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Abstract

The fundamental analysis of drop coalescence probability in liquid/liquid systems is necessary to reliably predict
drop size distributions in technical applications. For this crucial investigation two colliding oil drops in continuous
water phase were recorded with different high speed camera set-ups under varying conditions. In order to analyse
the huge amount of recorded image sequences with varying resolutions and qualities, a robust automated image
analysis was developed. This analysis is able to determine the trajectories of two colliding drops as well as the
important events of drop detachment from cannulas and their collision. With this information the drop velocity in
each sequence is calculated and mean values of multiple drop collisions are determined for serial examinations of
single drop collisions. Using the developed automated image analysis for drop trajectory and velocity calculation,

approximately 1-2 recorded high speed image sequences can be evaluated per minute.
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1. Introduction

The understanding and successful description of lig-
uid/liquid dispersions is important for many techni-
cal applications. Process operations like e.g. mix-
ing, extraction, or separation inherently comprise dis-
persions and also many products like e.g. milk or cos-
metic creams and lotions consist of or contain emulsions
which are stabilised liquid/liquid dispersions. The per-
formance of the processes and the product quality are
mainly determined by the drop size distribution of the
dispersion. The droplets within the dispersion can ei-
ther break due to turbulent eddies and shear stress or
confluence after a collision of two droplets which is
known as coalescence. The two phenomena drop break-
age and coalescence determine the drop size distribu-
tion. State of the art modelling approaches describe
the drop size distribution by separate kernels for break-
age and coalescence rate. These so called population
balance equations allow the separate implementation of
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breakage and coalescence which occur simultaneously
in a general dispersion [1, 2, 3]. Several research groups
investigated the breakage [4, 5, 6, 7] and coalescence
[8, 9, 10, 11] separately in order to validate and im-
prove these modelling approaches. The investigations
use digital high speed cameras to obtain a high spatial
and temporal resolution. The use of high speed imaging
is necessary because the interesting time scales lie in the
order of microseconds and even below [12]. The analy-
sis of the generated data is a crucial aspect especially for
serial examinations which are necessary for randomly
distributed events like coalescence. The huge amount of
recorded image sequences has to be analysed automati-
cally by applying specific computer vision methods.

This paper proposes a first step in the direction of
fully automatic coalescence detection: Based on the test
cell described in [8], a system is developed to automati-
cally detect and track drops within the videos. From the
established trajectories the time points of drop detach-
ments as well as drop collision are reliably determined.
This allows on the one hand to derive physical param-
eters (such as rise velocity) that are known to have a
substantial influence on the coalescence probability and
on the other hand restricts the amount of data in which
coalescence might happen.
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1.1. Coalescence in liquid/liquid systems

During a collision of two droplets with a certain rel-
ative velocity, the droplets deform each other and a thin
liquid film of continuous phase is enclosed between the
opposing surfaces of the drops. This film is so thin that
the drops seem to be in contact with each other in vi-
sual observations (see Figure 1 at t = 0.00ms). The
film drains during further interaction of the droplets and
the distance between the interfaces diminishes. If the
“contact” of the drops lasts long enough for the film
to drain sufficiently, a certain critical distance between
the droplet surfaces is reached at which the interfaces
merge spontaneously (also referred to as critical film
thickness). The moment and point at which this film
rupture occurs is affected by natural fluctuations and
makes the coalescence a stochastic process [13]. Af-
ter the film rupture (see Figure 1 at t = 4.71 ms) a co-
alescence bridge is built (see Figure 1 at t = 4.78 ms -
6.00ms). The interfacial tension drives the confluence
of the drops by contracting the mutual surface (see Fig-
ure 1 at t > 7.00ms). The steps of drop collision, de-
formation and film drainage are mechanistic and can be
described by several models available in literature [2].
The stochastic phenomenon is the moment at which the
draining film ruptures and coalescence occurs. There-
fore, common modelling approaches describe the mech-
anistic parts and assume a mean critical film rupture
thickness as coalescence criterion. Furthermore, the
models account for the stochastic film rupture by pre-
dicting only coalescence probabilities within a droplet
swarm and do not predict single coalescence events.
So-called film drainage models regard the drainage and
contact times as random variables and put them in re-
lation to each other [2]. In the model representation of
film drainage a repulsion of drops after collision can be
explained as follows: if the drainage of the thin film
takes longer than the contact time of the droplets they
repulse each other elastically and do not coalesce. The
velocity and the manner of film drainage depends on
various influencing parameters i.e. physical properties
of the phases (density, viscosity), interfacial tension,
surface active components, dissolved ions, pH value,
mass transfer, relative velocity, oscillations, drop sizes,
and many more [14]. Even under apparent constant con-
ditions coalescence itself is a stochastic event and the
result of a single droplet collision (coalescence or re-
pulsion) is not predictable. The drop shapes appearing
in Figure 1 are representative for the coalescence events
recorded. The drop sizes vary from d = 1.5 - 3.0 mm
in the experiments so that also unequally sized droplets
collide with each other.
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Figure 1: Image sequence of two coalescing drops (djop = 2.0 mm,
dpostom = 2.2 mm) recorded with VisionResearch Phantom v711
(camera system (3)) at 100,000 frames per second. The time of vi-
sual ‘contact’ is set to t = 0s. Full video sequence in supplementary
material.

