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Abstract 18 

In this paper, the production of the microalga Nannochloropsis gaditana using centrate 19 

from the anaerobic digestion of treated urban wastewater is studied. For this, 20 

semicontinuous cultures were performed indoors at laboratory scale, under controlled 21 

conditions, supplying seawater with different centrate percentages from a real wastewater 22 

treatment plant as the culture medium. It was demonstrated that N. gaditana can be 23 

produced using solely centrate as the nutrient source but only at percentages below 50%. 24 

Above this level, inhibition is caused by an excess of ammonia, thus reducing productivity. 25 

In the 30-50% centrate range, biomass productivity was 0.4 g·l-1·day-1, equal to that 26 

measured when using Algal culture medium. Moreover, the biochemical composition of the 27 

biomass was also equal to that measured when using Algal culture medium, with the 28 

protein content in the 30-40%d.wt. range; whereas the lipid content ranged from 20 to 29 

25%d.wt. Under these conditions, phosphorus depuration from the culture medium was in 30 

the 80-90% range while nitrogen depuration was only between 20 and 40%, indicating an 31 

excess of nitrogen in the centrate with respect to phosphorus. In spite of this phosphorus 32 

limitation, in the optimal centrate range (30-50% in the culture medium), the cells 33 

performed under optimal conditions, removing up to 35 mgN·l-1·day-1 and 5.7 mgP·l-1·day-1, 34 

with quantum yield values measuring 1.0-1.3 g·E-1. By supplying additional phosphorus, it 35 

was possible to enhance productivity and increase nitrate and phosphorus depuration to 36 

over 80%. The use of centrate is confirmed as a useful method for reducing microalgae 37 

production costs while also increasing process sustainability, especially when using 38 

biomass for bioenergy applications. 39 

  40 



1. Introduction 41 

Rising oil prices and global warming, associated with the burning of fossil fuels, has 42 

prompted a search for renewable, clean and carbon-neutral biofuels. In this scenario, 43 

microalgae have been proposed as a third-generation biofuel source given their high 44 

potential energy yield per hectare (Chisti, 2007; Mata et al., 2010). For this reason, 45 

considerable effort has been made recently to develop technologies for producing biofuels 46 

such as bio-diesel, bio-ethanol, bio-methane and bio-hydrogen from microalgae biomass 47 

(Rosenberg et al., 2008; Schenk et al., 2008). However, the process has not yet been 48 

exploited industrially as the high cost of microalgae biomass production is still too great to 49 

compete in the energy field, especially given the limited availability and cost of nutrients 50 

(Acién et al., 2012). When using clean water and artificial fertilizers, algae production costs 51 

are still very high, more than 5 €/kg of dry mass (Molina-Grima et al., 2003; Norsker et al., 52 

2011; Acién et al., 2012). 53 

Nitrogen and phosphorus, in addition to CO2, are the main nutrients required for microalgae 54 

production. Approximately 5 t of nitrogen and 1 t of phosphorus are needed to produce 100 55 

t of microalgae biomass. The production of these compounds as fertilizers is limited as well 56 

as being associated with high energy consumption and resultant CO2 emissions - indeed, to 57 

produce 1 kg of NH3, more than 10 kWh of energy is required. Consequently, using 58 

fertilizers as the nutrient source reduces the sustainability of microalgae-based processes 59 

(Lardon et al., 2009). On the other hand, nitrogen and phosphorus can be obtained from 60 

effluents such as wastewaters. Because of this, microalgae production using wastewater as 61 

the nutrient source is a very promising alternative, which offers added environmental 62 

advantages (Olguín, 2012; Pittman et al., 2011; Dong et al., 2014). As a result, microalgae 63 

can be produced from urban or animal wastewater using freshwater strains, at the same 64 

time helping to depurate the wastewater itself (Olguín, 2003; Muñoz and Guieysse, 2006; 65 

Godos et al., 2010; Cabanelas et al., 2013). Microalgae production using wastewater, or 66 

other contaminated effluents, has additional advantages as microalgae are effective in 67 

removing organic matter, heavy metals and xenobiotics as well as inorganic nutrients 68 

(Hernández and Olguín, 2002; Olguín, 2003; Muñoz and Guieysse, 2006) thus producing 69 

cleaner effluents with high dissolved oxygen concentrations. Moreover, the heavy metal 70 

concentrations found in wastewater are many times lower than the toxic levels for most 71 



microalgae strains (Dong et al., 2014). Finally, wastewater depuration using microalgae 72 

consumes 0.52 MJ/m3 compared to a value of 3.6 MJ/m3 when using conventional systems, 73 

resulting in both economic and sustainability advantages (personal communication from 74 

Aqualia). 75 

Nonetheless, the utilization of wastewater limits biofuel production to freshwater 76 

microalgae strains even though using seawater strains is actually the most sustainable way 77 

to produce biofuels (Yang et al., 2011). As an alternative, centrate from the anaerobic 78 

digestion of activated sludge produced in wastewater treatment plants can be used as the 79 

nutrient source to produce marine microalgae. There are two main advantages of using 80 

centrate: (i) the nutrient content is much higher than in wastewater, and (ii) the presence of 81 

aerobic microorganisms is scarce because they are produced under anaerobic conditions. 82 

Inside wastewater treatment plants the centrate is recirculated to depurate it, meaning 83 

higher energy consumption and greater cost. Utilizing centrate allows the nitrogen and 84 

phosphorus contained within it to be reused and reduces the number of stages required in 85 

the wastewater treatment plant, therefore reducing operating costs (Dong et al., 2014).  86 

The centrate obtained from filtering the digestate (produced by anaerobic digestion) is the 87 

most concentrated stream of ammonium/phosphorus to be found in wastewater treatment 88 

plants. This centrate has already been used as the nutrient source to cultivate different 89 

microalgae strains such as Chlorella sp. Chlorella vulgaris, and Nannochloropsis salina (Li 90 

et al., 2011; Cabanelas et al., 2013; Dong et al., 2014). Within the centrate, typical 91 

ammonia and phosphate concentrations range from 400–800 mg·l-1 and 20–60 mg·l-1, 92 

respectively. In addition to the concentration, the N/P ratio is also important because it 93 

determines the nutrient, which potentially limits the growth. This ratio should be close to 94 

the optimum nitrogen-to-phosphorus stoichiometry encountered in phytoplankton, which 95 

has been described as falling within the 8–45 range (Klausmeler et al., 2004). Centrate may 96 

also contain certain constituents that inhibit microalgae growth such as urea, organic acids, 97 

phenols and pesticides - at high concentrations these might limit the use of such effluents in 98 

