28] and [29]), namely sequence of discrete subsets An of a compact set
K such that

sup
p

max{|p(x)| : x ∈ K}
max{|p(x)| : x ∈ An}
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over the polynomials of degree ≤ n is either uniformly bounded (admissible)
or grows at most polynomially in n (weakly admissible).

Minimizing the Lebesgue constant amounts to solving a large scale non-
linear optimization problem, to which the true solution is not explicitly
known, even in the case of univariate interpolation. In fact, no explicit ex-
amples of multivariate interpolation sets providing an at most polynomial
rate of growth of the Lebesgue constants are currently available. In the case
of the square [0, 1]2, the most popular nodes are given by the so-called Padua
points [30], but their construction seems to be hardly generalizable to other
sets. For the disk, no explicit configurations of interpolation points obeying
the order of growth of O(

√
n) are known. Good candidates are points mini-

mizing certain energy on the disk, such as Leja (giving a polynomial growth
of the Lebesgue constants, as established in [31]) or Fekete points [32]. The
so-called Bos arrays (see [33], as well as [26] and [27, Section 8]) provide
a polynomial growth of the Lebesgue constants, which usually suffices for
practical applications. The Lebesgue constants for several other unisolvent
configurations have been numerically analyzed in [23].

However, these criteria of optimality of nodes do not take into account
the numerical aspects of the interpolation. For instance, if we have a poly-
nomial basis fixed, interpolation boils down to finding the coefficients of the
expansion of the interpolating polynomial in terms of this basis, which is
equivalent to solving a linear system given by the so-called collocation ma-
trix. It is well know that the actual choice of the basis greatly influences the
accuracy of the solution to this problem.

This is the situation with the actual practice in ophthalmology and the
visual science: the polynomial basis is usually given a priori by the orthonor-
mal Zernike polynomials (see e.g. [18] for other bases). Assuming this as the
starting hypothesis, we analyze the dependence of the numerical stability of
the associated linear system from the selection of the nodes.

In theory, unisolvence of the interpolation problem is equivalent to the
regularity of the corresponding collocation matrix. However, from the prac-
tical point of view invertibility of the collocation matrix is not sufficient,
since ill-conditioned problems are numerically infeasible. The numerical
conditioning of a system of linear equations can be measured by the con-
dition number κ(A) of the system matrix A with respect to inversion, see
e.g. [34]. Roughly speaking, κ(A) ≈ 10s means a possible loss of about s
digits of accuracy in the solution of the linear system. In particular, when
working in the IEEE double precision with matrices with condition numbers
of order 1016, all the significant digits may be lost.

Our goal is to put forward a construction of a Bos array of interpolation

5
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Figure 1: Concentric sampling patterns for Zernike polynomials (left) and spiral sampling
pattern, as defined in [16] (right), for Zernike polynomials of radial order 9 (top) and 12
(bottom).

nodes on the unit disk for which the corresponding collocation matrix built
from Zernike polynomials is particularly well-conditioned, at least for mod-
erate degrees. Motivated essentially by basic applications in visual sciences,
we do not tackle the asymptotic problem here.

We will also make a comparison with the recently introduced spiral sam-
pling [16] for the reconstruction of the wavefront from its slopes, which
allowes for a stable use of the Zernike polynomials up to radial order 15,
approximately (see Figure 1, right, where the spiral pattern is depicted for
radial orders 9 and 12, respectively).
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Interpolation nodes with low condition numbers

We minimize the condition number of the collocation matrix for a pattern
of nodes on concentric circles (the Bos arrays), for which unisolvence has
been established (see [33], as well as [21]). Namely, given the maximal radial
order n of Zernike polynomials, we choose

1 ≥ r1 > r2 > · · · > rk ≥ 0, k = k(n) =
⌊n

2

⌋
+ 1

radii (where b·c is the floor operator); on the i-th circle with center at the
origin and radius ri we place

ni = 2n+ 5− 4i

equally spaced nodes. Notice that

k∑
i=1

ni =
(n+ 1)(n+ 2)

2
= N,

namely, the number of Zernike polynomials of radial order ≤ n. With this
rule, the k-th (innermost) circle contains 1 node if n is even, and 3 nodes
otherwise (see Figure 1, left). Observe that we have not prescribed the exact
position of the nodes (only that they are equally spaced). The latter con-
dition is relevant: there are examples in [35] showing that the interpolation
problem is not poised for arbitrary points on the circle.