1.2. Image analysis

The current experimental set-up states several chal-
lenges that need to be handled by the data analysis mod-
ules.

1. It is not sufficient to merely detect the drop in the
image, but its exact position as well as 2D radius
has to be determined. The video-based estimation
of the target variables (such as drop velocity, con-
tact angle, etc.) requires a certain accuracy of the
drop localisation. Any measurement error at this
stage has a direct influence on the final results.

2. The images of the droplets are virtually untextured
due to the transparency of the fluids. Only the light
dispersion on the surface of the droplets causes
weak intensity gradients in the images, which fre-
quently diminish locally during drop movement.
This already weak optical signal is further de-
graded by the high speed cameras. The extremely
short exposure times of these cameras require a
strong illumination. Even high power LEDs can-
not guarantee a constant and homogeneous lighting
during the whole image acquisition. Due to inho-
mogeneities in the LED fields or vignetting by the
camera lenses, the images are degraded by global
gradients in intensity as well as local image noise.
The weak texture of the objects on the one hand
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and the relatively strong artefacts of the image ac-
quisition process on the other hand require a robust
image-based tracking system, which is able to re-
solve such issues.

3. Last but not least, the large amount of data is a
challenge by itself. Although a high accuracy of
the drop localisation under difficult image char-
acteristics is required, it is not feasible to apply
highly complex, time consuming methods. The
data is analysed offline without any need for real-
time processing. However, hundreds of video se-
quences (i.e. 3-8 gigabyte of data) per parameter
set have to be analysed to obtain a sufficient sam-
ple size.

2. Materials and Methods

2.1. Experimental set-up

The coalescence investigations were performed in a
test cell designed for the collision of a rising drop with
a pendant drop fixed on a vertical cannula. The applied
liquid phases were toluene as disperse and water as con-
tinuous phase according to the EFCE standard test sys-
tems for extraction [15]. The entire automated set-up
was described in detail by Kamp and Kraume [8]. Us-
ing Hamilton syringe pumps the drop volumes could be
determined precisely and drop sizes between 1.5 mm -
3.0 mm were investigated. The relative collision veloc-
ity of the droplets was determined by varying the rising
distance of the bottom drop, which was detached from a
cannula at the bottom of the test cell. Therefore, the dis-
tance between the cannulas could be varied from drop
contact up to 100 mm [8]. Three different monochrome
digital high speed camera systems were used to record
the drop collisions:

1. Photonfocus MV-D752-160-CL-8 (maximum res-
olution of 752 x 582 pixels at a frame rate of
350 fps) with frame grabber board Silicon Soft-
ware microenable III, Pentax TV lens 12 mm and
synchronised backlight LED flash CCS LDL-TP-
100/100-R,

2. Optronis CL600X2-M (maximum resolution of
1280 x 1024 pixels at a frame rate of 500 fps)
with frame grabber board Silicon Software mi-
croenable IV, Pentax TV lens 12.5mm 1:1.4 and
synchronised backlight LED flash CCS LDL-TP-
100/100-R,

3. VisionResearch Phantom v711 monochrome
(maximum resolution of 1280 x 800 pix-
els at a frame rate of 7530 fps) with
Sigma APO macro lens 180 mm F2.8

EX DG OS HSM and continuous LED back-
light GS Vitec MultiLED LT-V8-15.

