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Abstract

We implement an efficient method of computation of two dimensional Fourier-type

integrals based on approximation of the integrand by Gaussian radial basis func-

tions, which constitute a standard tool in approximation theory. As a result, we

obtain a rapidly converging series expansion for the integrals, allowing for their

accurate calculation. We apply this idea to the evaluation of diffraction integrals,

used for the computation of the through-focus characteristics of an optical system.

We implement this method and compare it performance in terms of complexity, ac-

curacy and execution time with several alternative approaches, especially with the

extended Nijboer-Zernike theory, which is also outlined in the text for the reader’s

convenience. The proposed method yields a reliable and fast scheme for simultane-

ous evaluation of such kind of integrals for several values of the defocus parameter,

as required in the characterization of the through-focus optics.
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1. Introduction

The importance of the 2D Fourier transform in mathematical imaging and vi-

sion is difficult to overestimate. For a function g given on R2 in polar coordinates

(ρ,θ) it reduces to calculating the integrals of the form

F(r,φ) =
1
π

∫
∞

0

∫ 2π

0
g(ρ,θ)e2πirρ cos(θ−φ)

ρdρdθ , (1)

in which the Fourier transform is expressed in polar coordinates (r,φ). For in-

stance, the impulse response of an optical system (referred to as the point-spread

function (PSF)) can be defined in terms of diffraction integrals of the form (1). The

PSF uniquely defines a linear optical system and it is usually calculated for a single

value of the focus parameter [1].

Calculating through-focus characteristics of an optical system has a wide vari-

ety of important applications including phase-diverse phase retrieval [2, 3], wave-

front sensing [4], aberration retrieval in lithography, microscopy, and extreme ul-

traviolet light optics [5, 6], as well as in physiological optics, where such calcula-

tion can been used to assess the efficacy of intraocular lenses [7, 8, 9], study the

depth-of-focus of the human eye [10, 11] or determine optimal pupil size in retinal

imaging instruments such as the confocal scanning laser ophthalmoscope [12].

Another rapidly developing field in imaging is the digital holography [13, 14,

15, 16], which finds applications in the quantitative visualization of phase objects

such as living cells using microscopic objectives in a digital holographic set-up.

This technology of acquiring and processing holographic measurement data usu-

ally is comprised of two steps, the recording of an interference pattern produced

by a real object on a CCD, followed by the numerical reconstruction of the holo-

gram by simulating the back-propagation of the image. Fourier-type integrals are

an essential part of several algorithms used in digital holography, for instance when

calculating the Fresnel Transforms.
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In this context, the numerical algorithms used to calculate the 2D Fourier trans-

form play a central role. Unfortunately, such integrals can be explicitly evaluated

in terms of standard special functions only in a limited number of situations. On

the other hand, purely numerical procedures for these evaluations are computa-

tionally cumbersome and require substantial computational resources. Thus, the

most popular alternative are the semi-analytic methods that use an approximation

of the integrand with functions from a certain class, for which some forms of closed

expressions are available. This is the paradigm of the extended Nijboer–Zernike

(ENZ) approach [17, 18], explained briefly in Section 4. The ENZ theory consti-

tutes an important step forward in comparison to the direct quadrature integration.

However, it has some important limitations acknowledged by its creators, such as

the restriction to circular pupils and symmetric aberrations containing only the even

terms of Zernike polynomial expansion (i.e., only cosine dependence), or its poor

performance for large numerical apertures.

In order to overcome these limitations we have developed a technique for cal-

culating integrals of the form (1) by combining the essence of the ENZ approach

with the approximation power of the radial basis function (RBF), which are stan-

dard tools in the approximation theory and numerical analysis, appearing in appli-

cations ranging from engineering to solutions of partial derivative equations, see

for example [21]. The Gaussian radial basis functions (GRBF) have been also used

in the context of ophthalmic optics [22, 25, 26].

The structure of the paper is as follows. Section 2 is devoted to the derivation of

the main formulas that can be used for the calculation of general Fourier integrals

(1). The detailed algorithm is developed in Section 3 for the diffraction integrals

defined therein, including its efficient implementation and error estimates. An as-

sessment of accuracy and efficiency of this procedure is carried out in Section 5,

where it is compared also with the extended Nijboer-Zernike theory (outlined in
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Section 4) and with the standard 2D fast Fourier transform.

Some of the ideas underlying this approach have been presented in [27]. In

this work we develop further the algorithmic aspects of this procedure, discuss its

efficient implementation, and compare its performance with some standard alter-

natives.

2. Fourier integrals for Gaussian RBF

Consider the case when g is a Gaussian RBF with the shape parameter λ > 0

and center at a point with cartesian coordinates (a,b), multiplied by a radially-

symmetric complex-valued function h; in other words, let

g(ρ,θ) = h(ρ)e−λ ((x−a)2+(y−b)2), x = ρ cos(θ), y = ρ sin(θ).

Using the polar coordinates for the center,

a = qcos(α), b = qsin(α),

we can rewrite it as

g(ρ,θ) = h(ρ)e−λ (q2+ρ2−2ρqcos(θ−α)). (2)

In this section we discuss an expression for (1) with g as in (2):

F(r,φ ;q,α) =
1
π

∫
∞

0

∫ 2π

0
e−λ (q2+ρ2−2ρqcos(θ−α))e2πirρ cos(θ−φ)h(ρ)ρdρdθ

=
1
π

e−λq2
∫

∞

0
dρ h(ρ)ρe−λρ2

∫ 2π

0
e2λρqcos(θ−α)e2πirρ cos(θ−φ)dθ .

(3)

For arbitrary constants A,B ∈ C we have the following identity:∫ 2π

0
e2Acos(θ−α)e2Bcos(θ)dθ = 2πI0

(
2
√

A2 +2ABcosα +B2
)
, (4)
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where I0 is the modified Bessel function of the first kind (see e.g. [33, Chapter 9]).

