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Abstract 8 

The operation of large-scale reverse osmosis units in combination with different solar power 9 

plants, both, Concentrating Solar Power (CSP) and Photovoltaics (PV) has been evaluated 10 

under variable load conditions. In the case of the Reverse Osmosis (RO) unit, configurations 11 

with and without an energy recovery device have been considered. In the case of the CSP 12 

plant, a thermal storage system with several capacities (8-14 h) covers the periods with low 13 

solar radiation and no storage has been taken into account for the PV plant due to the 14 

prohibitively high cost of batteries at large scale. The analysis has been done for a specific 15 

location in Algeria, considering different scenarios to adapt the operation of the RO unit at 16 

partial load in order to assure a stable operation. The dynamic performance of the RO unit is 17 

presented for each scenario, together with an economic analysis.  18 

 19 
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1. Introduction 22 

 23 

The development of industrial and agricultural activities together with the increasing 24 

population has led to the massive exploitation and contamination of water resources, leading 25 

to an alarming shortage of fresh water.  Middle East and North Africa (MENA) is one of the 26 

regions suffering more and more from serious problems of freshwater availability [1]. Such 27 

water scarcity drives to use technologies like seawater desalination that can alleviate this 28 

problem [2]. Algeria is one of the countries in MENA region that has included seawater 29 

desalination. The strategy of Algeria until 2030 is to have 1 billion m3
/ year of water produced 30 

by seawater desalination [3]. The exploitation of renewable energy sources (solar or wind) to 31 

produce electricity and fresh water is commonly considered as a very promising way to 32 

reduce the pollution and the environmental impact. Algeria has this great solar potential and 33 

the climatic conditions are favorable for the implantation of solar plants. Therefore, it seems 34 

logical that solar desalination will be one of the solutions to obtain freshwater in many 35 

regions of the country.  36 



There are several works in the scientific literature about the combination of RO plants with 37 

Photovoltaics (PV) or wind energy ([4], [5], [6], [7], [8]) and with CSP ([9], [10], [11]), 38 

which give promising economic results when it is compared with the operation of Reverse 39 

Osmosis (RO) driven by fossil energy (0.8 €/m3 in the case of CSP-RO and between 0.59 40 

€/m3-2.81 €/m3 for PV-RO). However, some of them have been done for a design point or 41 

don’t consider the operation of the desalination plant under intermittent power due to the 42 

nature of the source of energy. There are only few works in the literature that consider the 43 

intermittent power source. Wenyu Lai et al. [12] presented the different solutions and 44 

strategies used to adapt the wind power fluctuation to a RO desalination process. Three types 45 

of strategies were applied; the first is the storage technology to maintain the energy supply 46 

constant. The second is the hybridization to smooth out the wind fluctuation and 47 

intermittence. The third strategy, called self-adjusting RO unit, consisted in adapting the 48 

operation with the variable energy input as follows: firstly, adjusting the operating conditions 49 

of the RO unit within a safe operational window (SOW), secondly, adjusting the RO using the 50 

gradual capacity strategy. Ntavou et al. [13] presented an experimental evaluation of a small-51 

scale multi-skid RO unit (an RO unit composed of several RO sub-units) with a capacity of 52 

2.1 m3/day that operate with fluctuating power, considering different seawater temperatures. 53 

The authors proved the flexibility of the use of the multi-skid RO unit configuration, 54 

especially when the power input derives from a fluctuating renewable energy source.  55 

 56 

This paper covers the research gaps in the literature presenting a techno-economic comparison 57 

between two stand-alone solar desalination systems (i.e. the RO plants operate only with the 58 

electricity provided from the solar plants) at variable load conditions: a 50,000 m3/day RO 59 

plant directly powered by a CSP plant with central receiver tower technology, and the same 60 

RO plant directly driven by the electricity produced by a PV plant without batteries. In the 61 

first case, different thermal storage capacities have been investigated. Two options have been 62 

studied for the RO plant: an RO plant without energy recovery device (ERD) and an RO with 63 

two types of ERD (a Pelton wheel turbine (WTR) and a pressure exchanger (PEX)). The 64 

study has been performed for a specific location in Algeria: TENES, one of the Algerian 65 

coastal regions at the Mediterranean area. On one hand, it has been considered that the CSP 66 

plant is located 60 km far from the coast to avoid corrosion problems in the mirrors and the 67 

possible reduction in the Direct Normal Irradiation (DNI) and, on the other hand, the PV plant 68 

has been located at 5 km far from the coast also to avoid corrosion in the solar panels. In the 69 

two solar desalination systems analyzed, the RO plant will be located at 2.5 km from the 70 

shore. The study has been performed for a specific location in Algeria: TENES, one of the 71 