The frame rate of all CMOS camera systems can be
increased by decreasing the resolution of the recorded
frame. Most of the image sequences were recorded side-
ways to achieve maximal spatial and temporal resolu-
tion with the high speed cameras. This is due to the
design of the CMOS sensors and how the data is read
from them: a reduction of lines leads to a higher maxi-
mal frame rate than reducing the same amount of rows
which are read from the sensor. Therefore, a 90-degree
rotation is beneficial for an area of interest with smaller
width than height.

At higher frame rates the exposure time decreases and
a bright illumination becomes more important. Thus, all
illumination methods reach a certain limit at a certain
high frame rate with corresponding short exposure time.
In general, LED illumination is preferable against other
methods because the heat radiation is much smaller.

To achieve a database of sufficient size for statistical
analysis at least 100 droplet collisions were recorded
with camera system (1) and (2). The number of nec-
essary image sequences was determined by Kamp and
Kraume [8] by analysing the trend of coalescence prob-
ability over the analysed sequences. The recording was
implemented entirely in the LabVIEW automation of
the test cell. In the case of camera system (3) the record-
ing had to be triggered manually and, thus, fewer but
higher resolved sequences were recorded. With these
three cameras systems many image sequences were
recorded with varying quality as well as temporal and
spatial resolution. The applied image analysis has to
cope with pictures of different orientation, resolution,
frame rate, and illumination.

For each recorded image sequence a parameter file
was created containing the known experimental con-
ditions (drop diameters, frame rate, temperature, etc.).
This information is used to enhance the image analysis.

As the coalescence probability is very sensitive
against even small impurities, the purity of the system
was checked before each experimental run. The rising
path of droplets is analysed because most critical impu-
rities alter the surface mobility and, therefore, the drag
coefficient and the rising velocity. The drop rise veloc-
ity was determined as described in Villwock et al. [9]
and compared to the theoretical trajectory of a drop with
fully mobile interface [16, 17].

2.2. Image analysis

The image analysis is realized in Matlab using the
integrated Image Analysis toolbox. The source code
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of the methods described in this work is provided in
the supplementary material of the digital publication to-
gether with a link to the latest version of the code (see
AppendixA.2).

3. Automated image analysis

Figure 2 illustrates the general workflow of the pro-
posed framework to automatically analyse the acquired
high speed image sequences. The framework is based
on two principle ideas: First, to exploit the available
prior knowledge (e.g. test cell layout, drop size, theo-
retic drop movement, etc.) as much as possible. Second,
moving from easy to complicated tasks by using already
acquired knowledge, instead of solving the hard task of
drop detection directly. Each of the individual modules
is described in detail in the following subsections. After
loading the video data and the corresponding parameter
file, which summarizes the experimental set-up, the in-
dividual images are preprocessed to ease the subsequent
analysis tasks. The orientation of the image sequence is
automatically determined based on the knowledge that
the droplets move only in one direction (i.e. upwards).
In a next step the cannulas are located. Based on the
position and shape of the cannula, the centre points of
the two drops within the first frames are predicted. In
subsequent frames the drop positions are first predicted
based on a simple motion model and then refined based
on the image data of the current frame. As soon as the
trajectory of the droplet is known, the events of drop de-
tachment and collision are determined. Based on these
two time stamps, different sequences of the same ex-
perimental set-up are aligned and averaged to enable a
statistical interpretation of the acquired data.

The coordinate system was defined as follows: the
point of origin lays in the upper left corner of the ro-
tated image, x-coordinate increases rightwards and y-
coordinate increases downwards.

