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Advanced Driver Assistance Systems (ADAS) were strong innovation drivers in recent years, towards the enhancement of traffic
safety and efficiency. Today’s ADAS adopt an autonomous approach with all instrumentation and intelligence on board of one
vehicle. However, to further enhance their benefit, ADAS need to cooperate in the future, using communication technologies. The
resulting combination of vehicle automation and cooperation, for instance, enables solving hazardous situations by a coordinated
safety intervention on multiple vehicles at the same point in time. Since the complexity of such cooperative ADAS grows with each
vehicle involved, very large parameter spaces need to be regarded during their development, which necessitate novel development
approaches. In this paper, we present an environment for rapidly prototyping cooperative ADAS based on vehicle simulation. Its
underlying approach is either to bring ideas for cooperative ADAS through the prototyping stage towards plausible candidates for
further development or to discard them as quickly as possible. This is enabled by an iterative process of refining and assessment.
We reconcile the aspects of automation and cooperation in simulation by a tradeoff between precision and scalability. Reducing
precise mapping of vehicle dynamics below the limits of driving dynamics enables simulating multiple vehicles at the same time. In
order to validate this precision, we also present a method to validate the vehicle dynamics in simulation against real world vehicles.

1. Introduction

Advanced Driver Assistance Systems (ADAS) are integrated
functions of road vehicles, designed to support the driving
process. ADAS can replace or complement decisions and
actions of human drivers by precise machine tasks. This
allows eliminating driver errors which may lead to many
problems, like accidents, congestions, or pollution. These
problems gainmore andmore importance caused by growing
number of vehicles, which push the road traffic systems over
their capacity limits. For this reason, ADAS, such as the
functions Mercedes-Benz combined in their INTELLIGENT
DRIVE [1] concept, are currently strong innovation drivers
for the automotive industry.

Today’s ADAS are realized through an autonomous
approach with all instrumentation and intelligence on board
of one vehicle. However, in order to assemble more of these
functions to reach fully autonomous driving in a complex
road network, very expensive sensors and complex machine

intelligence are required [1]. Thus, to further enhance the
area of application forADASwith reasonable implementation
effort for sensors and intelligence, ADAS need to cooperate
in the future [2]. Such cooperative ADAS will be enabled
by communication between ADAS deployed on different
vehicles and on road infrastructures, for example, using V2X
communication [2]. In case of Cooperative Adaptive Cruise
Control (CACC) [3] information is shared among vehicles in
a platoon aiming at a harmonized cruising speed.

As ADAS can directly intervene into vehicle control, their
design and implementation are highly safety-critical. Hence,
comprehensive evaluation methodologies are of vital impor-
tance for the ADAS development process, as, for example,
described in [4]. For the development of cooperative ADAS,
however, new evaluation methods are necessary. Due to the
complexity of the addressed traffic scenarios, employing real
world vehicles would require a tremendous effort. Thus,
especially for the early phases of prototyping, simulations
will become increasingly important. In the first stage of
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Figure 1: Emergency Lane Changing Situation [5].

prototyping, a novel idea for an application needs to prove
its feasibility, such as solving a hazardous situation by a new
cooperativeADAS.The cooperative aspectmakes the number
of parameters to be considered while prototyping very large.
Therefore, developers need to handle these large parameters’
space to come to such a verdict about feasibility.This handling
includes finding and tuning parameters in a time-consuming
trial and error manner.

The prototyping environment presented in this paper is
designed to support developers in the first stage of proto-
typing, when an idea for a new cooperative ADAS is tested
for feasibility. For this purpose, our prototyping environ-
ment dedicatedly supports handling large parameter spaces
inherent in cooperative ADAS. For further clarification of the
described problem of finding and tuning these parameters
we introduce the following example. Let us consider the idea
“Cooperative Emergency Lane Changing” (CELC), which
imposes a large parameter space to be handled by the
developer. A hazardous scenario to be solved by CELC is
depicted in Figure 1.

Two cars drive side by side on a two-lane road and Car
A is ahead about half a car length. Unforeseeable, an obstacle
appears on the left lane in front of Car A. The distance to the
obstacle is so close that the driver’s response time is too long
for an emergency stop. Furthermore, an abrupt stop involves
the danger of rear end collisions by following vehicles. The
right lane is blocked by Car B. The velocity of the obstacle
entering the road is assumed to be slow enough so that a lane
change maneuver would solve the situation. A lane change
maneuver of Car A would require an immediate braking
reaction of Car B to avoid a crash of both vehicles. In order
to allow Car A to change the lane, Car B does not need
to brake to standstill, which is less likely to provoke a rear
end accident than a stop to standstill of Car A. The CELC
System, deployed on both vehicles, recognizes the hazardous
situation. Car A informs Car B about its intent to change the
lane. As a result, negotiation in a fraction of a second results in
Car B and its followers braking autonomously, allowing Car
A to change the lane autonomously, while the followers of Car
A are informed to do an emergency brake.The whole process

is done before the drivers of both vehicles even realize the
situation.