Algerian coastal regions at the Mediterranean area. In both cases (CSP or PV plants), the RO 72 

unit will operate according to the available power coming from the solar plant, adapting its 73 

operation following the most suitable strategies developed to assure acceptable fresh water 74 

production without affecting the membrane.  75 

 76 

2. Methodology 77 

 78 

Figures 1 and 2 show the layout of the systems studied. The first one consists of an RO unit 79 

connected to a central receiver tower CSP plant (CSP-RO), and the second one of an RO unit 80 

connected to a solar photovoltaic plant (PV-RO). In both cases, the power plants have been 81 

designed to produce the electric power needed for the RO plant to produce 50,000 m3/day of 82 

freshwater at nominal conditions. The electricity losses in the transmission lines from the 83 



solar plants to desalination unit, caused by the Joule effect, have been also determined in both 84 

systems. Therefore, the net power to be provided to the RO plant represents the power 85 

produced by the solar plant minus the load losses in the transmission lines to the RO unit. 86 

 87 

88 
Fig. 1. Flow diagram of the system consisting of an RO unit connected to a central receiver CSP plant 89 

 90 

Fig. 2. Flow diagram of an RO unit connected to a PV plant 91 

 92 

2.1.  Description of the systems 93 

 94 

The RO system is a single stage unit with a nominal capacity of 50,000 m3/day. Three 95 

different RO systems have been considered (Figure 3), all of them with a single stage: the first 96 

one is the basic RO unit without recovery system (see Figure 3a), and the second and third 97 

ones consider an energy recovery device (ERD): Pelton wheel turbine with generator (WTR), 98 

and a pressure exchanger (PEX) (see Figures 3b and 3c, respectively). Regarding the solar 99 

power technologies, in the case of the CSP plant, solar tower technology has been selected 100 

due to its potential compared to parabolic trough technology [17] (more efficient, more 101 

favorable land area per energy output, lower operating and maintenance expenses, lower 102 

upfront investment, among others). It is composed of a heliostat solar field that collects the 103 

solar energy; each heliostat tracks the sun and reflects the direct solar radiation to the receiver 104 
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placed on top of the tower. In the receiver, the heat transfer fluid (molten salt) is heated by the 105 

energy reflected by the mirrors. The thermal storage system is based on molten salts and 106 

consists of two tanks: the hot tank (with a temperature of 570 ºC for the molten salt) and the 107 

cold tank (with a temperature of 290 ºC). The power block is a superheated simple Rankine 108 

cycle with the maximum temperature selected to ensure proper operation under low DNI. In 109 

the case of the PV system, it consists of photovoltaic modules and inverters to convert the 110 

direct current (DC) generated by the PV modules to the alternating current (AC).  111 

 112 
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Fig. 3. RO configurations: (a) basic concept without ERD (b) with ERD based on Pelton wheel 

turbine, (c) with ERD based on pressure exchangers.  

 

 

2.2. Modeling and design of the systems  113 

 114 

The RO unit has been modeled using the equations outlined in [9], [14], [15], [16], [17], 115 

which have been implemented in Engineering Equation Solver (EES) software environment. 116 

The model allows both the design of the RO plant and the simulation of its operation. The 117 

design of the RO plant has been firstly carried out in order to determine the power required 118 

and then to size the corresponding solar plants. The required power (in kW) for the high-119 
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pressure pump that pumps the seawater against the RO modules is determined using the feed 120 

density (𝜌𝑓) and the pump efficiency (𝜂𝑝), by the following equation:  121 

 122 

𝐻𝑃𝑃 =
1000 · 𝑀𝑑 · ∆𝑃

3600 · 𝜌𝑓 · 𝜂𝑝
 (1) 

 123 

And the specific power consumption (in kWh/m3) is calculated as follows:  124 

 125 

𝑆𝑃𝐶 =
𝐻𝑃𝑃

𝑀𝑑
 (2) 