Observe that I0 is an entire even function, so that the value in the right hand side of

(4) is independent of the choice of the branch of the square root.

Identity (4) is a straightforward consequence of the fact that

Acos(θ −α)+Bcos(θ) =
√

A2 +2ABcosα +B2 cos(θ − γ),

where

γ = arctan
(

Asinα

B+Asinα

)
,

(with an appropriate choice of the branch of the square root), along with the identity

([33], formula (9.6.16)):

I0(z) =
1
π

∫
π

0
e±zcosθ dθ .

Using (4) in (3) we conclude that

F(r,φ ;q,α) = 2e−λq2
∫

∞

0
e−λρ2

I0

(
2ρ
√

Ω

)
h(ρ)ρ dρ

= e−λq2
∫

∞

0
e−λρ I0

(
2
√

ρΩ

)
h(
√

ρ)dρ

= e−λq2
L
[
I0

(
2
√
·Ω
)

h(
√
·)
]
(λ ),

(5)

where

Ω = Ω(r,φ ;q,α) = λ
2q2 +2πirλqcos(φ −α)−π

2r2, (6)

and L [·] denotes the Laplace transform. Formulas (5)–(6) are the basic building

blocks for the algorithm proposed below.

Let us particularize these identities to the case of a circular exit pupil of an

optical system, when h can be taken as the characteristic function of the interval

[0,1],

h(ρ) = χ[0,1](ρ) =


1, if 0≤ ρ ≤ 1,

0, otherwise.
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We see that the crucial step is the evaluation of the integral∫ 1

0
e−λρ I0

(
2
√

ρΩ

)
dρ.

The Taylor series for the Bessel function (see [33], formula (9.6.12)),

I0

(
2
√

ρΩ

)
=

∞

∑
s=0

Ωs

(s!)2 ρ
s,

is locally uniformly convergent on the whole plane, and thus∫ 1

0
e−λρ I0

(
2
√

ρΩ

)
dρ =

∞

∑
s=0

(ms(λ )Ω)s

(s!)2 , (7)

where

ms(λ ) =


∫ 1

0
e−λρ

ρ
sdρ, λ 6= 0,

(1+ s)−1, λ = 0.
(8)

Integration by parts and straightforward calculations show that for s = 0,1,2, . . .

and λ 6= 0,

m0(λ ) =
1− e−λ

λ
, ms+1(λ ) =

(s+1)ms(λ )− e−λ

λ
. (9)

Notice also that

m0(λ ) = L [χ[0,1]](λ ), ms(λ ) =

(
− d

dλ

)s−1

m0(λ ), s≥ 1. (10)

Clearly, these formulas can be easily extended to the case when g is a linear

combination of functions of the form (2), that is,

g(ρ,θ) = h(ρ)
K

∑
k=1

cke−λk(q2
k+ρ2−2ρqk cos(θ−αk)), h(ρ) = χ[0,1](ρ),

where ck ∈C are certain coefficients, λk > 0 are the shape parameters, and (qk,αk)

are the polar coordinates of the corresponding centers of the Gaussian RBFs. For-

mulas (5)–(7) show that the corresponding Fourier transform F , defined in (1), can

be written as

F(r,φ) =
K

∑
k=1

cke−λkq2
k

∞

∑
s=0

ms(λk)

(s!)2 Ω(r,φ ;qk,αk)
s,

6



with Ω defined in (6).

If we assume additionally that all the shape parameters are equal, λ1 = · · · =

λK = λ , we can reorganize the calculations as follows:

F(r,φ) =
∞

∑
s=0

ms(λ )

(s!)2 Hs(r,φ), Hs(r,φ) =
K

∑
k=1

ck e−λq2
k Ω(r,φ ;qk,αk)

s.

3. Calculation of diffraction integrals

Optical systems can be described by means of the complex-valued pupil func-

tion P(ρ,θ) that, in the case of a circular pupil, can be expressed in (normalized)

polar coordinates as

P(ρ,θ) = A(ρ,θ)exp
(
−i

2πn
λ

W (ρ,θ)

)
, (11)

where A(ρ,θ) is the aperture or amplitude transmittance function of the optical

system, W (ρ,θ) is the wavefront error, and constants n and λ denoting the re-

fractive index and the wavelength of the light, respectively. According to Fourier

optics [20], the complex-valued point-spread function of such a system is given by

the diffraction integral

U(r,φ ; f ) =
1
π

∫ 1

0

∫ 2π

0
exp(i f ρ

2)P(ρ,θ)exp(2πiρr cos(θ −φ))ρdθdρ, (12)

where f represents the defocusing ( f = π/2 corresponds to one focal depth), and

(r,φ) denote the polar coordinates in the image plane. The corresponding optical

impulse response or point-spread function of the system can be evaluated by

PSF(r,φ ; f ) = |U(r,φ ; f )|2.

In this section we discuss the computational framework and the efficient im-

plementation of the algorithm for calculation of such diffraction integrals. Observe

that formally the defocusing term (exp(i f ρ2)) in (12) could be absorbed in the
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aberration term. However, from the physical point of view, the aberration term is

an intrinsic error of the optical system, while the defocusing is a deliberately intro-

duced defect, which can take on several values that are relatively large with respect

to the aberrations of the system. For this reason, a separate treatment is commonly

preferred, see [18].

3.1. Computational framework

In practice, the wavefront is sampled at a discrete and finite set of points on the

pupil (the unit disk). In other words, the input data set has the form (x j,y j,Wj),

with Wj =W (x j,y j). Values Wj can be measured directly or obtained by standard

procedures.