microalgae production (Kumar et al., 2010). Consequently, research is needed to determine 99 

the optimal centrate percentage that can be mixed with seawater to support algae growth for 100 

whichever conditions apply. To examine this, a specific study looking at centrate from each 101 



wastewater treatment plant should be carried out to evaluate its subsequent use as a nutrient 102 

source in microalgae production.  103 

The aim of this research is to determine the feasibility of producing N. gaditana microalgae 104 

using centrate from a real wastewater treatment plant located in Almeria, in which not only 105 

the productivity but also the quality of the biomass produced is analysed. To do this, 106 

experiments were carried out using Algal culture medium as the standard alongside culture 107 

media prepared by adding different centrate percentages to seawater. Mass balances were 108 

then performed to determine nutrient yields, and the optical properties of the biomass were 109 

analysed to determine the light-use efficiency of the cultures. The quality of the biomass 110 

produced was also analysed. 111 

 112 

2. Materials and methods 113 

2.1 Microorganism and culture media 114 

The marine microalgae Eustigmatophyceae Nannochloropsis gaditana Lubián CCMP 527 115 

was selected because of its high growth rate and productivity under outdoor conditions (San 116 

Pedro et al., 2014). Culture inoculum was grown under controlled pH (8.0) and temperature 117 

(25.0ºC) conditions in a 0.5 l flask, at an irradiance of 150 µE·m-2·s-1, using Algal medium 118 

with 8 mM nitrate (Bionova, Santiago, Spain) in seawater (Fabregas et al., 1984). This 119 

medium contains 22.4 mg·l-1 of phosphorus and 890 mg·l-1 of NaHCO3, in addition to 120 

small amounts of iron, calcium, potassium, copper, etc. For the experiments, the culture 121 

media were prepared using natural seawater. The control culture medium was prepared by 122 

adding chemicals to natural seawater at standard concentrations corresponding to Algal 123 

culture medium. Experimental culture media were prepared by mixing natural seawater 124 

with different centrate percentages (10 to 80%v/v) taken directly from a real wastewater 125 

treatment plant located in Almeria, Spain. The natural seawater was pumped directly from 126 

the Mediterranean and filtered through 10, 5 and 1 µm pore-size filters prior to use. No 127 

additional treatment was applied to the seawater or culture mediums used. Centrate was 128 

obtained directly from the bed filter used in the wastewater treatment plant to separate the 129 

solids from the digestate liquid fraction, gathered after the anaerobic digestion of activated 130 

sludge produced from wastewater treatment. Therefore, this centrate did not contain solids 131 

and was rich in ammonia and phosphorus, in addition to other compounds. A complete 132 



analysis of the centrate used is shown in Table 1 while Table 2 shows a summary of the 133 

main compounds within the different culture media used. 134 

 135 

2.2 Photobioreactors and culture conditions  136 

Experiments were carried out indoors in four polymetil-metacrilate bubble-column 137 

photobioreactors (0.5 m in height, 0.09 m in diameter). The columns had a medium inlet as 138 

well as a harvest valve, together with a pH sensor input at the top. Air was bubbled up from 139 

the bottom of the column at 0.2 v/v min to agitate and remove the dissolved oxygen. The 140 

temperature was maintained at 20ºC by controlling the air temperature in the chamber 141 

within which the reactors were installed. To keep the pH within the optimum range (7.80-142 

7.85), pure CO2 was injected on demand into the air stream at 0.01 v/v/min. For this, pH 143 

5330 probes and an R21 pH-controller from Crison were used. The reactors were 144 

artificially illuminated using 28W high-efficiency fluorescent tubes (Philips Daylight T5). 145 

The illumination simulated the circadian cycle and two irradiance levels were assayed (300 146 

and 500 µE/m2 s). The irradiance value was experimentally measured as the mean value at 147 

16 different positions; measurements were performed using a spherical SQS-100 Walz 148 

GmbH quantum sensor (Effeltrich, Germany).  149 

Growth experiments were performed simultaneously in all reactors, which were inoculated 150 

with 10% of culture volume from the same standard inoculum. Following this, the reactors 151 

were operated in batch mode for 6 days, after which time they were operated in 152 

semicontinuous mode. Under these conditions, 25% of culture volume was harvested every 153 

day and replaced with fresh culture media. This was carried out using membrane pulse 154 

pumps that introduced fresh media into the reactors during the six central hours of daylight, 155 

at 0.11 l·h-1. This dilution rate (D) of 0.25 day-1 was previously defined as being optimal 156 

under these culture conditions using Algal culture medium (Data not shown). 157 

Semicontinuous operation was repeated daily until the culture parameters remained 158 

constant, which meant for at least three days. In each experiment, the same culture 159 

conditions were assayed in two reactors, thus each experimental condition was assayed in 160 

duplicate. Measurements of the biomass concentration as well as the biomass and 161 

supernatant characteristics were performed by taking fresh culture from the reactor whereas 162 

the biochemical composition was determined from harvested biomass. 163 



 164 

2.3 Biomass concentration, chlorophyll fluorescence, nutrient uptake and quantum 165 

yield 166 

The dry-weight biomass concentration (Cb) was measured by filtering 50 ml of culture 167 

through 0.45 µm filters and drying it in an oven at 80ºC for 24 h. The cell status was 168 

checked daily by measuring the chlorophyll fluorescence (Fv/Fm) ratio with a fluorometer 169 

(AquaPen AP 100, Photon System Instruments, The Czech Republic). Nutrient uptake was 170 

measured by analysing the nitrogen and phosphorus at the reactor inlet and outlet. The 171 

depuration was calculated as the outlet to inlet concentration ratio (Eq. 1). The removal 172 

capacity was calculated as the amount of compound removed per time and culture volume 173 

unit (Eq. 2). 174 

[ ] [ ]
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Nutrient
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Depuration Nutrient

−
=  

Eq. 1 
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The optical properties of the biomass were measured in a CM-3500d Minolta 175 

spectrophotometer-colorimeter with Spectramagic 3.6 Software (Minolta, Germany). For 176 

this, a glass cuvette (3 cm wide, 4 cm high and 1 cm deep) was filled with 12 ml of culture 177 

and colour parameters were immediately obtained, in addition to transmittance at 178 

wavelengths ranging from 400 to 700 nm. These measurements were carried out directly on 179 

the culture within a few seconds, with no pretreatment or operation, such as centrifugation, 180 

extraction, etc. The most popular numerical colour–space system is the L*a*b* (also 181 

referred to as the CIE-LAB system) originally defined by the CIE in 1976. This system 182 

defines L* as a sample’s colour lightness measurement, a* measures the red and green 183 

components while b* measures the yellow and blue. The extinction coefficient (Ka) was 184 

calculated by dividing the average absorption by the biomass concentration (Cb) and light 185 

path of the cuvette (p) (Eq. 3). 186 

p·Cb

Abs
Ka =

 