3.1. Preprocessing

As described in Section 2.1, the images of the test
cell are captured by a high-speed camera, which pro-
vides an image sequence {/;},=__n of N images with a
given frame rate. The images I; (Figure 3a shows an
example) are degraded by global gradients in intensity
as well as local image noise. Both effects need to be
reduced before any subsequent image analysis task.

The normalization of inhomogeneous lighting is
strongly connected with the similar computer vision
task of colour normalization (see for example [18]).
One simple yet successful approach is the computation
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Figure 2: Workflow of the proposed method

of the Self Quotient Image (SQI, [19, 20]), which is a
fast method to minimize the effect of inhomogeneous
lighting conditions on images. The SQI Q, of the image
I, at time ¢ is defined by Eq. 1, where I, = G =1 is the
input image smoothed by a Gaussian filter G.

It(x7 )’)
Ii(x,y)

Qi(x,y) = ey

The standard deviation of the filter is defined empiri-
cally and is set to 10 pixel for all experiments.

Since I,(x,y) ~ I,(x,y) over (locally) homogeneous
regions, Q;(x,y) is close to one independent from the
absolute value of the intensity within these regions,
while the texture in inhomogeneous regions is preserved
(see Figure 3b). The halo-effect around object borders
is caused by the isotropic smoothing of the Gaussian
filter. Although it can be prevented by edge-preserving
smoothing operators (as for example the bilateral filter
[21]), it does not have a negative effect on the subse-
quent analysis in this work. The Gaussian filter proved
sufficient and is mainly chosen for the sake of a small
computational load.

Since global image gradients have been removed
within the SQI, only local image gradients remain.
Those are mainly caused by the objects of interests,
which are either blocking (cannulas) or dispersing
(droplet borders) the light rays. Both objects are gener-
ally darker than the background and can be detected by
a simple threshold operation (Eq. 2), where 6 is a thresh-
old which is automatically set to the average intensity of
O, in all experiments. The effect of the thresholding is
shown in Figure 3c.

1 if Oy(x,y) <6

Ti(x,y) = { 0 otherwise @
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Figure 3: Intermediate results of image processing steps

3.2. Image orientation detection

In a first step, the orientation of the images is auto-
matically determined by integrating the image intensity
over each image dimension. The distribution of inten-
sity values stays nearly constant over time if integrated
parallel to the drop movement, while it varies with the
drop movement if integrated perpendicularly. The ver-
tical image direction is determined as the direction in
which the intensity distribution varies most over time.
The direction of this change defines which of the two
horizontal image borders shows the lower and upper
cannula. If necessary, the images are rotated such that
the lower cannula is located at the lower border of the
image and the upper cannula at the upper image border.
After the orientation of the image is known, the objects,
namely cannulas (see Section 3.3.1) and drops (see Sec-
tion 3.3.2), are detected.

3.3. Object detection

3.3.1. Cannula detection

The cannulas are of no direct interest. Nevertheless,
precise knowledge of their location and dimension is
crucial for the following reasons:

1. They can be detected much easier than the drops.
Their position is (at least coarsely) known a pri-
ori since the image orientation is already known

and the orientation of the cannulas does not change
within the current experimental set-up. The image
of the cannulas stays constant and is a very dom-
inant image feature, while the droplets strongly
change in appearance during rise, contact, and co-
alescence/repulsion.

2. At the beginning of the sequence, both drops are
connected to the cannulas. Knowing the shape and
position of the cannula provides a solid initializa-
tion to find the position of the droplets within the
first frame.

3. The physical size of the cannulas is known, while
the size within the image is derived from analysing
their detected shape. The relation of physical and
imaged size of the cannulas provides the necessary
information to compute the expected drop radius
in pixels as well as the theoretical drop velocity in
pixels per second.

The detection of the cannulas is based on the knowl-
edge that they are represented by large dark objects,
which are connected to the image borders and stay con-
stant over the whole image sequence. In a first step
a cumulated image T is generated according to Equa-
tion 3 by summing over the whole preprocessed image
sequence, where T is the thresholded image of time ¢
(see Equation 2).