All semi-analytic methods for calculation of Fourier (1) or diffraction integrals

(12) are based on an approximation of the integrand by a function of a suitable

chosen form. We also start our calculation of (12) by approximating the complex

pupil function P in (11) by a linear combination of Gaussian radial basis functions

(GRBF), which yields an expression of the form

P(ρ,θ) =
K

∑
k=1

ckgk(ρ,θ), gk(ρ,θ) = e−λk(q2
k+ρ2−2ρqk cos(θ−αk)), (13)

where ck ∈C are certain coefficients, λk > 0 are the shape parameters, and (qk,αk)

are the polar coordinates of the centers of the Gaussian RBFs. In order to obtain

(13) we first fix a basis {gk}N
k=1 of GRBF, or equivalently, choose, for each index

k, values for qk, αk and λk. The optimal choice of the shape parameter based on

the given data is a highly non-linear problem, usually solved by cross validation,

see [23, 24], but the following rule of thumb has been tested in practice: take the

same shape parameter for all k’s,

λ1 = · · ·= λK = λ ∈ [1,20], (14)
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select r∈N and create a grid of r×r equally spaced points in the square [−1.2,1.2]2.

The goal of covering an area larger than the unit disk is to deal with the Gibbs phe-

nomenon at the boundary of the disk. The polar coordinates of these K = r2 points

will be the pairs (qk,αk) in (13).

With the basis {gk} chosen, we calculate the coefficients ck fitting the pupil

function by means of the linear least squares. For a high number of centers K this

problem is ill-conditioned, and the use of Tikhonov regularization [29] is recom-

mended, with an appropriate choice of regularization parameter, for instance, by

the L-curve method, as described for example in [30].

For an alternative approach to the 2D nonlinear approximation of functions by

sums of exponentials see [31].

With all the parameters in the representation (13) calculated we can use the

formulas obtained in Section 2, namely

U(r,φ ; f ) =
K

∑
k=1

ck e−λkq2
k

∞

∑
s=0

ms(λk− i f )
(s!)2 Ω(r,φ ,qk,αk)

s, (15)

with

Ω(r,φ ;q,α) = λ
2q2 +2πirλqcos(φ −α)−π

2r2.

Furthermore, with the additional assumption (14) we can rewrite this formula as

U(r,φ ; f ) =
∞

∑
s=0

ms(λk− i f )
(s!)2 Hs(r,φ), Hs(r,φ) =

K

∑
k=1

ck e−λq2
k Ω(r,φ ,qk,αk)

s.

(16)

3.2. Efficient implementation of the calculations

The recurrence relation (9) can present some numerical instability, especially

for large value of the imaginary part of the argument; these considerations suggest

to replace the coefficients ms(λ ), defined in (8), by their normalized counterparts,

m̂s(λ ) =
ms(λ )

(s!)2 ,

9



that can be efficiently generated for λ 6= 0 by the following double recurrence:

m̂s+1(λ ) =
1
λ

[
m̂s(λ )

s+1
− τs(λ )

]
, τs+1(λ ) =

τs(λ )

(s+2)2 , s = 0,1,2, . . . (17)

with the initial conditions

τ0(λ ) = e−λ , m̂0(λ ) =
1− τ0(λ )

λ
. (18)

Since formulas in (15)–(16) contain an infinite sum, we must choose a cut-off

parameter, S ∈ N, so that the expression in (15) is replaced by

U(r,φ ; f ) =
K

∑
k=1

ck e−λkq2
k

S

∑
s=0

m̂s(λk− i f )Ω(r,φ ,qk,αk)
s, (19)

while (16) becomes

U(r,φ ; f ) =
S

∑
s=0

m̂s(λk− i f )Hs(r,φ), (20)

where we denote

Hs(r,φ) =
K

∑
k=1

ck e−λq2
k Ω(r,φ ,qk,αk)

s.

It is worth observing that in these formulas the defocus parameter f and the coor-

dinates r and φ are independent: f does not appear in Ω, while ms(λk− i f ) need to

be calculated only once regardless the number of points at which we evaluate the

functions.

In practice, we want to find the values of U(r,φ ; f ) at a vector of J points

on the plane, given by their polar coordinates (ρ,φ), and for a vector of defocus

parameters f . In other words, we need to compute efficiently the matrix

U = (U(r j,φ j; fm))m, j ∈ CM×J.

Let us discuss the algorithm under the assumption (14), so we will use formula (16).

Applying (17)–(18) to the vector f , we obtain the matrix

M = (m̂s(λ − i fm))
s=0,1,...,S
m=1,...,M ∈ CM×(S+1),

10



which, as it was mentioned, is computed once for all (r j,φ j)’s.

Another observation that will speed up computations is that if P and Q are R2×1

vectors of Cartesian coordinates of points on R2 with polar coordinates (r,φ) and

(q,α), respectively, then by (6),

Ω(r,φ ;q,α) = λ
2q2 +2πirλqcos(φ −α)−π

2r2 = (λQ+πiP)T (λQ+πiP),

(21)

where the superscript T denotes the transpose of a matrix. In other words, Ω(r,φ ;q,α)

is the square of the euclidean distance (in R2) from λQ to −πiP. It allows us to

encode efficiently the evaluation of Ω = (Ωk, j) ∈ RK×J ,

Ωk, j = Ω(r j,φ j,qk,αk),

by first finding the Cartesian coordinates of the centers,

ak = qk cosαk, bk = qk sinαk, k = 1, . . . ,K.

Finally, we find the column vector

d= (ck e−λq2
k )k=1,...,K ∈ RK×1. (22)

We describe the rest of the procedure in the Algorithm 1.

It should be noticed finally that we can slightly increase the accuracy adding a

constant term to the approximation of the complex pupil function, that is, instead

of (13) using the representation

P(ρ,θ) = c0 +
K

∑
k=1

ckgk(ρ,θ), gk(ρ,θ) = e−λk(q2
k+ρ2−2ρqk cos(θ−αk)),

where c0 can be taken as the average of the values of P at the given points. No-

tice that the contribution to U corresponding to this term can be computed using

Algorithm 1 with λ = 0.
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input : MatricesM ∈ CM×(S+1), Ω = (Ωk, j) ∈ RK×J , and d ∈ RK×1

output: Matrix U ∈ CM×J

Initialization:

Set U = 0 ∈ RM×J

DefineR ∈ RK×J as the matrix of 1’s, and compute

H = dTR. (23)

// At this stage, H = H0(r j,φ j) j=1,...,J2 ∈ C1×J

for s← 0 to S−1 do
Calculate

U ←U +M(:,s+1)H,

UpdateR by

R←R.∗Ω

// We use the Matlab notation (.*) for the

term-by-term multiplication;

ComputeH using (23);

end

Algorithm 1: Implementation of formula (16).