Eq. 3 

The average irradiance (in the photosynthetically-active radiation range, PAR) at which 187 

cells are exposed inside a culture (Iav), is a function of the irradiance in the absence of cells 188 

(Io), the biomass extinction coefficient (Ka), the biomass concentration (Cb) and the light 189 



path inside the reactor (p). It can be approximated using Equation 4 (Molina-Grima et al., 190 

1997). 191 

( )
( )( )Cb·p·Kaexp1

Cb·p·Ka

Io
Iav −−=

 

Eq. 4 

Quantum yield (ΨE) is defined in microalgal cultures as the amount of biomass generated 192 

by the unit of radiation (usually a mole of photons) absorbed by the culture. Since it 193 

represents the ratio of biomass generation to absorbed photon flux, it can be calculated by 194 

Equation 5 (Molina-Grima et al., 1997), where Pb stands for the volumetric biomass 195 

productivity and Fvol for the photon flux absorbed in the volume unit. The photon flux 196 

absorbed through the reactor volume may be obtained from the average irradiance (Iav) on 197 

a culture volume basis using Equation 6 (Molina-Grima et al., 1997). 198 

vol
E F

Pb
=Ψ

 

Eq. 5 

Cb·Ka·IavFvol =  
Eq. 6 

 199 

2.4 Analytical Methods 200 

For culture medium and supernatant analysis, the standard official methods approved by the 201 

Spanish Ministry of Agriculture were used (Ministerio de Agricultura, 1982). Phosphorus 202 

was measured by visible spectrophotometry through the phospho-vanado-molybdate 203 

complex. Nitrates were quantified using a spectrophotometer between 220 and 275 nm. 204 

Ammonium was measured by the Nessler reactive method. With regards to biomass, 205 

freeze-dried biomass from each steady state was analysed. Lipids were determined 206 

gravimetrically from an extract obtained with chloroform:methanol (2:1) (v/v) (Kochert, 207 

1978). The protein content was determined using the Lowry method. Fatty acids were 208 

determined by gas chromatography (Rodrı́guez-Ruiz et al., 1998). 209 

 210 

3 Results 211 

The centrate composition used is shown in Table 1. It was observed that, even though the 212 

centrate was obtained from wastewater treatment plants, the effluent salinity was high (4.55 213 

mmhos/cm), with an approximate total salt content of 3.6 g·l-1, much higher than 214 

freshwater, which typically contains less than 1.0 g·l-1 of salt. The main compounds 215 



contained in this centrate were chloride and bicarbonates, in addition to a high ammonium 216 

concentration (up to 615 mg·l-1) whereas the nitrate and phosphorus contents were lower, at 217 

29 and 36.0 mg·l-1, respectively. In addition to this, the centrate contained relevant amounts 218 

of calcium, potassium, iron, etc., all necessary for microalgae growth. Mixtures prepared 219 

solely by adding this centrate to seawater showed a salinity reduction as the centrate 220 

percentage increased, because of the lower centrate salinity compared to that of the 221 

seawater (Table 2). This is important because a reduction in salinity can be a stress factor in 222 

the growth of marine strains such as N. gaditana. With respect to the nutrients, by 223 

comparing the composition of the Algal culture medium to mixtures that used centrate as 224 

the nutrient source, the nitrogen content of the Algal culture medium was observed to be 225 

comparable to mixtures obtained using a centrate percentage of 30%; whereas in order to 226 

achieve a phosphorus content comparable to that in the Algal culture medium, at least 50% 227 

of centrate needed to be mixed with seawater. Due to the variation in these three parameters 228 

(salinity, nitrogen and phosphorus), an optimal centrate percentage in the culture medium 229 

cannot be defined without experimental determination. Moreover, because nitrogen is in the 230 

form of ammonium rather than nitrate, N. gaditana tolerance to high concentrations of 231 

ammonium also has to be studied. 232 

Experiments performed in semicontinuous mode at a 0.25 day-1 dilution rate demonstrated 233 

that centrate can be used as the nutrient source in the production of N. gaditana. Steady 234 

states were obtained when using centrate percentages between 20 and 70% (Figure 1A); the 235 

biomass productivity being higher the greater the irradiance in the experiments performed. 236 

Below 20% of centrate, the nutrient content of the culture medium was insufficient to 237 

support growth at the imposed dilution rate, the culture being washed out even at the higher 238 

irradiance. At 80% of centrate, the ammonium concentration was so high that inhibition 239 

reduced the growth rate to below the imposed dilution rate, meaning the culture was also 240 

washed out at both irradiances tested. Moreover, above a 50% centrate level, the 241 

ammonium concentration was excessive and biomass productivity was reduced when 242 

compared to maximal values obtained at 30 to 50% centrate levels. The fact that maximal 243 

biomass productivity was measured at these centrate percentage levels demonstrated that, 244 

under these conditions, the reduction in salinity had no adverse effect on N. gaditana 245 

biomass productivity. Moreover, the biomass productivity measured within this centrate 246 



percentage range was equal to that measured using Algal culture medium in seawater at 247 

both irradiances tested. The adverse effect of too high a centrate percentage was also 248 

observed in the chlorophyll fluorescence measurements (Figure 1B). At centrate 249 

percentages higher than 50%, a reduction in chlorophyll fluorescence was clearly observed, 250 

dropping from values of 0.65, measured under normal conditions, to 0.45, measured when 251 

70% of centrate was used in the culture medium. No measurements were performed at 10% 252 

and 80% of centrate because the cultures were washed out. In these cases, no irradiance 253 

influence was observed on chlorophyll fluorescence values. To confirm that the adverse 254 

behaviour of the culture (when increasing the percentage of centrate) was not due to salinity 255 

reduction, an additional set of experiments was performed using Algal medium prepared on 256 

seawater diluted with freshwater at different percentages. Results showed that biomass 257 

productivity remained constant up to freshwater percentages of 75%; while using only 258 

freshwater with no seawater, a notable reduction in biomass productivity occurred (Figure 259 