T=3r 3)

t=1

The application of the above constraints to 7 leads to the
rejection of all other objects within the image besides
the two cannulas. The drop on top changes only after
contact with the rising drop and stays constant other-
wise. This can cause small artefacts in the form of drop
pixels that remain in the cumulated image. In order to
delete these erroneous pixels, the shape of each cannula
is refined in a second step. The cannula is assumed to be
coarsely aligned with the image axes. The histogram of
cannula pixels cumulated horizontally and vertically re-
sembles a piecewise constant function as shown in Fig-
ure 4. Width and height of the cannula are determined
as the width of the major part of the histogram. The ex-
act shape is defined by the extremal pixel positions of
the four quadrants around the centre of gravity.

3.3.2. Drop detection

The expected drop radius in millimetre as well as the
physical size of the cannula are known from the cor-
responding parameter file. Image orientation as well as
cannula shape and position are estimated from the given
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Figure 4: Refinement of cannula shape

image data. The centres of the upper (lower) cannula
borders ¢y, (cﬁop)) are calculated from the detected can-
nula pixels. By relating physical and imaged size of
the cannula, all metric length information can be trans-
formed into pixel measurements (and vice versa).

In the following the object detection is only described
for the rising drop. The detection of the fixed droplet on
top is done accordingly.

Based on the expected drop radius 7 in pixel, the ex-
pected centre of the bottom drop p, within the first frame
(t = 0) can easily be determined as po = ¢;p — 7. This
predicted drop centre is quite accurate, since no motion
took place yet and the test cell is able to accurately gen-
erate drops of a specific size.

For the following frames a simple motion model
could be used to predict the drop centre p,,, in the next
frame i+ 1 based on the drop centre p,, in the i-th frame.
However, small differences between real and theoreti-
cal drop movement would accumulate over time, caus-
ing the predicted drop centre to drift away from the real
drop centre. That is why the predicted drop centre p,
needs to be adjusted according to the image data at this
time step leading to a refined estimated drop centre p;,.

All foreground pixels within a circle of 1.5 - 7 ra-
dius around the expected drop centre p, are selected,
Le. B = {(, »ITy(x,y) = LIl(x,y) = pll < 157} All
pixels within B lie close to the drop boundary, since the
interior of the drop is transparent and only the border of
the drop appears dark due to light dispersion. However,
due to vanishing gradients and the segmentation with a
fixed threshold, it is unlikely that the pixels in B, form
a one-pixel wide, connected curve. In order to refine
the border of the drop, the area around p; is divided into
angular intervals A6, defined by Equation 4 using the
mean radius (see Equation 6) of the previous frame 7,
and a border section of b = 2 px. The upper left corner

of Figure 5 shows a few exemplary intervals A6.

b2
A6 = arccos (1 -— ] (€]
2 pl

i

The pixel in B, that has the maximal distance from p,
within A6 is considered as part of the outer border pix-
els O,. Figure 5 shows the resulting outer drop border
pixels O, marked as black squares and the remaining
drop border pixels B, \ O, as grey squares.

A simple computation of the centre of gravity of O,
would shift p, to the side of the drop on which more bor-
der pixels are detected. Instead, the refined drop centre
p; is determined by computing a weighted average of
the outer border pixels 0, € O, (n = 1,...,N = |0y
where the weight depends on the angle to their next
neighbours (see Figure 5):

N
1
Dt = E ;(en—l + 0n+1) * Op (5)
where o¢ := oy and oy, = 01.

Using this method the real drop centre can be cal-
culated even if the border is undisclosed and unequally
thick.

The minimal and maximal distance between the com-
puted centre p, and the outer border pixels O, determine
the radii r,, R, of the minimal and maximal outer bound-
ary, respectively, which are depicted as magenta and
green circles in Figure 5. The mean radius 7, is com-
puted according to Equation 6.

. nhtR
It = 3 (6)

When the drop centre p, in frame ¢ is known, the
expected drop centre p,.; in frame ¢t + 1 is esti-
mated as p,1 = pr + f;, where f; is calculated from
the drop velocity known from the previous frames:
fi = v - At = (p; — ps—1). Alternatively, a motion model
e.g. f, =a/2t* for linear accelerated motion could be
used. The new expected drop centre is refined by the
same procedure as discussed above.