12



3.3. Error estimates and convergence analysis

The algorithm described above presents two main sources of errors (besides

the standard truncation and machine arithmetic errors that we do not discuss here):

• the fitting error in (13);

• the truncation error, given by the choice of S, in replacing the infinite series

in (15) or (16) by finite sums.

The former is difficult to estimate and constitutes an active field of research within

the radial basis functions community, see e.g. [21]. Concerning the truncation

error, observe that from the definition (8) it follows that |ms(λ )| ≤ 1 for Re(λ )≥ 0.

Indeed, for purely imaginary λ this is trivial, while for Re(λ )> 0,

|ms(λ )| ≤ |ms(Re(λ ))| ≤
∫ 1

0
e−Re(λ )ρdρ = |m0(Re(λ ))|= 1− e−Re(λ )

Re(λ )
≤ 1.

In particular, for λ > 0,

|ms(λ − i f )| ≤ 1.

On the other hand, by expression (6),

|Ω|= |Ω(r,φ ;q,α)|=
√
(λ 2q2−π2r2)2 +(2πrλqcos(φ −α))2 = λ

2q2 +π
2r2.

According to our algorithm and (14), q≤ 1.7, r ≤ 2, λ ≤ 20, so that

|Ω| ≤ 1200, (24)

where the upper bound is not tight.

In consequence, the truncation error in (15) is given by∣∣∣∣∣ ∞

∑
s=S+1

ms(λk− i f )
(s!)2 Ω(r,φ ,qk,αk)

s

∣∣∣∣∣≤ ∞

∑
s=S+1

1
(s!)2

(
λ

2
k q2

k +π
2r2)s

,

13



or in other words, the remainder of the Taylor expansion for the modified Bessel

function

I0

(
2
√

λ 2
k q2

k +π2r2

)
,

and thus,∣∣∣∣∣ ∞

∑
s=S+1

ms(λk− i f )
(s!)2 Ω(r,φ ,qk,αk)

s

∣∣∣∣∣≤
(
λ 2

k q2
k +π2r2

)S+1

(S+1)!
max

0≤t≤λ 2
k q2

k+π2r2

∣∣∣I(S+1)
0 (t)

∣∣∣ .
The bound (24) above is very conservative, and shows that in the worst case

scenario S = 100 provides a truncation error of order 10−9.

Although, as the numerical experiments explained in Section 5 show, the method

performs well even for reasonably large values of r and f in (12), we can slightly

improve accuracy by using the scheme (15), and replacing the infinite series by its

Padé approximant of a suitable order with center at the origin (instead of a mere

truncation, as we did above), see e.g. [32].

4. Outline of the extended Nijboer-Zernike theory

In Section 5 we are going to produce the results of some numerical experiments

regarding the behavior of the algorithm described above, and to compare them with

the standard procedures used for the computation of diffraction integrals.

One of the best-known semi-analytic methods of calculation of these integrals

is the so-called Extended Nijboer–Zernike (ENZ) theory [17, 18], similar in spirit

to the method presented in this paper, with the main difference that the pupil func-

tion P is expanded in terms of Zernike polynomials, instead of Gaussian radial

basis functions:

P(ρ,θ) = ∑
n,m

cm
n Zm

n (ρ,θ) (25)

(see e.g. [20, Section 9.2] for the definition of Zernike polynomials).
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For the reader’s convenience, in this section we present an outline of the ENZ

formulas.

If the coefficients cm
n in the expression (25) are known, then the integral U in

(12) takes the form

U(r,φ ; f ) = ∑
n,m

cm
n Um

n (r,φ ; f ), (26)

where

Um
n (r,φ ; f ) =

1
π

∫ 1

0

∫ 2π

0

[
exp(i f ρ

2)Zm
n (ρ,θ)exp((2πiρr cos(θ −φ))

]
ρdθdρ.

According to ENZ theory, for the double-index (n,m) with m ≥ 0 (a necessary

condition for the applicability of these formulas) we have

Um
n (r,φ ; f ) = 2imV m

n (r, f )cos(mφ), (27)

with

V m
n (r, f ) = exp(i f )

∞

∑
k=0

(
−i f
πr

)k

Bk(r) (28)

and

Bk(r) =
p

∑
j=0

uk j
Jm+k+2 j+1(2πr)

2πr
, (29)

with the coefficients

uk j = (−1)p m+ k+2 j+1
q+ k+ j+1

(
m+ k+ j

k

)(
k+ j

k

)(
k

p− j

)/(
q+ k+ j

k

)
(30)

where p = (n−m)/2 and q = (n+m)/2. Here Jν is the Bessel function of the first

kind and order ν , see e.g. [33, Chapter 9].