2A). Moreover, a similar trend was observed for chlorophyll fluorescence measurements, 260 

experimental values remaining constant (and higher than 0.6) when using percentages of 261 

freshwater in the culture medium up to 75%; and only reducing to 0.4 when using Algal 262 

medium prepared in freshwater with no seawater (Figure 2B). 263 

Regarding the culture medium, nitrogen and phosphorus analysis at the reactor inlets and 264 

outlets allowed us to calculate the depuration rate (the percentage of compounds removed 265 

compared to the inlet value) and removal capacity (the amount of compounds removed per 266 

time and culture volume unit) (Figure 3). The nitrogen depuration values that were 267 

measured in Algal culture medium were 55% and 41% at the higher and lower irradiances 268 

tested, respectively; thus indicating that this culture medium had an excess of nitrogen 269 

allowing N. gaditana growth to be maintained under the culture conditions used (Figure 270 

3A). In experiments performed using centrate, the results showed that nitrogen depuration 271 

was higher, the higher the irradiance, and reduced when the centrate percentage was 272 

increased. The maximal value was 80% when using 20% of centrate and high irradiance, 273 

but it reduced to 23% when centrate percentages were higher than 50% whatever the 274 

irradiance. The reduction in nitrogen depuration occurring when the centrate percentage 275 

was increased in the culture medium is related to a greater excess of nitrogen as well as to 276 

the lower biomass productivity achieved at centrate percentages in the culture medium 277 



higher than 50%. Regarding phosphorus, the phosphorus depuration values measured using 278 

Algal culture medium were 60% and 44% at the higher and lower irradiances tested, 279 

respectively: indicating that even this culture medium had an excess of phosphorus to 280 

maintain N. gaditana growth under the culture conditions (Figure 3B). Concerning 281 

experiments performed on culture media using centrate, the results showed varying 282 

behaviour according to the irradiance. At low irradiance, phosphorus depuration increased 283 

with an increase in the centrate percentage up to a value of 50% - a maximal value of 86% 284 

being measured. Above 50% of centrate, phosphorus depuration reduced. At high 285 

irradiance, phosphorus depuration was high, even at low centrate percentages - with a 286 

maximal value of 92%; however, it also reduced when centrate percentages above 50% 287 

were used, dropping to 34% when a centrate percentage of 70% was present in the culture 288 

medium. The high phosphorus depuration values measured when using low centrate 289 

percentages in the culture medium, along with high irradiance, indicate that under these 290 

conditions the cultures can be phosphorus limited. It is important to note that European 291 

Directive 98/15/EC establishes a water release limit of 10 mg·l-1 for nitrogen and 1 mg·l-1 292 

for phosphorus. In all cases, the outlet nitrogen concentrations present were higher than 10 293 

mg·l-1, whatever the centrate percentage used in the culture medium; whereas the 294 

phosphorus concentration was only lower than 1 mg·l-1 when using high irradiance and 295 

centrate percentages below 40%. Regarding the removal capacity, results showed that, for 296 

Algal medium, the nitrogen removal capacity was 15.5 and 11.5 mgN·l-1·day-1 at the higher 297 

and lower irradiances tested, respectively (Figure 3C). When using centrate, the nitrogen 298 

removal capacity was constant and equal to that measured for Algal medium up to centrate 299 

percentages of 40%. Above this value, the nitrogen removal capacity increased, especially 300 

at centrate percentages higher than 50%. Maximal nitrogen removal of 35 mgN·l-1·day-1 301 

was measured using 80% of centrate. Regarding phosphorus, results showed that when 302 

using Algal medium, the removal capacity was 3.4 and 2.5 mgP·l-1·day-1 at the higher and 303 

lower irradiances tested, respectively (Figure 3D). Using centrate, the phosphorus removal 304 

capacity increased along with increased centrate percentage in the culture medium, up to 305 

50% - with a maximal value of 5.1 mgP·l-1·day-1 being measured. Above 50% of centrate, 306 

the phosphorus removal capacity reduced.  307 



The optical properties of the biomass were also measured because these affect light 308 

availability inside the culture. To do this, the influence of the culture conditions on the 309 

extinction coefficient and the biomass colour were studied (Figure 4). The biomass 310 

extinction coefficient produced in Algal culture medium was 0.19 and 0.21 m2·g-1 when 311 

using the lower and higher irradiance levels tested, respectively. These values were similar 312 

to those obtained with 30 to 50% of centrate in the culture medium. Outside of these values, 313 

the biomass extinction coefficient was lower, indicating lower biomass light absorption 314 

under these conditions. No irradiance influence was observed on the biomass extinction 315 

coefficient. Regarding colour measurements, these were performed to indicate changes in 316 

the biochemical composition of the biomass. Colour space CIELAB L*a*b* was used; the 317 

a* parameter corresponding to variations in colour from magenta to green whereas the b* 318 

parameter corresponded to variations in colour from yellow to blue. Results showed a 319 

similar trend to that observed in the extinction coefficient. The colour of the samples 320 

obtained from centrate were approximate to the colour obtained using Algal culture 321 

medium when centrate percentages were between 30 to 50%. Outside of this range, the 322 

colour of the samples changed from green to brown with a* increasing from -7.0 to -4.3 323 

while b* reduced from 57.5 to 45.5. Colour measurements are a rapid and precise method 324 

to determine a sample’s “aspect”. For this reason they can be used as a control parameter 325 

for determining deviation from optimal culture conditions. 326 

The biochemical composition of the biomass was also influenced by the centrate percentage 327 

used in the culture medium as well as by the irradiance (Figure 5). Results showed that both 328 

the protein and the lipid contents were higher at the higher irradiance, including when Algal 329 

culture medium was used. When centrate was used, the protein content reduced along with 330 

increased centrate percentage in the culture medium up to 40%, then remained constant. 331 

The highest protein content, of 49%d.wt., was measured when using 20% of centrate and at 332 

the higher irradiance; this was far greater than the 36%d.wt. measured under the same 333 

conditions using Algal culture medium. The biomass protein content agreed with that 334 

measured using Algal culture medium at centrate percentages above 40% for both 335 

irradiance levels tested, thus indicating a metabolism change when using low centrate 336 

percentages due to phosphorus limitation. With regard to lipids, much smaller variations 337 

were observed, the mean lipid content measured at both irradiances were in agreement with 338 



those measured using Algal culture medium under the same conditions. Mean lipid contents 339 

of 24.5% and 22.0%d.w.t were measured at 500 and 300 µE/m2·s, respectively. Fatty acids 340 

analysis was also performed. As expected, the results showed that the main fatty acids were 341 