 126 

An optimum design of the RO plant in terms of the number of elements, number of pressure 127 

vessels, Recovery Ratio (RR) and Specific Power Consumption (SPC) has been obtained in 128 

order to also optimize the size of the solar field, and therefore to minimize the costs. For this 129 

purpose, a parametric analysis has been performed, wherein the number of pressure vessels 130 

and the number of elements were varied from 500 to 700, and between 7 and 8 elements per 131 

vessel, respectively. The membrane selected has been SW30HR-380 whose characteristics 132 

can be found in Dow datasheet [18]. The best design has been obtained comparing the results 133 

obtained against those ones obtained by ROSA7.2 software and according to the following 134 

criteria: the one with the minimum error once compared with the results from ROSA7.2 and 135 

that one with the maximum RR and the minimum SPC, taking into account the maximum 136 

acceptable pressure (69 bar for SW30HR-380 [18]). In the case of the RO unit with ERD, the 137 

efficiency of the turbine and generator have been fixed at 85% and 95%, respectively 138 

([19],[20]). The efficiency of the pressure exchanger has been considered as 98% [21]. On the 139 

other hand, the power needed by the intake pump has been calculated based on the pumping 140 

pressure (4 bar [22]) to the pretreatment compartment and on the feed flow. Moreover, the 141 

SPC required by the pumps used in the pretreatment processes has been determined, resulting 142 

in 0.416 kWh/m3 of feed water [21]. Finally, it has been assumed a feed salt concentration for 143 

the Algerian coastal equal to 37000 mg/L [23], a fouling factor of 0.85 [24] and a fixed 144 

average feed water temperature of 20 ºC [23]. Once the optimum design of the RO plant has 145 

been obtained, the solar fields’ areas have been determined. In the case of the CSP plant, it 146 

has been determined using the software System Advisor Model (SAM [15]). Different 147 

thermal storage capacities have been considered in the present study: 0, 8, 10, 12 and 14 hours 148 

in order to evaluate their influence in the freshwater production of the RO unit. Also, it has 149 

been established that the CSP plant is located at 60 km far from the sea (Tenes coast in 150 

Algeria), in a region of El-Attaf (Wilaya de Ain Defla). For the refrigeration of the power 151 

block, an evaporative cooling system has been selected, based on the results obtained in 152 

previous works published in the literature [25]. It is considered that the required water used 153 

for the refrigeration system can be pumped from an already existing dam in the selected 154 

location. The SPC of the cooling system has been assigned as 0.0329 MWe/MWe [25] [26], 155 

and the specific water consumption as 3 m3/MWe. On the other hand, the time-dependent 156 

operation of the CSP plant is obtained by a time-step model developed by the authors (using 157 

the design parameters as inputs) and implemented within TRNSYS 17.01 software 158 

environment. In the case of the PV plant, SAM has been also used, for the design and to 159 

predict the instantaneous power produced. In this case, it has been considered that the PV 160 



plant is located at 5 km from the Tenes coast in which the RO unit is located. The input 161 

meteorological data for both solar plants have been obtained by Meteonorm 7 software. 162 

 163 

3. Operating strategies 164 

 165 

In order to adapt the operation of the RO unit to the power intermittence and fluctuation from 166 

the solar power plants, different operational strategies have been considered. Two scenarios 167 

are proposed: scenario 1, in which the RO plant will operate as a whole unit; and scenario 2, 168 

in which the RO plant is composed of 10 identical sub-units with a nominal capacity of 5000 169 

m3/day each one. This last scenario is also called gradual capacity. A detailed description of 170 

the different strategies followed for each scenario is presented hereinafter.  171 

 172 

3.1. Scenario 1 (whole unit) 173 

 174 

Within this scenario, the minimum power (Pmin) required by the whole RO plant to produce 175 

fresh water with a concentration of salts of 500 mg/l (acceptable quality of fresh water [27]) is 176 

firstly defined. This value of Pmin represents the minimum one for the RO plant to operate 177 

with the total number of pressure vessels established in the design. Two strategies are 178 

considered within this scenario: 179 

 180 

(1) when the power produced by the solar plant results higher than Pmin, it is established that 181 

the operation of the RO unit must be within a safe range, called self-operation window 182 

(SOW). In this range, the performance of the RO unit varies according to the power 183 

availability. The variation of the power will be between Pmin and the power corresponding to 184 

the maximum pressure supported by the membrane (69 bar for SW30HR-380). 185 

 186 

(2) when the power produced by the solar plants results lower than Pmin, some pressure 187 

vessels are switched off in order to assure a quality of 500 mg/l in the fresh water produced. 188 