3.4. Event detection

Although the detachment of the bottom drop from the
lower cannula is triggered by the system, the exact start-
ing time of the drop movement is not known. The image
recording is not synchronized with the movement of the
droplet. It is only ensured, that the start of the move-
ment as well as the drop collision is within the recorded
time frame. Both events need to be detected automat-
ically in order to derive robust and precise information
about the drop movement.
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Figure 5: Maximal drop border pixels O; (black squares) are selected
within intervals Af from the drop border pixels B; (grey squares).
Minimal (magenta circle) and maximal (green circle) outer circles are
determined from the extrema of O,. Subsequently, the drop centre p;
is determined from neighbouring pixels in O, (red labelling).

After the initial detection of the droplet in the first
frame, its border is described by two circles with min-
imal and maximal outer radius around a common cen-
tre (see Section 3.3) which are depicted in magenta and
light green in Figure 3h and Figure 5. These two cir-
cles are used to mark a time interval during which drop
and cannula separate. The beginning of this interval is
defined as the moment, when the smallest distance be-
tween the pixels of the cannula to the inner ring is larger
than one pixel. The time interval ends, when the small-
est distance between the outer ring and the cannula is
larger than one pixel. A second time interval is defined
for the contact of the two droplets in a very similar way:
The interval starts, when the outer circles of the drops
are closer to each other than one pixel and it ends as
soon as the inner circles touch each other.

Both intervals of the event detection are subsequently
refined. Within the interval of the cannula detachment
event of the bottom drop, the following procedure is
carried out for each frame: The distances between the
bottom drop border pixels and the upper border of the
cannula are calculated (see Figure 6). A drop border
pixel in O, is only considered if it lies within an angle
of +6 = § from the vertical line of the drop’s centre. For
each side of this vertical line, the pixel with the smallest
distance is selected and its distance to the drop’s cen-
tre is projected onto the vertical line. The frame in
which the mean value of these two distances is larger
than 1.5 px marks the detachment event. The collision
event between the two drops is refined within the found
interval likewise by using the border pixels of the two
drops.

Figure 6: Refined cannula detachment detection visualising the dis-
tance calculation for one pixel schematically.

3.5. Post-processing

Once the coordinates of the drop centres are known,
the estimation of the whole trajectory and the rise ve-
locity is straightforward. The drop trajectory is defined
as linear interpolation of the determined drop centres p;
smoothed by a moving average over +10 frames. Drop
centre displacements greater than 2 px per frame are
neglected since that would correspond to implausible
accelerations. The resulting trajectory (p,) of the ris-
ing droplet is used to calculate the drop velocity as the
derivative of the trajectory.

The conversion factor from pixels to millimetres
Cum/px Was determined during the cannula detection and
the recorded frame rate fps is known from the param-
eter file of the experimental sequence. The trajectory
in physical coordinates (millimetres and time) is cal-
culated directly between the events of drop detachment
and collision. The drop velocity in pixels per frame is
calculated as temporal derivative of the drop centres by
the central differential quotient:

P+l — Pi-1
2

For experimental analysis the vertical component of
the rise velocity versus the drop’s rise height v,(x;) is
important. These values are known but might contain
multiple function values of the velocity at identical rise
heights (i.e. x;,, = x;, fori # j) due to oscillating droplets
or fluctuations in the centre determination. Therefore,
X; is converted to a strictly increasing sequence x; by
rejecting frames #; for which x,, = x;, with j < i. The
drop rise velocity is then only plotted against the strictly
increasing height, i.e. v,(x7).

From all sequences with identical experimental pa-
rameters the mean values v,(¢) and v,(x;) as well as the

v(1) = @)
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maximal, minimal, and standard deviation values are
derived. Unevenly distributed velocity values are inter-
polated linearly to equally sized intervals of ¢ and x for
each sequence.