20:5n3, 16:1n7 and 16:0 - however, their profile changed according to the composition of 342 

the culture medium used (Figure 6). When using Algal medium, 20:5n3 was 33%; whereas 343 

when using centrate, its percentage increased from a minimum value of 23% (using 20% of 344 

centrate) to a maximum of 38% (with 30-40% of centrate); it reduced again to 25% when 345 

using 70% of centrate in the culture medium. Contrary behaviour was observed for 16:0 346 

and 16:1n7, starting from high values of 32% and 29%, respectively, when using 20% of 347 

centrate, which reduced to 18% and 15%, respectively, when the centrate percentage was 348 

increased to 30-50%. Then the percentage of 16:0 and 16:1n7 increased the higher the 349 

centrate percentage in the culture medium, up to values of 30% and 22%, respectively, 350 

when using 70% of centrate. There was no observed influence of irradiance on this 351 

behaviour. From these data, it can be concluded that the fatty acid profile is related to 352 

biomass productivity, 20:5n3 increased with biomass productivity whereas 16:0 and 16:1n7 353 

increased when biomass productivity fell. 354 

 355 

4. Discussion 356 

The use of marine strains has been reported as the most sustainable way to produce biofuels 357 

from microalgae because no freshwater is required. However, the nitrogen and phosphorus 358 

content of seawater is too low to support high microalgae biomass productivity. To solve 359 

this problem, nitrogen and phosphorus can be added as fertilizers but this strategy increases 360 

production costs and reduces process sustainability. The alternative is to use residuals from 361 

other industries as the nutrient source - of these, the utilization of centrate from wastewater 362 

treatment plants is an interesting alternative. Centrate is obtained by separating solids from 363 

the anaerobic digestion of activated sludge. It contains high concentrations of nitrogen and 364 

phosphorus, the nitrogen mainly in the form of ammonium. To demonstrate if centrate is 365 

useful as a nutrient source in microalgae biomass production, it is necessary to define the 366 

tolerance limits of the selected strain. Two limits must be defined, the minimum centrate 367 

percentage that allows productive cultures to be maintained, and the maximum centrate 368 



percentage that inhibits growth. Between these two limits, the optimal percentage selection 369 

must be defined as a function of biomass productivity and depuration efficiency. 370 

The results reported here demonstrate that centrate from a real wastewater treatment plant 371 

can be used to produce N. gaditana in seawater. The productivity values obtained were 372 

similar to those measured using Algal culture medium (Figure 1), with no stress observed 373 

caused by centrate dilution with seawater (Figure 2). It was demonstrated that N. gaditana 374 

can utilize ammonium as the nitrogen source although concentrations higher than 300 mg·l-
375 

1 in the inlet medium (corresponding to 50% of centrate) cause stress to the cells and reduce 376 

productivity; meaning a maximum centrate percentage of 50% can be used. Ammonium 377 

has been reported as toxic for microalgae strains when above 100 mg·l-1 (Collos and 378 

Harrison, 2014). For instance, C. sorokiniana was completely inhibited at an ammonium 379 

concentration of 210 mg·l-1 (Muñoz et al., 2005) whereas Spirulina platensis was nearly 380 

completely inhibited at 150 mg·l-1 (Ogbonna et al., 2000). Chlorella sorokiniana presented 381 

similar growth to the artificial medium in 4 to 8-times-diluted pig slurry, whilst severe 382 

biodegradation process inhibition was recorded in undiluted and twice-diluted wastewater 383 

(González et al., 2008). Using N. Salina, it was demonstrated that nitrogen can be supplied 384 

by adding up to 75% of centrate to a culture medium; above this value, productivity 385 

decreases (Dong et al., 2014). Conversely, if the centrate percentage is lower than 20%, the 386 

culture is nutrient limited, and productivity is reduced. The limiting nutrient is not nitrogen, 387 

as might be expected, but phosphorus, as observed in the nutrient removal results. The N/P 388 

centrate ratio is 13.3, in the 8-45 ratio range encountered in phytoplankton (Klausmeler et 389 

al., 2004). It has been reported that this range can be modified depending on the culture 390 

conditions and the species involved, a factor which determines the most suitable species 391 

under different conditions (Klausmeler  et al., 2004). Although the centrate composition 392 

can change according to the particular wastewater treatment plant’s operating conditions, 393 

no great variations in the nitrogen/phosphorus ratio are expected, meaning that the centrate 394 

percentage range that can be incorporated into the culture medium is defined as being 395 

between 30% and 50%. Given that 30% of centrate in the culture medium allows one to 396 

maintain high productivity (Figure 1) along with higher depuration efficiency (Figure 3), 397 

compared to using 50% of centrate, the former percentage is recommended.  398 



Biomass production is accomplished by taking up nutrients from the culture medium, the 399 

depuration ranging from 80 to 20% and from 92 to 34% for phosphorus and nitrogen, 400 

respectively. Similarly high depuration rates have also been reported with freshwater 401 

microalgae (Craggs  et al., 1997; Sydney  et al., 2011). With settled domestic sewage and 402 

secondary-treated domestic effluent, supplemented with settled swine wastewater, the 403 

nitrogen depuration was in the 92–95% range although the phosphate depuration was 404 

lower, at approximately 62–80% (Wang  et al., 2010). However, as depuration is a function 405 

of the net concentration supplied, then removal capacity is a more adequate parameter to 406 

compare different strains/systems. Data here reported demonstrate that the nitrogen 407 

removal capacity using Algal medium (hence the use of nitrate as the nitrogen source) was 408 

equal to that measured using centrate. Accordingly, ammonium was used as the nitrogen 409 

source when centrate levels below 50% were used. Under these conditions, the cultures 410 

were phosphorus limited, the biomass productivity and the phosphorus removal capacity 411 

increased when increasing the centrate percentage in the culture medium up to 50%. Above 412 

this value, biomass productivity reduced because of ammonium inhibition and, 413 

consequently, the phosphorus removal capacity reduced. Nonetheless, nitrogen removal 414 

still increased, indicating there was a relevant contribution from ammonium stripping when 415 

operating at such high ammonium concentrations - in spite of the pH being controlled at 416 

8.0. The maximal nitrogen and phosphorus removal capacity values were 35 mgN·l-1·day-1 417 

and 5.7 mgP·l-1·day-1, respectively. Using C. Vulgaris, a maximal removal capacity of 9.8 418 

mgN·l-1·day-1 and 3.0 mgP·l-1·day-1 were reported using centrate (Cabanelas et al., 2013). 419 

On the other hand, nitrogen removal of 8.5 mgN l-1·day-1 was reported for Chlorella 420 

cultures using ten-fold diluted centrate; this value increasing to 22.7 mgN l-1·day-1 under 421 

optimal conditions (Marcilhac  et al., 2014). A similar trend was reported for pig manure, 422 

with nitrogen removal ranging from 0.5 to 12 mgN l-1·day-1 (Sevrin-Reyssac, 1998).  423 