In this case, the fresh water production will change according to the number of the active 189 

pressure vessels, but the pressure (determined to obtain a quality of 500 mg/L) and the SPC 190 

do not change with the power availability.  191 

 192 

3.2.Scenario 2 (gradual capacity) 193 

 194 

In this scenario, the sub-units always operate under full load with constant performance and 195 

they will be switched on/off according to the power availability. The number of pressure 196 

vessels per sub-unit is equal to 1/10 the number of pressure vessels of the whole RO unit 197 

(design point). The fresh water produced by each sub-unit is 5000 m3/day. 198 

 199 

4. Economic analysis  200 

 201 

The economic analysis consists in the calculation of the levelized water cost (LWC), which is 202 

defined as the ratio between the total annual capital cost (that includes the annual capital cost 203 

of the RO unit (𝐴𝐶𝐶𝑅𝑂) and the annual capital cost of the solar power plant (𝐴𝐶𝐶𝑝𝑜𝑤𝑒𝑟 𝑝𝑙𝑎𝑛𝑡)) 204 

and the annual fresh water production (𝑀𝑑−𝑎𝑛𝑛𝑢𝑎𝑙):  205 



 

𝐿𝑊𝐶 =
𝐴𝐶𝐶𝑅𝑂 + 𝐴𝐶𝐶𝑝𝑜𝑤𝑒𝑟 𝑝𝑙𝑎𝑛𝑡

𝑀𝑑−𝑎𝑛𝑛𝑢𝑎𝑙
 (3) 

 206 

The costs of the energy recovery systems have not been accounted due to the lack of 207 

information in the literature. The calculations of the annual capital cost for the RO unit and 208 

the solar power plant (both PV and CSP plant) are outlined in [9], [24], [28], [29], [30], [31], 209 

[30]. It is needed to specific the calculation of the pump cost used in the RO unit (𝐶𝐻𝑃 𝑝𝑢𝑚𝑝). 210 

It is based on the correlations described by Malek et al. [28], that are divided into three 211 

categories as a function of the feed flow rate used in each case (𝑀𝑓). The corresponding 212 

equation will be used for the cases of the whole RO unit and the RO composed of sub-units, 213 

depending on the resulting feed flow rate needed by the RO unit (𝑀𝑓_𝑅𝑂). The required pumps 214 

to pump the 𝑀𝑓_𝑅𝑂 are assessed in each case from the value of the RR obtained by the design 215 

optimization. With the RR, the 𝑀𝑓_𝑅𝑂 is found and the number of pumps needed to pump this 216 

feed flow is determined by dividing 𝑀𝑓_𝑅𝑂 between the corresponding value of 𝑀𝑓. In the 217 

cases in which the result is not an entire value, more than one category will be used to pump 218 

the whole feed flow rate.  219 

 220 

Category (A):  𝑀𝑓 = 450 m3/h (where 𝑀𝑓 is the feed flow) 221 

 

𝐶𝐻𝑃 𝑝𝑢𝑚𝑝 = 393000 + 10710 P𝑓 (4) 

where P𝑓 is the feed pressure at the inlet of the RO plant (in bar). 222 

Category (B): 200 m3/h < 𝑀𝑓 < 450 m3/h 223 

 

𝐶𝐻𝑃 𝑝𝑢𝑚𝑝 = 81 · (P𝑓  · 𝑀𝑓)
0.96

 
(5) 

 224 

Category (C): 𝑀𝑓 < 200 m3/h 225 

 

𝐶𝐻𝑃 𝑝𝑢𝑚𝑝 = 52 · (P𝑓  · 𝑀𝑓) (6) 

 226 

 227 

5. Results and discussion  228 

 229 

5.1. Design of the RO unit and CSP/PV plants 230 

 231 

Table 1 shows the results obtained from the parametric analysis and its comparison with 232 

respect the results obtained with ROSA software. As mentioned before, the optimum design is 233 

a balance between the minimum error percentage (the relative error of the model with respect 234 

to the result obtained by the software ROSA7.2), the maximum RR (taking into account an 235 

aceptable membrane pressure of 69 bar) and a reasonable value of the SPC. 236 

 237 



 238 
Table 1 239 
Results obtained from the parametric analysis and comparison with the results obtained by ROSA7.2  240 

 7 elements 

__________________________ 

8 elements 

_______________________________ 

Number of pressure 

vessels 

550 600 650 700 550 600 650 700 

Maximum allowable 

RR (%) by EES 

39.12 41.55 43.54 45.19 7.40 44.75 46.41 47.81 

Applied pressure 

EES (bar) 