Observe that these formulas contain a removable singularity at r = 0, so some

extra care when organizing the calculations should be put. Moreover, they also

present difficulties when the defocus parameter f is large. According to [18], ap-

proximately 3| f | terms are needed in general to accurately evaluate expression

(28), and the practical use of that formula is limited to a range | f | ≤ 5π .
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In order to overcome these difficulties an alternative approach has been put

forward in [19]. The main idea is the use of Bauer’s identity:

exp(i f ρ
2) = exp

(
1
2

i f
)

∞

∑
k=0

(2k+1)ik jk

(
1
2

f
)

R0
2k(ρ), (31)

where Rm
n is the radial part of the Zernike polynomials, and

jk(z) =
(

π

2z

)1/2

Jk+(1/2)(z), k = 0,1, . . . (32)

Using (25) and (31) in (12) we reduce the problem to the computation of in-

tegrals containing products of two radial Zernike polynomials, Rm1
n1

and Rm2
n2

. The

crucial idea is to use the linearization formulas for these products of the form

Rm1
m1+2p1

Rm2
m2+2p2

= ∑
l

clR
m1+m2
m1+m2+2l,

where coefficients cl defined as

cl = ∑
s1,s2,t

f m1
p1,s1

f m2
p2,s2

gm1+m2
s1+s2−2t,l

are expressed in terms of the quantities f m
p,s and gm

u,l given explicitly by

f m
p,s = (−1)p−s 2s+1

p+ s+1

[(
m+ p− s−1

m−1

)(
m+ p+ s

s

)/(
p+ s

s

)]
, (33)

for s = 0, . . . , p;

gm
u,l =

m+2l +1
m+u+ l +1

[(
m

u− l

)(
u+ l

l

)/(
m+ l +u

m+ l

)]
, (34)

for u = l, . . . , l +m; and

bs1,s2,t =
2s1 +2s2−4t +1
2s1 +2s2−2t +1

(
As1−tAtAs2−t

As1+s2−t

)
, (35)

for t = 0, . . . ,min{s1,s2} and Ak =
(2k

k

)
. For m = 0, expressions (33) and (34) boil

down to

f 0
p,s = δp,s, g0

u,l = δu, l,
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where δ is the Kronecker’s delta.

As a result, we obtain the so-called Bessel-Bessel series expression for V m
n in

(28): for n, m nonnegative integers with n−m ≥ 0 and even, with p = 1
2(n−m)

and q = 1
2(n+m),

V m
n (r, f ) = exp

(
1
2

i f
)

∞

∑
k=0

(2k+1)ik jk

(
1
2

f
) k+p

∑
l=l0

(−1)lwk,l
Jm+2l+1(2πr)

2πr
, (36)

where l0 = max{0,k−q, p− k} and

wk,l =
p

∑
s=0

min{k,s}

∑
t=0

f m
p,sbk,s,tgm

k+s−2t,l. (37)

In the special case that m = 0 we have that

wk,k+p−2 j = bk,p, j, j = 0,1, . . . ,min{k, p},

while all other wk,l vanish. In this way, all wk,l ≥ 0 and ∑l wk,l = 1.

The conclusion of [19] is that this new scheme is valid and accurate even for

very large values of f . By analyticity, the expression (36) remains valid also for

complex values of f , which is important in a number of practical applications,

with the downside in the removable singularity of (32) at f = 0. In practice, it is

convenient to use both ENZ schemes if the defocus ranges from 0 to large values

of f .

5. Comparative assessment of accuracy and efficiency

In this section we analyze the performance of the methods based on the Gaus-

sian radial basis functions (GRBF) proposed in this paper is analyzed and com-

pared to the popular alternative approaches.

Since the closed analytic expression for a Fourier transform type integrals like

(1) and (12) is possible only for most elementary integrands, for their computa-

tion we must rely either on numerical or on semi-analytical methods (or analytical
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approximations). The first group comprises quadrature-type numerical procedures

in which the integration over a 2D domain is replaced by the calculation of a dis-

crete sum based on evaluation of the integrand at a discrete set of points, with the

particular challenge of integrating a highly oscillatory function. The most popular

approach is the bi-dimensional discrete Fourier transform (we will refer to it as the

FFT2-based approach), calculated via the Fast Fourier Transform algorithm. Its ef-

ficiency can be substantially enhanced using the fractional Fourier transform [34]

or a “butterfly diagram” ideas [35], see also [36].

The best known representative of the second group is the Extended Nijboer–

Zernike (ENZ) theory that was briefly exposed in Section 4.

In this section, these alternatives are discussed and compared with our method,

paying special attention to their computational complexity, precision, accuracy and

speed. We use the “naive” notion of complexity, understanding by this the number

of real floating point operations (flops) needed to run the algorithm. Since the exact

number of flops is in general difficult or not feasible to calculate, the leading term

for large values of the parameters is used.

The assessments are performed under assumptions allowing the application of

all the methods explained above. In other words, we will evaluate the diffraction

integrals U = U(r,φ ; f ), defined in (12), in a grid of points (in polar coordinates)

(r,φ) ∈ RN×N , and for a vector f ∈ RM of values of the defocus parameters f .

5.1. Some remarks about FFT vs semi-analytic methods

In the FFT2-based scheme, the value of U(r,φ ; f ) is computed by means of the

bi-dimensional fast Fourier transform. The crucial step is the substitution of the

double integral in (12) by a discrete sum. Notice that each new value of the defocus

parameter f obliges to calculate the values of U completely, at a computationally

high cost. Furthermore, the use of the FFT requires re-sampling the wavefront at
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a regular Cartesian grid covering the pupil; for convenience, the length of the grid

should be an integer power of 2 in each direction.

Another remarkable issue to be addressed when using the FFT2 scheme is the

aliasing, a typical phenomenon that can appear due to discontinuities of the inte-

grand. In order to prevent this, the pupil must be small in comparison with the

sampled area (or in other words, we must extend the pupil to a larger region, set-

ting the pupil function to zero in the complementary domain), resulting in a large

area where U(r,φ ; f ) is negligible [36]. Thus, a big portion of the computational

load of this scheme is useless, and in general the spatial resolution needed with

this method will be much higher than that required for the semi-analytic methods

like discussed here. However, FFT2 is the standard method used in commercial

ray tracing packages, such as Zemax or Code V.

The advantage of the semi-analytic approaches, such as the ENZ theory or the

method proposed here, is that they reduce the computation of U in (12) to evalua-

tion of more or less complex explicit expressions in terms of some elementary or

special functions. One of the benefits of having these formulas is a better control

of the image domain being computed, increasing the precision. Another impor-

tant advantage is the huge boost in performance gained when a parallelization of

calculations is done for multiple values of the defocus parameter f .