The most intensive parameter for the design and operation of any bioprocess is the 424 

coefficient yield. This is the amount of biomass produced per mass unit of nutrient removed 425 

from the culture medium. In our study, this parameter was calculated (Figure 7) using 426 

biomass productivity values and nutrient concentrations (nitrogen and phosphorus) entering 427 

and leaving the reactor. It can be observed that the nitrogen coefficient yield when using 428 

Algal culture medium was equal to the expected value of 20 gb·gN
-1,  which correspond to a 429 



nitrogen content in the biomass of 5%d.wt. Using centrate, the same value was obtained 430 

when the centrate percentage was in the optimal value range for maximizing biomass 431 

productivity, namely from 30% to 50%. However, outside this range, the nitrogen 432 

coefficient yield reduced, so less biomass was produced with the same amount of nitrogen 433 

removed from the culture. With respect to phosphorus, the coefficient yield measured using 434 

Algal culture medium was in the 90 gb·gP
-1 range. However, using centrate, the coefficient 435 

yield varied significantly from 150 to 20 gb·gP
-1 when the centrate percentage in the culture 436 

medium was modified. The optimal phosphorus coefficient yield value was obtained at the 437 

optimal centrate percentage in the culture medium - previously defined at 30%, meaning 438 

125 and 150 gb·gP
-1 for the lower and higher irradiances tested, respectively. These values 439 

correspond to the expected approximate biomass composition, containing 5%d.wt. of 440 

nitrogen and 1%d.wt. of phosphorus. Reported values for Nannochloropsis salina were 20 441 

gb·gN
-1 and 143 gb·gP

-1 (Dong et al., 2014), whereas for Chlorella vulgaris values of 20 442 

gb·gN
-1 and 65 gb·gP

-1 (Cabanelas et al., 2013) were reported; centrate was also used as the 443 

culture medium in this case. Using secondary-treated wastewater for the production of 444 

Muriellopsis sp., it was observed that the nitrogen and phosphorus coefficient yields 445 

approached 20 gb·gN
-1 and 100 gb·gP

-1, respectively, when operating under nutrient-446 

sufficient conditions, whereas under severe nitrogen conditions, they decreased to 10 gb·gN
-

447 

1 and 6 gb·gP
-1 (Gómez et al., 2012). Values of 15 gb·gN

-1 and 14 gb·gP
-1 were reported using 448 

C. vulgaris and artificial culture mediums with up to 400 mg·l-1 of N-NH4
+ (Aslan and 449 

Kapdan, 2006). Large variations exist in the reported coefficient yield values due to 450 

different strains and culture conditions being used, but also due to different phenomena 451 

taking place in each one. 452 

The culture medium composition also influenced the optical properties of the biomass and, 453 

consequently, the average irradiance inside the culture and the quantum yield. It is 454 

important to study these variables because, in addition to nutrients, light-use efficiency 455 

must be maximized in whichever microalgae production system used. Analysis of the 456 

extinction coefficient and the biomass colour demonstrated that, outside the optimal 457 

centrate range in the culture medium, the extinction coefficient diminished meaning more 458 

light had to be made available to the cells. Moreover, the light quality inside the reactor was 459 

also altered when the centrate percentage was modified because the biomass colour changes 460 



from green to brown when the centrate percentage in the culture medium is outside the 461 

optimal range. In terms of light availability, results showed that within the optimal centrate 462 

percentage range in the culture medium, light availability inside the culture was the lowest, 463 

with values of 25-30 µE·m-2·s-1, and equal to those when using Algal culture medium 464 

(Figure 8A). Outside this optimal range, light availability increased but biomass 465 

productivity decreased, thus indicating that cells were not capable of utilising this increased 466 

light availability. This is because, at 20% of centrate, the culture is phosphorus-limited 467 

whereas above 50%, the culture is inhibited by an excess of ammonium. These phenomena 468 

were better observed when analysing the quantum yield values obtained (Figure 8B). It was 469 

shown that at the optimal centrate range in the culture medium, the quantum yield was 470 

maximal, with values up to 1.16 g·E-1, comparable to the 0.9 g·E-1 value obtained using the 471 

Algal culture medium. However, when using centrate percentages outside the optimal 472 

range, the quantum yield reduced to values of 0.4 and 0.3 g·E-1, thus demonstrating lower 473 

light-use efficiency under these conditions. In cultures performed with Muriellopsis sp., the 474 

quantum yield reduced from 0.6-0.7 g·E-1 under no, or low, nitrogen limitation to 0.38 g·E-1 
475 

under severe nitrogen limitation (Gómez et al., 2012), meaning this strain is less energy 476 

efficient under these conditions. The quantum yield has been reported as reaching 477 

maximum values of 0.65 g·E-1 when culturing Isochrysis galbana at low light under 478 

optimal conditions (Molina-Grima  et al., 1997), reducing to 0.1 g·E-1 under high light 479 

conditions - to the point of causing photoinhibition. Values reported here were higher, 480 

indicating this strain’s greater efficiency in using light and that the cultures were highly 481 

photolimited. 482 

With respect to the quality of the biomass produced, results demonstrated that the 483 

utilization of centrate as the culture medium in the optimal percentage range had little 484 

influence on the biomass’s protein and lipid content when compared to values using the 485 

Algal culture medium. No lipid enhancement was determined by modifying the centrate 486 

percentage in the culture medium, a mean lipid content of 23%d.wt. being measured. Only 487 

an increase in the protein content using low centrate percentages was determined, with 488 

maximal values of 50% d.wt., whereas under optimal production conditions, the mean 489 

protein content was 34% d.wt. Because an increase in protein content is not accomplished 490 

by a decrease in the lipid content, it is believed that the carbohydrate content is reduced 491 



under these conditions although this was not measured. Such behaviour indicates that 492 

phosphorus limitation might limit the production of carbohydrates, thus enhancing the 493 

accumulation of proteins in the biomass. Whatever the reason, as there is little interest in 494 

carbohydrate production, this variation has no great consequence from an application point 495 

of view. Variation in the fatty acid profile is more relevant when the centrate percentage is 496 

modified in the culture medium. Results demonstrated that the 20:5n3 fatty acid profile was 497 

richest when using optimal centrate percentages in the culture medium, concurrent with 498 

maximal biomass productivity, thus confirming the role of polyunsaturated fatty acids as 499 

structural lipids and, consequently, as primary metabolites in this strain. Conversely, under 500 

these optimal growth conditions, the proportion of 16:0 and 16:1n7 reduced, indicating 501 

lower storage lipid accumulation. It was previously reported that under nitrogen-limited 502 

conditions, the percentage of saturated fatty acids increases with respect to values obtained 503 

under nitrogen-saturated conditions (San Pedro et al., 2014). Similarly, it was previously 504 

reported (Sukenik et al., 1993) that saturated fatty acids increase when irradiance 505 

availability increases; with average irradiance inside the culture increasing under nitrogen-506 

limited conditions. Variation in the fatty acids profile is relevant when producing biodiesel, 507 

given that saturated and monounsaturated fatty acids are preferred, and N. gaditana 508 

production using centrate does not favour these fatty acids and thus may be a disadvantage 509 

for biofuel production under these conditions.  510 

Finally, to demonstrate the existence of phosphorus limitation when centrate is used as the 511 

sole nutrient source, an additional set of experiments was carried out using 20% of centrate 512 

as the culture medium (N-NH4=95.7 mg·l-1, P-PO4=7 mg·l-1), but supplying additional 513 