4. Results and Discussion

In order to demonstrate the output of the image anal-
ysis, the single sequence recorded with camera sys-
tem (3) and shown above in Figures 1 and 3 was anal-
ysed exemplary. The initial distance between the two
drops (dyop = 2.0 mm, dpesiom = 2.2 mm) was 0.8 mm or
38 px. The results are plotted in Figure 7. The trajectory
(in this case the rising height x7, where x( := 0) of the
rising drop centre point p, is shown over the frame num-
ber. The first detected centre point was defined as zero
in this representation. In the same graph the calculated
velocity is shown together with the detected events of
drop detachment from the bottom cannula and drop col-
lision. It can be seen Figure 7, that the centre point does
not rise with constant acceleration but fluctuates espe-
cially in the region of frame number 3800. Analysing
the original sequence shows that the bottom drop does
not instantly detach from the cannula entirely but a thin
liquid bridge keeps the droplet connected to the can-
nula. The detachment, however, was already detected
at frame 1889. The liquid bridge is present until frame
3816 after which the position of the detected centre in-
creases rapidly. For later analysis this deviation is negli-
gible because the velocity over height is more important
than over time and the difference of the centre point be-
tween the two detachment points is only 2 pixels.

Although the final trajectory p, does not contain any
strong changes in drop positions, even slight fluctu-
ations of the determined centres are amplified in the
calculated velocity (green curve in Figure 7). Addi-
tionally, the calculated velocity of the non-smoothed
centre points p, is shown in Figure 7 as light green
crosses. These non-smoothed velocities show signifi-
cant fluctuations (scattering up to +0.2 px/frame, ex-
ceeding the displayed scale) because already a small
centre point shift causes a high velocity at these high
frame rates. In the shown sequence with a recorded
frame rate of 100,000 fps and a conversion factor of
Cnm/px = 0.021 mm/px a jump of 1 pixel per frame
would result in a velocity of above 2000 mm/s whereas
the actual velocity of the rising drop is two orders of
magnitude smaller. This effect can not be avoided due
to the discrete form of the digital image and the limita-
tions of digital resolution.

Applying the above described moving average to the
drop centre trajectory, the determined velocity shows

45 . - . . . . 0.1
I I
! — Trajectory |
20} 51 Velocity non-smoothed j
E. — Velocity smoothed
g 1
2% 8! r
g | |
230} | 0.05
= I —
; :
- 251 I g
: :
@ 1 >
820 w 3
o E
= >
Q
815 0
IS |
2 1
% I
> 101 H
j=ay]
2
2,
5r 8 ‘r
I
| |
0 . . . . . . J_0.05
0 1000 2000 3000 4000 5000 6000 7000

Frame number [-]

Figure 7: Trajectory of single sequence used for visualisations in this
work together with the calculated velocity using the determined tra-
jectory and using a smoothed trajectory by applying a moving average

less fluctuations (green curve in Figure 7). This illus-
trates the necessity of the smoothing by a moving av-
erage in the trajectory determination. The fluctuations
can be assumed to have zero mean value. Averaging re-
duces the variance of this noise and leads to an velocity
estimate, which is closer to the true velocity than the
original calculations. Thus, a broader smoothing inter-
val might be more suitable at these high frame rates.

In the shown sequence the experimentally adjusted
drop distance of 38 px was detected successfully by the
automated image analysis which computed a collision
point after rise height of 38.8 px (see Figure 7).

The mean value calculation is shown exemplarily for
98 image sequences recorded with high speed camera
system (1) at a frame rate of 1162 fps, drop sizes of
diop = 2.6 mm, dporom = 2.5 mm and a drop distance of
4.3 mm or 98 px. The use of images from high speed
camera system (1) shows the capability of the image
analysis for different image resolution and quality. The
selected set of image sequences is representative for se-
rial examinations of coalescence probability (see [8, 9]).
In Figure 8 the mean drop rise velocity is plotted versus
the height of the drop rise including the minimal and
maximal velocity values at the respective heights. Addi-
tionally, the mean value of the collision points is shown.
There are no high-frequency fluctuations of the veloc-
ity visible as in Figure 7 because the same smoothing
interval was used at much lower frame rate. Neverthe-
less, the resulting mean value calculation of a series of
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Figure 8: Mean velocity of 98 sequences including minimal and max-
imal values