68.87 68.35 68.31 68.73 68.71 68.66 68.40 68.51 

Applied pressure 

ROSA (bar) 

64.86 63.87 63.7 63.36 63.92 63.46 63.10 63.10 

Applied pressure 

error (%) 

6.18 7 2.40 8.40 7.40 8.40 8.30 8.57 

Permeate 

concentration EES 

(g/l) 

0.169 0.188 0.204 0.223 0.198 0.218 0.239 0.259 

Permeate 

concentration ROSA 

(g/l) 

0.179 0.199 0.221 0.245 0.212 0.237 0.263 0.290 

Permeate 

concentration error 

(%) 

 

5.40 

 

5.91 

 

7.23 

 

8.22 

 

5.93 

 

8.22 

 

9.18 

 

10.46 

 

SPC (kWh/m3) EES 

 

5.97 5.64 5.37 5.15 5.46 5.22 5.03 4.88 

SPC (kWh/m3) 

ROSA 

 

5.81 5.44 5.15 4.92 5.25 4.98 4.79 4.64 

 

SPC error (%)  

 

2.77 

 

3.6 

 

4.75 

 

4.96 

 

4.11 

 

4.96 

 

4.95 

 

5.11 

 241 

From the results obtained, the optimum design would be an RO unit with 600 pressure vessels 242 

(each one with 8 elements) and a RR of 42%. A slightly lower RR than the allowable one has 243 

been selected (lower than 44.75%) in order to avoid all the problems related to the membrane 244 

in cases of power surplus.The resulting power required, the SPC and the permeate 245 

concentration for each case are shown in Table 2. It is observed that, in the cases of an RO 246 

system with a wheel turbine and a pressure exchanger, the required power is 29% and 52%, 247 

respectively, lower than the required power for RO unit without any ERD. 248 

Likewise, the design of the solar plants can be seen in Table 3.  249 

Table 2  250 
Required power and specific power consumption at the design point for the CSP-RO and PV-RO 251 
systems 252 

RO unit Power (kW) 

 

__________________  

Specific power consumption 

(kWh/m3) 

_________________________  

Permeate concentration 

(g/L) 

 

 PV plant CSP plant PV plant CSP plant  

Basic RO  13748 14216 6.6 6.8 0.21 

RO-TWR 9692 10022 4.7 4.8 0.21 

RO-PEX 6549 6772 3.1 3.3 0.21 



 253 
Table 3  254 
Results from the design of the solar power plants 255 

 RO Basic 

________________________ 

RO- WPT 

________________________                         

RO-PEX 

________________________ 

 Power 

(kWe) 

Solar 

field 

area 

(m²) 

Storage 

thermal  

capacity 

(MWh)  

Power 

(kWe) 

Solar 

field 

area 

(m²) 

Storage 

thermal  

capacity 

(MWh) 

Power 

(kWe) 

Solar 

field 

area 

(m²) 

Storage 

thermal 

capacity 

(MWh)  

PV 13748 86547 ---- 9692 58617 --- 6549 39077 --- 

CSP (0h) 14216 130056 --- 10022 89936 --- 6772 58913 --- 

CSP (8h) 14216 
189118 

277.4 10022 
136764 

195.6 6772 
98589 

132.1 

CSP (10h) 14216 235503 346.7 10022 161825 244.4 6772 113203 165.2 

CSP (12h) 14216 267421 416.1 10022 195382 293.3 6772 14080 198.2 

CSP (14h) 14216 308583 482.4 10022 216263 324.2 6772 146313 231.2 

 256 

5.2. Operation of the RO unit under power fluctuation 257 

 258 

The operation of the several RO configurations (with and without ERD) coupled to either a 259 

CSP or a PV plant has been simulated for one spring day (March 22nd) for the two scenarios 260 

mentioned previously and the main parameters that represent the performance of the system 261 

have been represented. 262 

Scenario 1 (whole unit) 263 

Figure 4 shows the variation of the generated power by the solar power plants for the several 264 

RO configurations. As observed, the power fluctuation is more pronounced for the PV plant 265 

and the CSP plant without thermal storage. In fact, it can be seen that the width of the power 266 

curve is larger in the case of the CSP-0h plant (CSP without storage), which means that the 267 

total energy produced by this solar plant during the day is higher. It can be due to the different 268 

solar radiation considered in both cases because of the different locations selected (PV plant 269 

close to the sea and CSP located inland). In addition, the results show that the PV plant 270 

operates always below the nominal capacity (13.75 MWe, 9.96 MWe and 6.55 MWe for the 271 