For the sake of precision, let us set the nodes on the circle of radius ri
having the arguments 2πt/ni, t = 0, . . . , ni − 1. However, we will see that
the actual positions of the nodes on the respective circles have a relative
relevance.

If we denote by Pi, i = 1, . . . , N , the nodes constructed according to this
rule, and if Zj are the Zernike polynomials enumerated using formula (2),
then the collocation matrix takes the form

An = (Zj−1(Pi))
N
i,j=1 , (5)

and we are interested in its condition number κ2(An), which can be com-
puted as the ratio of the largest to the smallest singular values of An (see
[34]). Since the singular values are invariant by permutation of rows and
columns of An, the value of κ2(An) is independent of the order of the nodes
Pi and of the Zernike polynomials Zj .

In the proposed scheme, the relevant parameters at hand are the radii
ri. We consider the problem of

min{κ2(An) : 1 > r1 > r2 > · · · > rk ≥ 0}; (6)

7



the optimal values of rj ’s were found using simulated annealing followed by
the algorithms for non-linear optimization implemented in the Optimization
Toolbox of Matlab, achieving at least 4 digits of precision, which is suffi-
cient for interpolation with Zernike polynomials of radial order ≤ 30. The
constraint r1 < 1 is for a practical reason: in actual measurements the data
in the periphery is usually much less reliable.

A similar problem, but minimizing the Lebesgue constants for the nodes
{Pi}, was considered in [23, 32, 36, 37]. In [23], the radii were studied
in connection with the notion of spherical orthogonality for multivariate
polynomials, and values of rj ’s, given by the zeros of certain Gegenbauer
orthogonal polynomials, were analyzed experimentally. In [36], along with
the Lebesgue constants, the condition numbers κ∞(An) = ‖An‖∞‖A−1n ‖∞
were used to optimize the radii. The nodes described below, found as the
solution to the problem (6), differ from those obtained in [23] and [36].

So far, we have not been able to associate the optimal values of rj ’s with
any known set. Instead, we will prescribe the quasi-optimal radii rj using
the following formula, obtained by the least square fitting of the optimal
radii:

rj = rj(n) = 1.1565 ζj,n − 0.76535 ζ2j,n + 0.60517 ζ3j,n, (7)

where ζj,n are zeros of the (n+1)-st Chebyshev polynomial of the first kind,

ζj,n = cos

(
(2j − 1)π

2(n+ 1)

)
, j = 1, . . . , k =

⌊n
2

⌋
+ 1.

Given these radii, the interpolation nodes Pj are defined in polar coordinates
as (

rj , 2π
sj − 1

nj

)
, j = 1, . . . , k(n), sj = 1, . . . , nj . (8)

We have also studied numerically the behavior of the Lebesgue constants
corresponding to our interpolation nodes {Pi}. Recall [24] that the Lebesgue
constant Λn corresponding to the polynomial interpolation with total degree
≤ n is the maximum over the disk D of the function

`(x, y) =

N∑
i=1

|`i(x, y)|, (9)

where `i(x, y) is the i-th basic Lagrange polynomial characterized by `i(Pj) =
δij . In particular,

`i(x, y) =
1

detAn
det
(
A(i)

n (x, y)
)
, (10)

8



where An was defined in (5), and A
(i)
n (x, y) is obtained from An by replacing

the i-th row with (Zj−1(x, y))Nj=1.
It is worth mentioning that other nodes can be obtained following [38,

39], where greedy optimization algorithms to compute a “good” set of nodes
for multivariate polynomial interpolation are used.

3. Experimental results

We have carried out numerical results in order to assess the performance
of several sampling patterns. The random, hexagonal, hexapolar, square
and the spiral pattern proposed by Navarro et al. were compared in [16].
The results of our analysis corroborate the main conclusion of [16], i.e., that
the spiral sampling outperforms the rest of the patterns discussed therein.
However, as it could be inferred already from [36], the concentric configura-
tions can give better results, at least in terms of the numerical conditioning
of the collocation matrix An. In this paper, we compare the spiral sampling
pattern from [16] with the interpolation scheme, given by (7)–(8), and to
which we refer as the optimal concentric sampling, or the OCS, for short.