5.2. Computational complexity

Let us analyze and compare the computational cost of evaluating the diffraction

integral using the ENZ theory and by the GRBF scheme, for a grid of values r ∈

RN , φ ∈ RN (so that with the notation of Section 3.2, J = N2), and for M distinct

defocuses, gathered in a vector f ∈ RM.
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ENZ method

We start with the basic ENZ method, corresponding to formulas (26)-(30). Ob-

serve that in (29) we must compute values of the Bessel functions of the first kind

Jν , usually by their power series

Jν(z) =
(1

2 z
)ν

∞

∑
k=0

(−1)k (1
4 z2)k

k!Γ(ν + k+1)
(38)

(see e.g. [formula (10.2.2)][28]). In practice this series must be truncated at some

term B− 1. For the values of variables and parameters usually appearing in this

context, we have determined experimentally that we can ensure the truncation error

of 10−8 taking B = 15. The computational complexity of computing the Gamma

function at a value of O (10t) is O
(
t2 log(t)2

)
. With B = 15 and with the usual

Zernike fit (up to the 8th order) it is sufficient to take t ≤ 3, which yields a max-

imum of 11 operations for the Gamma function evaluation. Thus, for N different

values of r we need roughly O (3N +25) operation to to evaluate a single term

in the series (38), and in consequence, the computational cost of the evaluating a

single Bessel function is O (3BN).

With the same assumptions, the evaluation of each coefficient in (30) is at most

O (150) flops. Consequently, the complexity of computation of each Bk defined in

(29) is

O ((p+1)(30B+186))

operations.

In order to evaluate expression (28), we truncate the infinite series at some term

S−1, in which case the number of operations required to evaluate V m
n by (28) is

O (S((p+1)(30B+186)+2)+S+8) = O (30BS(p+1)) .

Propagating this estimate to (27), computed also at N different values of φ , we

need about O
(
30BS(p+1)+2N2M+2N

)
flops for its evaluation.
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In order to estimate the overall cost for expression (26) we have to take into

account the indices n and m therein: n ranges from 0 to a certain n∗ (the maximum

radial order), and for each fixed n, m takes even/odd non-negative integer values

≤ n. Thus, at each level n, only O (n/2) Zernike polynomials are used (recall the

restriction of m≥ 0 for ENZ formulas). Then, p = 1
2(n−m) =O (n/4) in average.

In addition, the maximum radial order n∗ yields a total of 1
2 n∗(n∗+1) Zernike

polynomials, from which only those with the cosine are used, so that the effective

number of polynomials is approximately K = 1
4 n∗(n∗+1).

Combining all the previous assumptions, the complexity of computing U at a

grid of N×N×M points for (r,φ , f ) by the ENZ formulas can be estimated to be

cost(UENZ) = O
(

K3/2BNS+K
(
N2M+NMS+BNS

))
,

where B and S are the truncation values for the series in (38) and (28), respectively,

and K is the total number of Zernike polynomials included in the pupil representa-

tion (25).

Improved ENZ method

We can perform a similar analysis for the improved ENZ scheme, correspond-

ing to equations (33)-(37). The only difference with respect to the previous discus-

sion lies in the computation of V m
n , so we only need to re-estimate the computa-

tional cost of V m
n in equation (36).

With the same assumptions used before, the evaluation cost of coefficients in

equations (33), (34), (35) are constant and of at most of 110 flops. Thus, the

complexity of coefficients wk,l in formula (37) is of O (330pk) flops. Recalling the

estimate of O (3BN) flops for each Bessel function Jν , the cost of the finite sum

(that with index l) in expression (36) is O ((k+ p)(3BN +330pk+3N)).

The cost of evaluation of the Bessel spherical function jk is O (3BM+3M) =

O (3BM). Thus, if the improved formula for V m
n is used with the truncation of the
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infinite series at the term S−1, its complexity is

O (S (3BM+BN +(S/2+ p)(3BN +165pS))+2M) .

Assuming as before that p = 1
2(n−m) = O (n/4) in average, it can be simplified

to

O

(
nS2 (21S+10n)+1.5BNS2 +

3
4

nSBN +NMS+BMS
)
.

Since the rest of the calculations is the same as in the basic ENZ scheme, the

complexity of evaluating U in a grid of N×N×M points (r,φ , f ) by the improved

ENZ formulas (33)-(37) is

cost(UENZ improved) = O
(

K2S2 +K3/2 (S3 +BNS
)
+

+
(
K
(
N2M+NMS+BNS+S3 +S2BN

)
+N2M

)
,

where B and S are the truncation values for the series in (38) and (28), respectively,

and K is the total number of Zernike polynomials included in the pupil representa-

tion (25).

Now we switch to the computational complexity of the GRBF based formulas

described in Section 3. Again, we are interested in evaluating expression (19) at

a grid r ∈ RN , φ ∈ RN and f ∈ RM, with the additional assumption (14), so that

formula (20) is used.

According to the discussion in Section 3.2, once the cut-off parameter S has

been chosen, the double recurrence (17)-(18) must be evaluated for s≤ S, with an

estimated computational cost of O (4SM) flops. After that, the calculation of Ω in

(21) takes about O
(
7N2K

)
flops. The computational load of finding d by (22) is

almost negligible, requiring only O (4K) flops. Recall that Ω and d are computed

only once during the initialization of the algorithm.

The computational complexity of evaluating each Hs in the mesh is of O
(
K +2N2

)
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Method Complexity (single f ) Complexity (vector of f )

FFT2 O(N2 log(N)) O(MN2 log(N))

ENZ O(N2K +NK3/2) O(N2M+N2KM+NK3/2)

ENZ improved O(N2M+NK3/2 +K2) O(N2M+N2KM+NK3/2 +K2)

GRBF O(N2K) O(N2M+N2K)

Table 1: Estimates of the minimal computational complexity of the methods when evaluating U at

a N×N grid of nodes (r,φ) and for M values for the defocus parameter f , using K functions in the

corresponding series expansions (for ENZ and GRBF).

operations, yielding a total of O
(
KS+2SN2

)
flops for the evaluation of all the re-

quired Hs terms.