RO basic case, RO-WPT, and RO-PEX respectively). However, in the case of the CSP-0h 272 

plant, it operates only one hour under nominal capacity in the RO-basic case. In the case of 273 

the RO-WTR and RO-PEX units, the CSP-0h plant even produces a surplus of power 274 

compared to the nominal capacity during one hour, which can be used to produce more 275 

freshwater. This surplus is not a danger for the membrane since a lower pressure than the 276 

critical one (69 bar) was established for the membrane. When thermal storage is considered 277 

for the CSP plant, it enables the RO plant to operate a certain number of hours at nominal 278 

conditions depending on the number of storage hours.  279 



 
(a) 

 

 
(b) 

 
(c) 

Fig. 4.  Power produced by the solar power plants during the whole day to drive the RO plant in the 280 
different configurations: (a) RO unit without ERD, (b) RO-WTR, (c) RO-PEX 281 

Figure 5 shows the variation of the permeate concentration during the selected day. It is 282 

clearly remarkable that the permeate concentration is reversely proportional with the power 283 

generation increase. It is seen that when the power generated by the solar power plants is 284 

lower than Pmin, the operation of the RO unit is able to keep the quality of the produced water 285 

at 0.5 g/L following the second strategy within scenario 1. On the other hand, when the 286 

available power is higher than Pmin, the quality of the produced water is always lower than 287 

0.5 g/l, following the first strategy of this scenario.  288 
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(c) 

Fig. 5. Permeate concentration variation: (a) RO unit without ERD, (b) RO-WTR, (c) RO-PEX 289 

The hourly evolution of the produced fresh water by the RO unit during the selected day has 290 

the same tendency as the one of the power produced. The results indicated that, in the cases of 291 

PV-RO and CSP-RO without storage, the permeate flow is lower due of the power 292 

fluctuation, but in the cases in which the integration of the thermal storage in the CSP plants 293 

is considered, the RO units operate with hourly permeate flow close to the design value. It 294 

was found that the solar desalination plant, for the case of the CSP without thermal storage, 295 

produced an increase of 8%, 14%, and 12% for RO basic, RO-WTR and RO-PEX, 296 

respectively, in the water produced during the reference day compared with the PV plant. 297 

Comparing the CSP plant without storage with respect to the ones integrating thermal storage, 298 

the percentage of the additional fresh water produced with the RO plant in the basic case due 299 

to the thermal storage was 40%, 72%, 95% and 120% higher than the quantity produced in the 300 

absence of the thermal storage (CSP-0h) for CSP-8h, CSP-10h, CSP-12h and CSP-14h plants, 301 

respectively. For the RO-WTR case, the additional water produced by the desalination plant 302 

powered by the CSP with thermal storage compared to the one powered by the CSP-0h plant 303 

was 35% for CSP-8h, 59% in the case of CSP-10h, 91% for CSP-12h and 112% for CSP-14h.  304 

Finally, in the case of the RO-PEX plant, the difference in the freshwater production was 305 

45.64%, 64%, 104%, and 115% more for the CSP-8h, CSP-10h, CSP-12h and CSP-14h 306 

plants, respectively, than the freshwater produced by the desalination plant coupled to the 307 

CSP-0h plant.   308 
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Figure 6 shows the hourly variation of the specific power consumption during the selected 309 

day. Obviously, the SPC varies during the day according to the power fluctuation. It can be 310 

seen that the SPC is lower for the cases of the RO units (with and without ERD) connected to 311 

the PV and CSP-0h plants, when the performance of the desalination plants is adjusted 312 

according to the power availability (strategy 1). Therefore, in these cases, the freshwater is 313 

produced with the minimum power consumption. However, the quality of the freshwater is 314 

lower in these cases since the applied pressure is lower than the design one. Comparing the 315 

SPC for the RO units with and without ERD, it resulted between 5.3 kWh/m3 and 6.8 kWh/m3 316 

for the RO unit without ERD system, between 3.7 and 4.8 kWh/m3 for the RO with WTR, and 317 

finally between 2.7 kWh/m3 and 3.3 kWh/m3 when the pressure exchanger was integrated in 318 

the RO unit. For the case of the CSP plant integrating the thermal storage, the SPC was close 319 

to that at design for the different RO configurations. 320 

 
(a) 

 
(b) 

 
(c) 