To make a proper comparison between the spiral sampling and the OCS,
a variety of experiments were carried out. In a wide range of Zernike radial
orders, from 1 to 30, the condition numbers κ2 of the collocation matrix (5)
corresponding to both sampling methods were calculated, and a summary
of the results is available both in Table 1 and in Figure 2, left. We see that
κ2 for the spiral pattern have a reasonable behavior for low radial orders
n, but grow large for higher degrees1, being greater than 106 for n = 15.
In comparison, observe that the maximum condition number for the OCS,
corresponding to a radial order of 30, is less than 100. In order to stay within
this frame with the spiral sampling, we must restrict ourselves to Zernike
polynomials of radial order not greater than 6.

We know that the high condition number of the collocation matrix An

in (5) has a direct impact on the accuracy of the solution of the interpola-
tion problem. For illustration, a synthetic wavefront given by a vector of
496 randomly generated Zernike coefficients between -1 and 1 was sampled
according to both schemes. These samples were used as the interpolation

1One of the several possible explanations can lie in the intrinsic structure of the spiral
points: the radial density of the sampling is almost constant when approaching the border
of the disk. Thus, neither they correlate well with the increasingly oscillatory behavior of
the Zernike polynomials close to the boundary, nor they approximate appropriately the
pluripotential theory equilibrium measure of the disk.

9



n [N] κ2 for spiral sampling κ2 for OCS

10 [66] 5.8× 104 3.2

15 [136] 2.4× 106 5.7

20 [231] 2.7× 108 11.3

22 [276] 7.0× 1015 15.2

27 [406] 1.9× 1016 32.8

30 [496] 3.0× 1017 53.3

Table 1: Dependence of the condition number κ2 on the maximal Zernike radial orders
n and on the total number of polynomials N , both for the spiral sampling and for the
optimal concentric sampling (OCS).
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Figure 2: Left: condition number κ2 of the collocation matrix (5) as a function of the
radial order, for both the spiral pattern and the OCS. Right: range plot of the RMS error
of the recovered Zernike modes with respect to the exact coefficients.
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Figure 3: The effect of using the approximated values of the radii ri(n) given by (7),
instead of the optimal ones computed numerically, on the condition number of the matrix
(5).

data for recovery of the original Zernike coefficients by solving the system
with the collocation matrix (5). This procedure was repeated 100 times and
the mean and standard deviation of the RMS error distribution for the co-
efficients were computed, as depicted in Figure 2, right. The RMS of 10−5

can be considered as a threshold above which the recovered coefficients are
unreliable (less than 5 accurate decimal digits). Observe the correspondence
between both graphs in Figure 2.

As it was explained, formula (7) renders an approximation to the optimal
radii ri(n), found numerically. The impact of replacing the optimal values
by this approximation on the numerical condition of the matrix (5) can be
appreciated in Figure 3; we can see that the values of ri(n) are quite robust:
the approximation hardly affects the condition number, at least for radial
orders ≤ 30 (we have computed numerically ri(n) for n ≤ 30).

The nodes found in [36] are prescribed by (8), but the radii are given by
the formula

rj = 1−
(

2(j − 1)

n

)a

, j = 1, . . . , k(n),

where the exponent 1 < a < 2 is found experimentally and can depend
on n; the value a = 1.46 is said to give reasonable results for all degrees
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n. Numerical experiments show that these nodes give moderate condition
numbers κ∞(An), although the nodes (7)–(8) outperform them, using as the
criterion the values of either κ2(An) or κ∞(An).

Recall that the OCS interpolation nodes {Pi} were built assuming that
each ring has one node with argument 0 (i.e., aligned with the positive OX
semi-axis), and then optimizing the radii rj , see (7)–(8). A curious fact,
already observed before (see e.g. [23, 36]) is that the relative location of the
equidistant nodes on each ring has a relatively low impact on the condition
number of the collocation matrix.