NaH2PO4 to achieve a N/P ratio equal to 5, the same as for Algal medium. Results obtained 514 

under these conditions are summarized in Figure 9. It was shown that by supplying 515 

additional phosphorus, the productivity increased (even when using only 20% of centrate 516 

with lower biomass productivity than at higher centrate percentages). Biomass productivity 517 

measured under these conditions was 0.23 and 0.33 g·l-1·day-1, approaching that measured 518 

using the Algal culture medium (0.27 and 0.37 g·l-1·day-1), at the lower and higher 519 

irradiance levels tested, respectively. Moreover, phosphorus removal remained in the 80% 520 

range when using both 20% of centrate and 20% of centrate enriched with phosphorus as 521 

the culture medium; whereas nitrogen removal greatly increased when supplying additional 522 



phosphorus. Therefore, when using only centrate, nitrogen removal was 46 and 51% for the 523 

lower and higher irradiance levels tested, respectively; whereas by supplying additional 524 

phosphorus, the nitrogen removal increased to 79 and 85% for the same levels tested. 525 

In summary, although centrate can be used to produce N. gaditana biomass for biofuel 526 

production, this needs to be supplemented with additional phosphorus. Ideally, residual 527 

phosphorus can be used although this compound is scarce. The utilization of commercial 528 

fertilizers rich in phosphorus can only be acceptable for minimizing the supernatant 529 

nitrogen content if the phosphorus is released into the environment; otherwise, the 530 

utilization of external phosphorus sources reduces both the sustainability and economic 531 

viability of the overall biofuel production process. 532 

 533 

5. Conclusions 534 

It has been demonstrated that the marine microalgae N. gaditana can be produced using 535 

centrate as the sole nutrient source. The enrichment of seawater with up to 50% of centrate 536 

allows one to achieve higher biomass productivity, comparable to that obtained using 537 

standard Algal culture medium, although the cultures become phosphorus limited. 538 

Likewise, the quality of the biomass produced is comparable to that obtained using standard 539 

Algal culture medium; although regulations concerning the utilization of centrate as the 540 

nutrient source might limit its commercial application in producing biomass. Nonetheless, 541 

for biofuel production (or related compounds), these types of extraction regulations are not 542 

envisaged, meaning the utilization of centrate to produce microalgae would be a cheap and 543 

sustainable method for third-generation biofuel production. 544 

 545 

6. Acknowledgements 546 

This research was financed by DESERT BIOENERGY (Chile) and CO2ALGAEFIX 547 

(LIFE10 ENV/ES/000496) led by ALGAENERGY. We are most grateful to Aqualia S.A. 548 

for providing water samples and Estación Experimental Las Palmerillas of Fundación 549 

Cajamar for collaborating in this research. This research was supported by the Junta de 550 

Andalucía and Plan Andaluz de Investigación (BIO 173). 551 

 552 



7. References 553 

Acién FG, Fernández JM, Magán JJ, Molina-Grima E. 2012. Production cost of a real 554 

microalgae production plant and strategies to reduce it. Biotechnol Adv. 30(6): 1344–555 

1353. 556 

Aslan S, Kapdan IK. 2006. Batch kinetics of nitrogen and phosphorus removal from 557 

synthetic wastewater by algae. Ecol.Eng. 28(1): 64-70. 558 

Cabanelas ITD, Ruiz J, Arbib Z, Chinalia FA, Garrido-Pérez C, Rogalla F, Nascimento IA, 559 

Perales JA. 2013. Comparing the use of different domestic wastewaters for coupling 560 

microalgal production and nutrient removal. Bioresour Technol 131:429-436. 561 

Chisti Y. 2007. Biodiesel from microalgae. Biotechnol Adv 25: 294-306. 562 

Collos Y, Harrison PJ. 2014. Acclimation and toxicity of high ammonium concentrations to 563 

unicellular algae. Mar Pollut Bull 80:8-23. 564 

Craggs RJ, McAuley PJ, Smith VJ. 1997. Wastewater nutrient removal by marine 565 

microalgae grown on a corrugated raceway. Water Res 31: 1701-1707. 566 

Dong B, Ho N, Ogden KL, Arnold RG. 2014. Cultivation of Nannochloropsis salina in 567 

municipal wastewater or digester centrate. Ecotoxicol Environ Saf 103:45-53. 568 

Fábregas J, Herrero C, Cabezas B, Abalde J. 1984. Growth of the marine microalga 569 

Tetraselmis suecica in batch cultures with different salinities. Aquaculture; 42: 207-570 

215. 571 

Godos Id, Vargas VA, Blanco S, González MCG, Soto R, García-Encina PA, Becares E, 572 

Muñoz R. 2010. A comparative evaluation of microalgae for the degradation of 573 

piggery wastewater under photosynthetic oxygenation. Bioresour Technol 101: 5150-574 

5158. 575 

Gómez C, Escudero R, Morales MM, Figueroa FL, Fernández-Sevilla JM, Acién FG. 2013. 576 

Use of secondary-treated wastewater for the production of Muriellopsis sp. Appl 577 

Microbiol Biotechnol 97:2239-2249. 578 

González C, Marciniak J, Villaverde S, García-Encina PA, Muñoz R. 2008. Microalgae-579 

based processes for the biodegradation of pretreated piggery wastewaters. Appl 580 

Microbiol Biotechnol 80:891-898. 581 

Hernández E, Olguín EJ. 2002. Biosorption of heavy metals influenced by the chemical 582 

composition of Spirulina sp. (Arthrospira) biomass. Environ Technol 23: 1369-1377. 583 

Klausmeler CA, Litchman E, Daufreshna T, Levin SA. 2004. Optimal nitrogen-to-584 

phosphorus stoichiometry of phytoplankton. Nature 429: 171-174. 585 

Kochert G. 1978. Handbook of phycological methods. London:Cambridge University 586 

Press.  587 

Kumar A, Ergas S, Yuan X, Sahu A, Zhang Q, Dewulf J, Malcata FX, van Langenhove H. 588 