For an automated system, such a situation is very complex
to deal with. Normally, even if a crash is unavoidable, from
the perspective of the system, braking would be the safer
option than evading by steering [5, 6]. This is due to the
fact that preferring evading over braking requires the correct
recognition of the situation with a confidence level which is
hard to reach.This problem is described in [6] as the dilemma
between braking and steering and a theoretical resolution of
the dilemma is given, assuming all relevant problem parame-
ters are known.However, if a vulnerable road user is involved,
a collision, even with lower speed, is an inacceptable option
and so the situation gets even more complex. Additionally,
with each additional vehicle needed to be involved in solving
the situation by cooperation, the parameter space to be
considered by developers of such systems grows.

To give an impression of how fast such a parameter space
tends to explode, we will illustrate this with the example of
CELC. The parameters influencing the stopping distance of
Car A depend on car specific properties like its mass, speed,
current acceleration, brake efficiency, and the tire profile
condition. Additionally, environment specific parameters like
road slope, friction, depending on the road surface, and
weather condition need to be considered. These parameters
can be taken into account to determine the most probable
minimal stopping distance for Car A and a related value of
confidence. Now, situation specific parameters like the con-
fidence about the following facts need to be considered. The
obstacle will enter the road, the obstacle is vulnerable, there is
a lane which can be used to evade, there is a car on that lane
blocking Car A, that car is Car B and communication with
Car B is possible, and there is no car on the left lane following
Car A so close that rear end accidents are likely to happen.
Nearly the same number of parameters need to be considered
by Car B for itself and maybe by other cars following behind.
With every further car involved, such as further cars follow-
ing Car B on the right lane, the number of relevant permu-
tations of parameters explodes with an exponential rate (see
[7] for a specific example). Finally the confidences calculated
need to be combined cooperatively, to determine if an evasion
maneuver should be performed or not. Different parameter
constellations result in different minimum distances of Car
A to the obstacle, which can be handled by the application.
This is again a variable of the related research and can give an
answer to the question if the CELC application makes sense
to be developed and to assess its impact to traffic safety.

In order to deal with such a big parameter space and
to come to a decision if a cooperative ADAS makes sense
to be developed for certain situations, developers need a
prototyping environment that is able tomap the these param-
eters and to create relevant situations. This includes mapping
physics and an iterative prototyping process supporting the
mentioned trial and error manner to create, refine, and
assess cooperative ADAS. In this way, a candidate cooperative
ADAS can be studied and either incrementally be brought
through the stage of prototyping, or be discarded. For this
purpose, we present a prototyping environment using vehicle
simulation, which is capable of supporting the described
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process, while being able to map physics up the required
level of precision for multiple vehicles at the same time. To
ensure the transferability of gained simulation results to the
real world, we present a validation method which is able to
validate the simulation models against real world vehicles
within the boundaries of the scope of our simulator.

The rest of this paper is organized as follows. In Section 2,
we derive the requirements for our prototyping environment.
Section 3 summarizes the relevant related work and its
suitability tomeet these requirements. In Section 4, we design
our prototyping environment based on vehicle simulations
and, in Section 5, we propose a method to validate its vehicle
dynamics.

2. Requirements

As described in the previous section, a prototyping environ-
ment is required to assess cooperative ADAS at an early stage
in development. Before we derive the requirements such a
prototyping environment imposes, we first classify more pre-
cisely the class of cooperative applications we are focusing on.
Subsequently we define the scope of our prototyping environ-
ment along with a set of reference applications of cooperative
ADAS, which cover all aspects of cooperative ADAS within
this scope.These applications will help to define the technical
requirements of our simulator and guide its validation.

2.1. Cooperative ADAS Definition. The concept of Intelli-
gent Transportation Systems (ITS) is considered as a way
to enhance the transport system using information and
communication technologies for the planning, management,
and operation. The generic term ITS is commonly used
for integrated application of communications, control, and
information processing in this context [8].These applications
bring users, vehicles, and infrastructure in a relationship to
exchange information concerning the actual task of trans-
portation. For this purpose, ITS applications are of particular
interest for dynamic traffic management, as they can help to
estimate and predict the traffic flowmore accurately and thus
enable to control vehicles on the road more effectively.