The singular values of An, used for the computation of κ2, can be com-
puted as the square roots of the eigenvalues of the matrix B = Bn = AT

nAn,
where AT

n is the matrix transpose of An. Observe that the elements bij of
B = (bij) are given by

bij =
N∑
s=1

Zi−1(Ps)Zj−1(Ps) =
k∑

m=1

∑
‖Ps‖=rm

Zi−1(Ps)Zj−1(Ps),

where ‖P‖ is the distance of the node P ∈ R 2 to the origin. Observe that
for ` = 1, . . . , k(n),∑

‖Ps‖=r`

Zi−1(Ps)Zj−1(Ps) = γi−1γj−1Ri−1(r`)Rj−1(r`)Ωij(`),

with

Ωij(`) =

n∑̀
s=1

fi

(
|mi|θ`s(α`)

)
fj

(
|mi|θ`s(α`)

)
, θ`s(α`) = α` +

2π(s− 1)

n`
,

where n` = 2n+5−4`, functions fi are either sin or cos, and 0 ≤ α` < 2π/n`
is a parameter. The dependence of mi from i is given by (2). By standard
trigonometric formulas,

fi

(
|mi|θ`s(α`)

)
fj

(
|mi|θ`s(α`)

)
= ±h

(
(|mi| − |mj |)θ`s(α`)

)
±h
(

(|mi|+ |mj |)θ`s(α`)
)
,

where h = 1
2 cos if fi = fj , and h = 1

2 sin otherwise. Consequently,

Ωij(`) = ±
n∑̀
s=1

h
(

(|mi| − |mj |)θ`s(α`)
)
±

n∑̀
s=1

h
(

(|mi|+ |mj |)θ`s(α`)
)
.

In particular, let ` = 1; values ||mi| ± |mj || ≤ 2n are not divisible by
n1 = 2n + 1 except for ||mi| ± |mj || = 0, and straightforward calculations

12
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Figure 4: Maximal change in the condition number when a single circle of radius rj is
rotated, 1 ≤ j ≤ k(n), for radial orders n = 25 and n = 30.

show that

n1∑
s=1

h
(
(|mi| ± |mj |)θ1s(α`)

)
=

{
n1
2 , if mi = mj ,

0, otherwise,

and in any case, Ωij(1) is independent of α`. In other words, the singular
values of An (and hence, the condition number κ2(An)) do not depend on
the exact location of the nodes Ps, equally spaced on the outermost ring.

The considerations above are supported by some numerical experiments.
First, for the maximal radial order of Zernike polynomials equal to n = 25
(respectively, n = 30), equally spaced nodes were placed on k = 13 (respec-
tively, k = 16) concentric circles with radii given by (7). Then the nodes
on one of these circles were rotated preserving the equally spaced structure,
and the maximal condition number κ2 was computed. This procedure was
repeated for each ring; the results are illustrated in Figure 4.

Since in practice the precise placement of the interpolation nodes is dif-
ficult to guarantee, another criterion of usability of the OCS pattern is its
stability to global perturbations of the circles and nodes. In Figure 5 we illus-
trate the result of two independent experiments for radial orders n = 20, 25
and 30 of Zernike polynomials. The curves, marked with ’o’, reflect the sen-
sitivity of κ2 to the variation of the optimal radii rj , while the curves with
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Figure 5: Change in the condition number when the radii of circles are perturbed (’o’)
and when individual nodes are perturbed (’x’), for radial orders 20, 25 and 30.

’x’ show the change in κ2 when individual nodes are randomly perturbed.
It is worth pointing out that a study, similar in spirit, shows that weakly
admissible meshes for the disk, unisolvent for polynomial interpolation, re-
main unisolvent and weakly admissible under small perturbations, see [29,
Corollary 1].

We have also studied the behavior of the Lebesgue constants correspond-
ing to the OCS interpolation nodes {Pi}, using the formulas (9)–(10). Ob-
viously, straightforward numerical maximization of (9) is a formidable task.
A more efficient procedure was described recently in [37]: it uses an alter-
native way to assemble the Lagrange fundamental polynomials (following
[40, Algorithm 4.1]), along with replacing maximization of `(x, y) over the
whole disk by its maximization on an admissible mesh. We have used both
the ideas from [37] and the direct evaluation of (9) in a fine grid (definitely,
a much slower procedure). The results are illustrated in Figure 6.