Fig. 6. Specific power consumption:  (a) RO unit without ERD, (b) RO-WTR, (c) RO-PEX 321 
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5.2.1 Scenario 2 (gradual capacity) 323 

Table 4 represents the results obtained for the design point in terms of the power and the SPC 324 

required by one sub unit, for the different configurations of the RO unit and for both solar 325 

plants. In the case of the solar plants, the same design results that in the first scenario have 326 
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been established in order to quantify the difference between the two studied scenarios. The 327 

number of the RO sub-units switched on every hour during the day selected was calculated 328 

according to the electric power produced, for the different RO configurations and for both 329 

solar power plants. On one hand, in the case of PV and CSP-0h plants, it was obtained that the 330 

maximum number of the sub-units switched on was 8 during four hours in the selected day for 331 

RO basic case, while in the rest of the time, the active sub-units varied between 2 and 7. In the 332 

case of RO-WTR, the RO unit operated with full active sub-units for one hour for the CSP-0h 333 

plant. In the rest of the time, the active sub-units varied between 6 and 9 except in the sunset. 334 

In the case of RO-WTR powered by the PV plant, 9 sub-units were switched on during four 335 

hours as a maximum, and between 3 and 8 sub-units in the rest of operating hours. For the 336 

RO-PEX configuration, 10 sub-units operated for one hour in the selected day for the CSP-0h 337 

plant. For the PV plant combined with RO-PEX, the maximum sub-units switched on were 9 338 

(during 4 hours). On the other hand, the desalination plant mostly operated with full sub-units 339 

(between 9 and 10) when the presence of thermal storage was considered for the CSP plant, 340 

except in the start-up and stop of the power plant (from 0 to 7 h in the morning, and from 19 341 

to 24 h in the evening). 342 

Table 4  343 
Power and specific power consumption required by the RO unit connected to the solar power plant  344 

 Power 

(kW) 

__________________ 

Specific power consumption 

(kWh/m3) 

____________________________ 

Permeate concentration  

(g/L) 

 PV CSP PV CSP  

Basic RO  1375 1422 6.6 6.8 0.21 

RO-TWR 839 991.3 4.0 4.8 0.21 

RO-PEX 517.4 658.3 2.5 3.2 0.21 

 345 

Figure 7 represents the total fresh water produced during the selected day by each 346 

configuration using the two scenarios considered: whole unit (WU) and gradual capacity 347 
(GC). Regarding the two scenarios, it can be seen that the fresh water production was always 348 

higher in the WU scenario than in GC one. This result proves that WU scenario operating 349 
under the proposed strategies becomes more flexible and better than when it operates under 350 
gradual capacity. Comparing the results for the two solar power plants, the daily production of 351 

the RO-CSP-0h plant varied from 15,000 to 16,557 m3/day (which means a 30% of the design 352 
capacity), and the one for the PV plant from 12,229 m3/day to 14,758 m3/day, which 353 

represents a 27% of the design capacity.  In the cases of CSP with thermal storage the daily 354 
freshwater produced was much higher, as expected. In the case of the CSP-14h plant, the RO 355 

unit is able to produce more than 35,000 m3/day, which represents the 72% of the nominal 356 
daily capacity of the RO unit,  from 31,000 m3/day to 33,000 m3/day when the RO is 357 
connected to the CSP- 12h (about the 65% of the nominal capacity), more than 25,000 m3/day 358 
when is driven by the CSP-10h plant (55% of the design capacity), between 21,917 m3/day 359 
and 24,104 m3/day in the case of the CSP-8h plant (46% of the nominal capacity) and more 360 

than 17,500 m3/day in the case of CSP plant without thermal storage (32% of the nominal 361 
capacity). 362 



 363 

Fig. 7.  Fresh water produced with the different cases 364 

5.3. Economic results 365 

Before highlighting the economic results and according to the design, the cost of the high 366 

pressure pumps is evaluated for the both scenarios based on the feed water flow rate. 367 

According to the RR obtained for the RO plant (42%), the feed water flow rate is 368 
4960.32 m3/h for the whole unit and 496 m3/h for one sub-unit. Therefore, using the method 369 

explained in Section 4, in the first scenario the whole RO unit requires 11 pumps from 370 
category (A) while in the second scenario each sub-unit requires one pump from category (A) 371 
and one pump from category (C). 372 