Summarizing, the cost of calculating U in (19) according to Algorithm 1 is of

O
(
2N2MS+7KN2 +N2M

)
.

Recall also that the minimal estimated computational complexity of the FFT2

method for a single value of f , even for optimal implementation, is of O(N2 log(N)),

which corresponds to the cost of the FFT, the most computationally demanding

part.

Table 5.2 summarizes the leading terms of the computational cost of each

method, with the assumption that the same values of B and S for all semi-analytical

methods have been chosen. Comparison between rows two and three shows that

the GRBF approach is much more efficient than the ENZ theory, especially for a

large amount of values for f . The FFT2-based method seems to be of similar com-

plexity to GRBF, but in practice the number of sample points N needed to achieve

a reasonable accuracy for FFT2 will be much larger than that required for GRBF,

which in our experiments was set to 400 (see the description in the next section).
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5.3. Execution time

Since the complexity estimates give only a rough idea of the computational

demand of a method, we have looked also at the execution time, which is a simpler

and a more informative assessment.

For the beginning, we run the ENZ, the improved ENZ and the GRBF algo-

rithms evaluating U at an 100×100 mesh of nodes for a single value of the param-

eter f , recording the execution time in dependence of the value of functions used in

the corresponding series expansions. The experiments were performed on a stan-

dard PC running Matlab v. 8.1. Figure 1 shows the results, along with the corre-

sponding regression curves. The value of the slope of these curves at the origin are

approximately 0.021 seconds/function for ENZ and 0.0028 seconds/function for

GRBF. This gives a ratio of at least 7.5 times faster for the GRBF approach, with

the same number of functions, or reversely, one can use 7.5 times more functions in

the GRBF scheme, for the same execution time. For comparative purposes, the exe-

cution time to evaluate function U numerically making use of the two-dimensional

fast Fourier transform was of approximately 0.25 seconds, matching the execution

time for ENZ using about 12 Zernike terms, or for GRBF with approximately 90

Gaussian RBFs.

In order to achieve a reasonable comparison, in the rest of our experiments we

implemented a standard setting for each of the methods. Namely, the integral U

was evaluated at a 100× 100 regular grid of nodes by the semi-analytic methods,

and at a 512×512 regular grid for the FFT2-approach (this is a realistic size needed

to overcome aliasing and obtain accurate results). Moreover, we used K =KGRBF =

400 functions in the formula (19) (corresponding to the 20× 20 regular grid of

centers, as described above) and the cut-off parameter S = 60, while for the ENZ

method it was observed that a total of K = KENZ = 45 Zernike polynomials (up to

the 8th order polynomials) was the optimal. This is actually about twice the number
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Figure 1: Dependence of the execution time from the number of functions used in the description of

the complex pupil function.
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of terms recommended by [17], [18]. Higher order polynomials, according to our

experiments, did not contribute to higher accuracy, while causing ill conditioning

of the computations.

With these settings, we also compared the execution time of the three methods

as a function of the length of the vector of defocus parameters f . The results

appear in Figure 2, along with the regression lines for each scheme. The values of

the slopes are approximately 0.24 for FFT2, 0.16 for ENZ and 0.003 for GRBF,

all in seconds per value of f . This means that FFT2 is about 75 times slower than

GRBF when calculating U for many of values of f simultaneously, while ENZ

is also about 50 times slower than GRBF, even though the number of Gaussian

functions used was much higher than the number of Zernike polynomials.

5.4. Accuracy

The ENZ-theory, although representing a big step forward, has some limita-

tions that must be taken into account. The obvious one is the use of only even

terms in the Zernike expansion of the complex pupil function, which restricts it to

the symmetric wavefront errors. Some other, less evident, problems lie in the core

of the mathematical properties of the ENZ explicit formula for U(r,φ ; f ). This

is an infinite series of terms, each of them a finite linear combination of Bessel

functions, and each new Zernike term added to the expansion of the pupil function

(11) increases the complexity of the terms. The series is slowly convergent, espe-

cially for larger values of f , requiring a truncation with a large number of terms

depending on f (it is recommended to use 3| f |+5 terms, according to [17], [18]).

Another issue in evaluating the ENZ expressions is the accuracy. The terms of

the infinite series with even and odd orders form sign-changing sequences, which

increases the risk of the cancellation errors. This phenomenon can be illustrated

by the following experiments: in the case when the wavefront is given only by a
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Figure 2: Execution time according to the number of different defocus parameters used in the com-

plex pupil function. A fixed number of functions (400 for GRBF and 45 for ENZ) was used for each

value of f .

27



positive Z2
2 horizontal astigmatism, the evaluation of, say, the imaginary part of

U at a point with radial coordinate r = 0.9 consists in adding a finite alternating

sequence, with two dominant terms of approximately 0.423, but whose absolute

values differ in 3×10−5. This shows that these calculations, if not well organized,

can yield a loss of precision in about 5 significant digits. Last but not least, the

ENZ formulas contain binomial numbers that must be evaluated with care in order

to avoid overflow.

In comparison, the error estimates from Section 3.3 show that the convergence

in (15) is very fast, and only a very reasonable number of terms is required for a

precise evaluation.

In order to assess accuracy, we carried out a number of numerical experiments

where we calculated U . For the ideal wavefront (Φ≡ 0) and zero defocus ( f = 0),

the results were discussed in [27], where it was shown that the two semi-analytic

methods performed similarly, although GRBF calculations were done at a much

lower cost.