Amongmany application domains of ITS, the Automated
Highway System (AHS) is one of the most important items
[9]. AHS assumes that vehicles are guided along highway
lanes autonomously rather than by the driver, using sensors
and communication devices, which link the road and the
vehicles. This concept implies that at least one dedicated lane
on existing highway infrastructure is reserved only for fully
automated vehicles with intelligent technology and aims at
reducing driver error and thereby increasing safety and traffic
throughput considerably [9, 10].

Along the way of automating parts of all the driving
tasks, Advanced Driver Assistance Systems (ADAS) gained
popularity and most of the related researches in the field of
ITS/AHS focus on the ADAS design. For a better under-
standing of the terms ITS/AHS/ADAS, Figure 2 depicts the
schematic relation between them [11]. In the 1990s, vast stud-
ies on ADAS control design and assessment of their impact
on traffic flow have been done in the context of the PATH1

ADAS
Noncooperative
& cooperative

AHS

ITS

Figure 2: Schematic relations of ITS, AHS, and ADAS [11].

program in the USA and the programs PROMETHEUS2
and DRIVE3 in Europe. ADAS entered the series production
of vehicles starting with ABS (Antilock Braking System)
and ESP (Electronic Stability Program) through today’s ACC
(Adaptive Cruise Control) and LKA (Lane Keeping Assist)
which potentially would already enable full automation.

In the 2000s, with the upcoming V2X [12] communi-
cation technologies, cooperative systems that link vehicles
and road infrastructure received more and more attention.
Research interests began to turn to cooperative systems,
with large funded initiatives, among many others, the IVI4

initiative in the USA and projects CVIS5, DRIVE-C2X6,
and SAFESPOT7 in Europe. This research resulted in new
development of cooperative ADAS applications, algorithms,
and control concepts [13]. Finally, current research initiatives
like the EU funded project Autonet20308 and the German
research project IMAGinE9 aim at closing the gap between
automation and cooperation, which includes interaction
control among cooperative vehicles, including both auto-
mated andmanually driven vehicles. As deployment horizon,
2020–2030, is expected, predicting that in 2030 50% of sold
passenger cars could be highly autonomous [14, 15].

As indicated by Figure 3, ADAS can be characterized by
their level of automation [16] and cooperation [2]. In order
to elaborate this characterization, Figure 3 orders different
ADAS applications according to their specific degree of
cooperation and automation [17]. The prototyping environ-
ment described in this work is more useful to prototype
applications, which require a high degree of both dimensions,
automation, and cooperation, at the same time. These coop-
erative ADAS are arranged close to the diagonal in the figure.
Thus, the scope of the prototype environment, indicated by
the arrow in the figure covers the area around the diagonal
and grows with the degree dimensions from the bottom left
to the top right.

2.2. Scope. The scope of our prototyping environment
describes the class of applications, its constraints on driving
dynamics, and the goals of prototyping. We define this scope
to cover a subset of cooperative ADAS for the following
reason.

As outlined in the previous section, cooperative ADAS
define a certain class of applications for vehicles, which
include active intervention by control of vehicle actors and
cooperation enabled by V2X communication. In addition to
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Figure 3: Usefulness of the prototyping environment for developing application, depending on their level of automation and cooperation.

the ability to perceive the vehicle’s environment and driving
conditions it might also be necessary to be able to control the
vehicle at its dynamic limits. This is, for example, required
to perform safe accident avoidance maneuvers. However,
mapping driving dynamics in simulations in a physically
realistic way at or beyond the limits of driving dynamics
requires complex and highly nonlinear simulation models.
Such models grow in complexity and computational demand
with their precision at the limits of driving dynamics. This
characteristic makes vehicle dynamics simulation to be a
conflicting requirement with simulating multiple vehicles at
the same time, which is necessary for the cooperative aspect.
Thus, we need a tradeoff between the number of vehicles to
be simulated at the same time and the precision of mapping
physics realistically at the limits of driving dynamics. For the
prototyping environment developed in this work, we solve
this tradeoff with the following assumptions.

We define the scope of our prototyping environment to
be restricted to the class of applications which are meant
to prevent accidents, not to mitigate them. Therefore, we
can assume a certain safety margin which should always be
regarded by the applications. That excludes very close drive-
by maneuvers at high speeds or with very high acceleration
forces, among others. For our simulator it is thus sufficient to
map a smaller range of dynamics, as its purpose is to match
real vehicle dynamics up to the limits of driving dynamics
only.