2010. Enhanced CO2 fixation and biofuel production via microalgae: Recent 589 

developments and future directions. Trends Biotechnol 28: 371-380. 590 

Lardon L, Hélias A, Sialve B, Steyer JP, Bernard O. 2009. Life-cycle assessment of 591 

biodiesel production from microalgae. Environ Sci Technol 43: 6475-6481. 592 

Li Y, Chen Y-, Chen P, Min M, Zhou W, Martinez B, Zhu J, Ruan R. 2011. 593 

Characterization of a microalga Chlorella sp. well adapted to highly concentrated 594 

municipal wastewater for nutrient removal and biodiesel production. Bioresour 595 

Technol 102: 5138-5144. 596 



Marcilhac C, Sialve B, Pourcher A-, Ziebal C, Bernet N, Béline F. 2014. Digestate color 597 

and light intensity affect nutrient removal and competition phenomena in a 598 

microalgal-bacterial ecosystem. Water Res 64:278-287. 599 

Mata TM, Martins AA, Caetano NS. 2010. Microalgae for biodiesel production and other 600 

applications: A review. Renew Sust Energ Rev 14:217-232. 601 

Ministerio de Agricultura. 1982. Métodos oficiales de análisis: suelos y aguas. Ed. 602 

Ministerio de Agricultura, Madrid, Spain. 603 

Molina-Grima, E. García Camacho, J.A. Sánchez Pérez, F.G. Acién Fernández, J.M. 604 

Fernández Sevilla. 1997. Evaluation of photosynthetic efficiency in microalgal 605 

cultures using averaged irradiance, Enz Microbial Technol, 21(5): 375-381 606 

Molina-Grima, E., Acién, F.G., Medina, A.R. 2003. Downstream Processing of Cell-Mass 607 

and Products. In Handbook of Microalgal Culture, Blackwell Publishing Ltd, pp. 608 

215-252. 609 
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Table 1: Composition of centrate obtained from a wastewater treatment plant used to 652 

prepare culture medium by mixing with seawater at different proportions. 653 

pH 8.31   

Conductivity 4.55 mmhos/cm 25ºC  

Compound Concentration, mg/L   Compound Concentration, mg/L 

Chloride 1093.76   Carbonate 24.00 

Bicarbonate 646.77   Magnesium 19.00 

Ammonium 615.48   Iron 0.39 

Sodium 358.00   Boron 0.27 

Potassium 102.00   Sulphate 0.22 

Calcium 96.00   Zinc 0.09 

Phosphorus 36.02   Copper 0.03 

Nitrate 28.94   Manganese 0.02 

 654 

  655 



Table 2: Salinity, nitrogen (nitrate-ammonium) and phosphorus content of the culture 656 

medium used as a function of the centrate percentage added to seawater. 657 

Centrate, % Salinity, g/L N-NO3, mg/L N-NH4, mg/L P-PO4, mg/L 

0% (Algal medium) 25.0 112.0 0.0 22.4 

10% 22.9 0.7 47.9 3.6 

20% 22.2 1.3 95.7 7.2 

30% 19.5 2.0 143.6 10.8 

40% 18.5 2.6 191.5 14.4 

50% 16.9 4.6 334.0 25.1 

60% 13.3 5.5 400.8 30.2 

70% 11.0 6.4 467.5 35.2 

80% 7.9 7.3 534.3 40.2 

 658 

  659 



 660 

Figure 1: Variation of (A) biomass productivity and (B) fluorescence of chlorophylls of N. 661 

gaditana cultures as a function of the centrate percentage in the culture medium. 662 

Experiments performed in semicontinuous mode at 0.25 1/day, at two irradiance levels. 663 

Lines correspond to values obtained using Algal culture medium under the same culture 664 

conditions. 665 

  666 



 667 

Figure 2: Variation of (A) biomass productivity and (B) fluorescence of chlorophylls of N. 668 

gaditana cultures as a function of the salinity in the culture medium. Experiments 669 

performed in semicontinuous mode at 0.25 1/day, at two irradiance levels, using Algal 670 

culture medium under the same culture conditions. 671 

 672 



 673 

Figure 3: Variation of nitrogen (A) and phosphorus (B) depuration in addition removal capacity of nitrogen (C) and phosphorus (D) of 674 

N. gaditana cultures as a function of the centrate percentage in the culture medium. Experiments performed in semicontinuous mode at 675 

0.25 1/day, at two irradiance levels. Lines correspond to values obtained using Algal culture medium under the same culture 676 

conditions. 677 



 678 

Figure 4: Variation of optical properties of N. gaditana cultures as a function of the centrate 679 

percentage in the culture medium. A) Extinction coefficient, B) colour coordinate a*, C) 680 

Colour coordinate b*. Experiments performed in semicontinuous mode at 0.25 1/day, at 681 

two irradiance levels. Lines correspond to values obtained using Algal culture medium 682 

under the same culture conditions. 683 



 684 

Figure 5: Variation of (A) protein and (B) lipid content of N. gaditana cultures as a 685 

function of the centrate percentage in the culture medium. Experiments performed in 686 

semicontinuous mode at 0.25 1/day, at two irradiance levels. Lines correspond to values 687 

obtained using Algal culture medium under the same culture conditions. 688 

 689 



 690 

Figure 6: Variation of fatty acid profile of N. gaditana cultures as a function of the centrate 691 

percentage in the culture medium. Experiments performed in semicontinuous mode at 0.25 692 

1/day, at two irradiance levels: Low light=300 µE/m2s (filled symbols), High light=500 693 

µE/m2s (empty symbols). 694 



 695 

Figure 7: Variation of (A) nitrogen and (B) phosphorus coefficient yields of N. gaditana 696 

cultures as a function of the centrate percentage in the culture medium. Experiments 697 

performed in semicontinuous mode at 0.25 1/day, at two irradiance levels. Lines 698 

correspond to values obtained using Algal culture medium under the same culture 699 

conditions. 700 

 701 



 702 

Figure 8: Variation of (A) average irradiance and (B) light-use efficiency of N. gaditana 703 

cultures as a function of the centrate percentage in the culture medium. Experiments 704 

performed in semicontinuous mode at 0.25 1/day, at two irradiance levels. Lines 705 

correspond to values obtained using Algal culture medium under the same culture 706 

conditions. 707 

 708 



 709 

Figure 9: Variation of (A) biomass productivity, (B) nitrogen and (C) phosphorus removal 710 

with average irradiance as a function of the composition of the culture medium used. 711 

Experiments performed in semicontinuous mode at 0.25 1/day. 712 