drop trajectories like the one shown in Figure 7 would
be similar to Figure 8. The mean rise velocity shows
fluctuations after detachment at a rise height of around
0.5 mm which is caused by slight variations of the drop
detachment from the lower cannula. In general, the dif-
ferences between the minimal and maximal velocities
are remarkably small in all 98 sequences which empha-
sizes the good reproducibility of the experimental set-
up. The slight variations of the mean velocity during
drop rise can be explained by oscillations of the drop
induced by the detachment. The oscillation of a droplet
affects its rise velocity directly due to the changing drag
coeflicient. Being able to evaluate the oscillation is an
important outcome because it is known that the oscilla-
tion has a significant impact on the coalescence proba-
bility [22].

The computational performance of the image analy-
sis is satisfactory. The evaluation of a single image se-
quence needs less than a minute on a single CPU with
2.66 GHz. The analysis of the 98 sequences (3.1 GB of
data) shown above took about one hour. By parallelising
the evaluation of the image sequences the computation
time was reduced to 13 minutes using four CPU cores
with 2.66 GHz.

5. Summary and outlook

A robust image analysis was developed to determine
the trajectories of two colliding drops recorded by dif-

ferent high speed cameras with varying temporal and
spatial resolution and image quality.

The Self Quotient Image (SQI) filter was applied be-
fore thresholding to remove global image gradients and
enhance the object detection. During the stepwise de-
tection of the objects (cannulas and droplets) known in-
formation from the picture and experimental parameters
are used effectively. This allows a fast and robust object
detection. The cannulas, drop centre positions, and the
events of drop detachment from the bottom cannula as
well as drop collision are detected successfully. During
post-processing the rise velocity of the bottom drop is
calculated. Additionally, the mean values for a series of
drop collisions can be determined which are necessary
for serial examinations of single drop collision investi-
gations.

The determined information from this image analy-
sis allows the fundamental analysis of coalescence us-
ing high speed imaging. For the first time, the influence
of collision velocity on coalescence probability can be
evaluated based on the gained data. The findings can
be used to validate existing coalescence models and de-
velop new modelling approaches if necessary. With re-
liable and comprehensive models it is possible to pre-
dict the drop size distributions in liquid/liquid systems.
This would allow a validation in lab scale apparatuses
instead of excessive and expensive experimental investi-
gations at different scales of process development in fu-
ture. Thus, those comprehensive models could be used
for process control and plant design of large scale appli-
cations.

Future development of the image analysis will evalu-
ate the drop shape oscillations during rise and the detec-
tion of coalescence or repulsion events after drop colli-
sion. This information is important to further investigate
fundamental influencing factors on coalescence proba-
bility.
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AppendixA. Supplementary material

AppendixA.l. Image processing as video sequence

For the image sequence used in this work (see Fig-
ures 1, 3 and 7) a video sequence of the intermediate
results of the image processing steps is provided (see
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Figure A.9). From left to right, it shows the original
image sequence, the applied Self Quotient Image filter,
the thresholded binary image, and the detected objects.
The calculated drop centres are shown as white crosses,
the minimal and maximal outer borders are depicted as
magenta and green circles. The trajectory of the rising
droplet is marked by red dots. The image sequence was
recorded with camera system (3) at 100,000 fps. The
video is played back with 100 fps which results in a
slow motion factor of 1000.

= Prm
Figure A.9: Video of intermediate results of the image processing

steps (original, SQI filtered Qy, thresholded 7; image and detected
objects).

AppendixA.2. Source code

The source code of the methods described in this
work is provided in the supplementary material of this
digital publication under BSD 2-clause license. For trial
runs a single image sequence recorded with camera set-
up (1) is provided. Additionally, the single image se-
quence used for visualisation in this work (camera sys-
tem (3) with high frame rate of 100,000 fps) is available.

The source code can also be found on:

o https://github.com/TU-Berlin-FGVT

o http://www.rhaensch.de/droptrack.html
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