Once we have defined the class of applications of cooper-
ative ADAS and the scope of our simulator, we can define a
set of reference applications for our simulator.These reference
applications cover all aspects of the class of cooperativeADAS
within the defined scope of our simulator. Thus, this set of
reference applications can be used to derive the requirements
of the simulator and for validation later. We can summarize
the following aspects to be relevant for the applications to be
developed with our simulator:

(i) Vehicle dynamics are relevant for the correct function
of the application.

(ii) A cooperative aspect involving multiple vehicles is a
vital prerequisite for the application to work.

(iii) The correct evolution of the absolute position of
vehicle involved in cooperative maneuvers needs to
be predictable by the application precisely, which gets
relevant at lower speeds where the safety margin
allows small distances to other objects

2.2.1. CELC: Cooperative Emergency Lane Change. TheCELC
application described earlier in Section 1 was initially pro-
posed in [5]. The number of involved vehicles ranges from
two to tens of vehicles including the followers on both lanes
which need to brake in a coordinated way. We choose CELC
as one reference application to especially cover the lateral
vehicle dynamics aspect of cooperative ADAS. The lateral
dynamics are foremost relevant for the application deployed
on the evading vehicle, to predict its evasion trajectory. This
trajectory must not cut the trajectory of the braking vehicle
and avoid collisionwith the vulnerable obstacle as well. Initial
speeds of around 50 km/h or higher are assumed, as for lower
speeds evading hardly makes sense to be preferred over full
braking. As mentioned earlier, assuming speeds in this range,
the application should always regard a certain safety margin.
Thus, the precision of the evolution of the vehicle position is
less important than the lateral dynamics which determine the
shape of the evasion trajectory.

2.2.2. CACC: Cooperative Adaptive Cruise Control. The
CACC application is an extension of the adaptive cruise
control system. Communication in vehicle platoons is used
to enhance the automated longitudinal control in a way
that string stability in the platoon is achievable [3]. For
CACC, the control loop involves accelerator and brakes of
multiple vehicles in a platoon. In such platoons, ranging
from two to hundreds of vehicles, small changes of the
speed of one vehicle can be amplified in the upstream
direction considerably, which requires very precise control
algorithms to avoid.This makes CACC extremely sensitive to
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longitudinal vehicle dynamics and thus its requirements to a
simulation include realistic mapping of longitudinal vehicle
dynamics. With CACC as reference application, we cover
the longitudinal dynamics aspects of cooperative ADAS. A
precise evolution of absolute positions is not necessarily
required, if the relative distances between vehicles in platoons
are mapped realistically.

2.2.3. PACE: Parking Autonomously in Cooperative Environ-
ments. The PACE application allows drivers to leave their
vehicles at the entry of a parking garage and let them drive
and park to free spots autonomously using series sensors,
as presented in [18]. This is enabled by cooperation between
the vehicles and the infrastructure of the parking garage [19].
Cooperative aspects are, for instance, camera-based off-board
vehicle localization, parking spot allocation, maneuver plan-
ning (e.g., to avoid deadlocks), or sharing sensor information
among vehicles to recognize moving objects like pedestrians.
In contrast to CACC and CELC the driving speeds are
comparatively low. With lower speeds, the impact of driving
dynamics on the vehicles motion gets less in relation to the
kinematics, due to the lower forces and slip. However, the
accuracy of the evolution of the absolute vehicle position gets
more important, since driving in narrow spaces requires driv-
ing close to other objects.The number of involved vehicles for
PACE ranges from one interacting with the infrastructure of
the parking garage up to tens moving on a parking deck.

2.3. Technical Requirements. Active controlling of a vehicle
by an ADAS requires consideration of vehicle dynamics,
which includes a great number of parameters regarding
the vehicle and its environment [20–22]. As outlined in
Section 1, an ADAS deployed on a vehicle additionally needs
to regard many application-specific parameters, like those
related to situation awareness [23, 24]. Depending on the
specific application, this parameter space might grow in a
linear manner with each additional vehicle involved in a
situation. A simulator for such ADAS has to be able to map
this parameter space in simulation. For cooperative ADAS
deployed on multiple vehicles (such as CELC, CACC, and
PACE), the number of parameters to be considered by the
simulator might even grow exponentially. Depending on the
specific application, multiple instance of a cooperative ADAS
deployed on different vehicles involved in the simulation
might need to interact with each other. Thus, each of them
also needs to consider the relevant parameters of multiple
other vehicles.This makes the parameter space to be handled
by the simulator very large. For the technical requirements
of our simulator, we address the following two aspects
concerning this large parameter space:

(i) In order to enable our simulator to map the full
parameter space as described, we need to create the
tradeoffmentioned in (Section 2.2) betweenmapping
vehicle dynamics precisely and simulating multiple
vehicles at the same time. While the number of
vehicles needs to be as big as required by cooperative
ADAS, the precision of vehicle dynamics needs to be
validable within our scope (Section 2.2).