We see that in this case the dependence of Λn from the dimension of
the interpolation space N is roughly linear, which is still far away from
the theoretically optimal O(

√
n) from [25], but of the same order than the

values obtained in [23]. The Lebesgue numbers corresponding to the OCS
interpolation nodes are also larger but comparable to those reported in [37]
(see Table 3 and Figure 8 therein).
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Figure 6: Lebesgue constants (vertical axis) as function of the order n (left) and of the
dimension of the interpolation space N (right) for the case of the OCS.

Remark 1. Formula (7) shows that the squares of the optimal radii are
(asymptotically) uniformly distributed on [0, 1] with respect to the function

G(x) = p
(

sin
(πx

2

))
, p(x) =

(
1.1565x− 0.76535x2 + 0.60517x3

)2
.

(11)
G is a strictly increasing function on [0, 1], with G(0) = 0, and G(1) =
0.992654 < 1. As it follows from [26] (see also [27, Section 8]), the inter-
polation nodes are asymptotically optimal (in the sense made more precise
therein) if

L(G) :=

∫ 1

0
x2 log (G(x)) dx+ 2

∫ 1

0

∫ 1

x
x log (G(y)−G(x)) dydx = −2/3.

Numerical integration shows that for G given in (11), L(G) = −0.681567,
which is slightly smaller.

The two examples in [27, Lemma 21 and 22] are

G1(x) = sin2
(πx

2

)
and G2(x) = 1− (x2 − 1)2,

for which L(G1) = −0.680609 and L(G2) = −0.675676, respectively. Notice
that G1 can be written in the form (11) with p(x) = x2.

As it was mentioned earlier, the wavefront sensors recover the actual
wavefront from sampling its slopes at a finite number of points. Mathe-
matically it boils down to solving systems of linear equations where the
collocation matrix is built from the partial derivatives of the Zernike poly-
nomials evaluated at the given nodes. This means, in particular, that each
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Figure 7: Condition number of the collocation matrix, built from partial derivatives of the
Zernike polynomials, as a function of the radial order, for both sampling patterns, namely,
OCS and the spiral sampling.

Zernike polynomial provides two rows of that matrix (corresponding to its
partial derivatives), and that the first (constant) polynomial plays no role
since its derivatives vanish. These considerations oblige to remove one sam-
pling node for each pattern, in order to make the size of the polynomial
basis match the size of the sample. We chose to remove in each case the
innermost node, although the results were very similar if any other sampling
node was removed instead. The condition numbers of these collocation ma-
trices of partial derivatives have been plotted in Figure 7 for both sampling
patterns. In contrast to the results obtained for the matrix (5), now the
condition numbers corresponding to the spiral and the OCS are similar,
and in both cases remain below 104. We can observe also some differences.
For low orders (up to 13), the spiral sampling produces a relatively smaller
condition number, although the difference is not significant. However, the
condition number for the optimal concentric pattern grows slower with the
radial order, so that for radial orders above 13 we get better results than
with the spiral sampling. This difference can amount to about one order of
magnitude for radial orders between 25 and 30.
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4. Conclusions

The sampling nodes for polynomial interpolation, in particular using the
Zernike basis, are crucial for an accurate reconstruction of an optical surface
or wavefront from the sampled data. The optimal concentric sampling,
defined by formulas (7)–(8), provides in many senses a quasi-optimal choice:
this set is unisolvent (poised) for interpolation and exhibits a very moderate
growth of both the condition numbers κ2 and of the Lebesgue constants.
This set is also fairly stable: as we have seen, small perturbations in the
values of the radii rj or in the location of the individual nodes Pj have no
considerable influence on the condition number κ2 of the collocation matrix.
Since in general the precise placement of the interpolation nodes is difficult
to guarantee, this fact is very relevant for the practical applicability of the
interpolation scheme.

We have analyzed also the influence of rotation of the equally spaced
nodes along each individual ring, showing that we can choose the nodes on
every circle independently from the others without affecting κ2 considerably.

We can conclude that the optimal concentric sampling described in this
paper not only renders a significant improvement in the accuracy of the
recovery of the Zernike coefficients for low orders, but allows also the pos-
sibility of using higher radial orders (of total degree 30 and even higher),
which is not practical with other sampling patterns.
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