More informative is to use a synthetic wavefront described by a combination of

Zernike polynomial terms and exponential function, seeking a “fair” comparison

between the ENZ (“Zernike–oriented”) and the GRBF (“exponentially–oriented”)

approaches. Such class of functions allows also for an easy modeling of low and

high-order oscillations. For experiments with a wavefront comprised of basically

low-frequency oscillations see [27]. Here we have used the function given by

Φ(ρ,θ) = 0.6Z3
5(ρ,θ)−0.4Z4

4(ρ,θ)−0.3Z5
5(ρ,θ)+0.25Z2

4(ρ,θ)

+0.25Z4
6(ρ,θ)−0.15Z4

8(ρ,θ)+0.4g(ρ cosθ ,ρ sinθ ;−0.3,0,15)

−2 [g(ρ cosθ ,ρ sinθ ;0.5,0.3,10)+g(ρ cosθ ,ρ sinθ ;0.5,−0.3,10)] ,

(39)
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where Zm
n are the (orthonormal) Zernike polynomials and

g(x,y;a,b,λ ) = exp{−λ [(x−a)2 +(y−b)2]},

as well as its “contaminated” version, where we have added a normally distributed

random noise of the form 0.5 * randn( ) at a grid of 100×100 equally spaced

points (see Figure 3).

For these wavefronts we calculated the diffraction integral (12) for different

values of f by quadrature using the scientific software Mathematica with extended

precision (with the options PrecisionGoal set to 8 and WorkingPrecision to

16). These values of U (regarded as “exact”) were compared with the calculations

performed by FFT2 and by two semi-analytic approaches discussed here. For the

ENZ we fitted the pupil function using the first 200 Zernike polynomials, while for

the GRBF the approximation was performed by the linear combination of 20×20

Gaussian functions, with the parameter λ = 16. Then the diffraction integral was

evaluated by all methods in a grid of 256×256 equally spaced points in the square

[−2,2]× [−2,2].

With the purpose of comparing performance of the computation methods for

different values of the defocus parameter f we plot in Figure 4 the values of the

normalized PSF, again for the simulated wavefront (39), along the horizontal line

(φ = 0,π and r ∈ [0,1]), setting f = 0, f = 2π and f = −2π , as in a numerical

experiment described in [18]. In the case f = 0 the dotted line (computed by the

ENZ method) is not observed because it matches exactly the other two curves,

found using quadrature and the GRBF algorithm. We see that for larger values of

defocus our procedure outperforms the alternative methods.

In our last experiments we analyzed the performance of all methods for a non-

circular geometry. Namely, for the same synthetic wavefront as before we set an

elliptic pupil, taking in (11) as A(ρ,θ) the characteristic function of the set (in
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Figure 3: 3D plot of the synthetic wavefront function defined in (39) (upper picture) and of the same

wavefront contaminated by a white noise 0.5×N(0,1) (bottom).
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Figure 4: Values of the normalized PSFs and the corresponding errors for the wavefront (39) +

noise, along the horizontal diameter of the unit disk, calculated for each method, for f = 0 (top row),

f = 2π (middle) and f =−2π (bottom row).
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Figure 5: Values of the normalized PSFs for the synthetic wavefront with an elliptic pupil along the

horizontal diameter of the unit disk, calculated for each method, for f = 0 (left) and f = π (right).

cartesian coordinates)

x2 +
y2

(0.7)2 ≤ 1.

The results are illustrated in Figure 5. The poorer performance of the ENZ method

in these examples is due probably to a less accurate fit of the complex wavefront

by Zernike polynomials over a non-circular domain.

6. Conclusions

A new procedure for computing 2D Fourier-type integrals, and in particular, the

diffraction integrals with variable defocus has been developed. We have discussed

some error bounds and developed an efficient scheme for parallel evaluation of

these integrals in a grid of points and for a vector of defocus parameters.

It should be noted that when calculating the Fourier-type integrals considered

in this paper by replacing the original integrand by its approximant, special care

should be put in the quality of approximation. It is easily seen that proximity in

an L2 or even uniform norm is not enough to guarantee small errors (due to a high

sensitivity of these integrals to oscillations), and Sobolev-type norms should be
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used. The higher accuracy we achieve in the approximation step, the better results

will be obtained for the integral calculation. In our case, a linear least squares fit

with Tikhonov regularization gave the best results.

The proposed GRBF-based approach has been compared with the two existing

procedures, i.e., the 2-dimensional fast Fourier transform and the extended Nijboer-

Zernike theory. The results of the comparison show that the new scheme is very

competitive, providing higher accuracy and speed. Among other advantages of our

method we can mention the following:

• a relative robustness of the computation with respect to the underlying ge-

ometry of the pupil function. The GRBF have an almost local character

(especially, for higher values of the shape parameter), and the fit that the lin-

ear combination of such functions provides is less affected by the shape of

the pupil;

• the existence of the shape parameter in the GRBF provides more flexibility

to small details, and allows for an easy implementation of a multi-resolution

scheme, especially in the case of existence of subdomains with different

complexity of the integrand. Since each function used for approximation

of the pupil function enters the final expression linearly, one can use two

or more layers of GRBF to fit the residual error consecutively using differ-

ent sets of centers and different shape parameters in order to improve the

accuracy of the results;

• in the case of the calculation of diffraction integrals of the form (12), the

increase of the computational cost for a vector of values of the defocus pa-

rameter is practically negligible, providing a substantial increase in the per-

formance with respect to the other techniques. This is a reliable and efficient
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way of obtaining the through-focus characteristics of an optical system at

higher resolutions in reasonable time.

In conclusion, the proposed GRBF approach allows calculating through-focus

point spread function at a very low computational cost for an arbitrarily selected

set of the defocus parameters. This is particularly attractive in those applications in

which evaluation of through-focus characteristics of an optical system is required.

They include wavefront sensing, phase retrieval, lithography, microscopy, extreme

ultraviolet light optics, digital holography and physiological optics. We believe that

the GRBF-based method has an even wider scope of application in mathematical

imaging and vision.
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J.L. Alió. Comparative analysis of some modal reconstruction methods of the

shape of the cornea from corneal elevation data. Invest. Ophtalmol. Vis. Sci.

50, 5639–5645 (2009).

37



[26] A. Martı́nez-Finkelshtein, D. Ramos-López, G.M. Castro-Luna, and J.L.
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