The results of the levelized water costs (LWC) of the different options studied are presented 373 

in Table 5. The LWC resulted inversely related with the thermal storage hours in the case of 374 

the CSP plant, which prove the effect of the presence of thermal storage in CSP plants on the 375 

water cost. The results also showed that LWC are lower in the case of the whole RO unit 376 

operating under the two strategies proposed than when the RO unit operates under gradual 377 

capacity. The best results were for the case of the RO-PEX whole unit connected to a CSP-378 

14h plant (LWC of 0.85 $/m3), being even competitive against the water costs of today 379 

powered fossil RO plants (price between 0.60 €/m3-1.90 €/m3).  380 

Table 5  381 
Results obtained from the economic analysis 382 
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RO-basic RO-WTR-

GC 

RO-WTR RO-PEX 

GC 

RO-PEX 

PV ($/m3) 2.14 1.81 1.91 1.55 1.60 1.32 

CSP-0H ($/m3) 2.10 1.77 1.66 1.47 1.42 1.26 

CSP-8H ($/m3) 1.83 1.68 1.39 1.37 1.08 1.06 

CSP-10H ($/m3) 1.61 1.51 1.28 1.25 1.01 1.00 



 383 

 384 

 385 

6. Conclusions  386 

A techno-economic analysis of the combination of large-scale stand-alone RO unit with CSP 387 

and PV plants is presented in this paper, in which several configurations of RO and different 388 

strategies have been analyzed for its operation at variable load conditions. It was found that 389 

the operation of the RO plant with the adaptation to the power fluctuation is more suitable in 390 

terms of freshwater production and water costs than the usual scenario proposed in the 391 

literature so far (gradual capacity). The results showed that the combination of a RO plant 392 

with CSP is more favorable than the combination between RO and PV, from technical and 393 

economic points of view. The presence of thermal storage in the case of CSP improves even 394 

more the operation of the RO unit, especially in the cases of high number of thermal storage 395 

hours (12 and 14 h), in which the freshwater produced is close to the nominal one. The best 396 

RO configuration resulted the RO unit using a pressure exchanger as an ERD coupled with a 397 

CSP plant with 14 h of thermal storage (very low water costs 0.85 $/m3), being even similar 398 

to those ones of a RO unit operating with fossil sources (0.60 €/m3-1.90 €/m3). These 399 

potential results can make this kind of solar desalination plants a feasible option for sites as 400 

Algeria where the solar potential is high and there is an important water scarcity. However, it 401 

is important to highlight that the capital costs of this type of solar desalination plant are high, 402 

especially for the CSP plant with thermal storage, in which the annual capital cost is in the 403 

order of 10-15 M$. Subsidies policies for producing freshwater with solar energy would solve 404 

this kind of problems.  405 

Nomenclature 406 

AC Alternative current 

ACC Annualized capital cost,  ($/year) 

CSP Concentrating solar power 

DC Direct current 

EES Engineering Equation Solver 

ERD Energy recovery device 

GC Gradual capacity 

HP High pressure 

HPP High pressure pump power 

HTF Heat transfer fluid 

I Interest rate, % 

LF Load factor 

LP Low pressure 

LT Life time, year 

LWC levelized water cost, $/m3 

MED Multi effect distillation 

MENA Middle East and North Africa 

ORC Organic Rankine cycle 

PEX Pressure exchanger 

PV Photovoltaic 

CSP-12H ($/m3) 1.51 1.43 1.13 1.12 0.88 0.87 

CSP-14H ($/m3) 1.42 1.37 1.08 1.07 0.86 0.85 



RO Reverse osmosis 

SWRO Seawater Reverse Osmosis 

SAM System Advisor model 

SPC Specific power consumption, kWh/m3 

WPT Wheel Pelton turbine 

WU Whole unit 

𝐴𝑒 

𝐹𝐹 

𝑘𝑠 

𝑘𝑤 

𝑀𝑑  

𝑀𝑏  

𝑀𝑓  

𝑇 

𝑇𝐶𝐹 

𝑛𝑒  

𝑛𝑣  

𝑅𝑅 
𝑋𝑑 

𝑋𝑓 

𝑋𝑏 

𝜋 

 

Membrane area, m² 

Fouling factor 

Salt permeability, m3/m2. S 

Water permeability, m3/m2.s.kPa 

Permeate flow, m3/day 

Brine flow, m3/day 

Feed flow, m3/day 

Temperature, °C 

Temperature correction factor 

Number of elements 

Number of pressure vessels 

Recovery ration, % 

Permeate concentration, mg/l 

Feed concentration, mg/l 

Brine concentration, mg/l 

Osmosic pressure, kPa 
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