(ii) The application-specific part of this parameter space
is the object of analysis handled by the developer
using the simulator, in order to create, enhance, and
assess applications. For this purpose, a big number
of application-specific parametersmay be introduced,
tuned, or dropped by developers. Therefore, we cre-
ate an iterative process for prototyping cooperative
ADAS, supported by our simulator, to enable devel-
opers to handle the application-specific part of the
parameter space.

Towards the named two aspects, in the following,
we define the high level requirements for our simulator,
described on the basis of the three reference applications
(ELC, CACC, and PACE). For this purpose, we first identify
the originators of the requirements.These are the cooperative
ADAS application to be deployed in our simulator, the devel-
oper using our simulator, and the scope of our simulator. The
first three main entities of our simulator defined as clusters of
requirements are derived from the DVE model [25], which
models the loop of driver, vehicle, and environment while
driving which will be observed by the application.These three
are complemented with the communication, which addresses
the cooperation aspect, and finally the architecture of the
simulator which needs to fit our scope. In Table 1, the origina-
tors are arranged at the column headers and the requirement
clusters at the row headers. The table cells describe the
concrete requirement of an originator to a requirement
cluster. In the following, we describe these requirements in
more detail. Starting the named five cluster, we decompose
them to derive the final list of requirements for our simulator.
This list does not raise a claim of completeness but rather
serves as a guideline to design our simulator in Section 4.

2.3.1. Vehicle

Chassis. The most important requirement of vehicle simula-
tion model is issued by the simulator scope. Here we need to
realize the tradeoff betweenmapping physics realistically and
reducing the computational effort to gain performance. This
can achieved in the following way:

(i) Disregard effects like torsion of the chassis which have
minimal impact on the vehicle dynamics within our
scope.

(ii) Disregard deformation of the chassis due to collisions,
which allows us to model the vehicles as simple rigid
bodies.

(iii) Vehicle kinematic needs to be modelled more pre-
cisely, as required by the PACE application for the
correct evolution of the absolute vehicle position.

Sensors and Actuators. For the interaction of the applications
with the vehicle model, actuators for acceleration, brake,
and steering are needed. Sensors are necessary to enable
the applications to sense the state of the vehicle and its
environment. Modelling sensors can be extremely complex
and computationally expensive. However, within our scope,
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Table 1: Requirements.

Application Developer Scope

Vehicle Actuators, sensors Parameterize models and
sensors, validation

Tradeoff between precision and
computational effort

Environment Perception by sensors Scenario definition (quick) Simple models to address
computational effort

Driver Interaction by actuators Define behavior -

Communication Short range V2X Parameterize Simple models to address
computational effort

Architecture Deployment
Open interfaces, iterative
prototyping process,
visualization, time, repeatability

Distribution to increase
performance

the following set of few sensors having simple models with
few parameters should be sufficient for the majority of
cooperative ADAS applications, while offering developers the
possibility of hooking up further custom sensors.

(i) Frontal sensor like radar [1, 3] as needed by CACC
(ii) Side sensors like a blind spot detection system [1] as

needed by CELC
(iii) Lane detection sensor like a stereo camera [1] as

needed by PACE for precise navigation

Parametrization. All relevant parameters of the vehicle model
regarding dynamics and kinematic, as well as the param-
eters defining the sensor models, need to be adaptable by
developers. Changing these parameters during prototyping
cooperative ADAS is a highly recurrent, iterative process and
needs to be designed in a way to enable very short cycles thus.
For this purpose, at this point we identify the definition of
such an iterative prototyping process as an additional separate
requirement. Parametrizing vehicle models regarding vehicle
dynamics requires validation, for example, to match simula-
tion to a certain real world vehicle. Here we identify another
separate requirement, a vehicle dynamics validation method
needed to validate the vehicle model and its parameterization
against real physics.

2.3.2. Environment. The environment of the vehicles in our
simulator needs to contain objects that can be perceived by
sensors and infrastructural elements that the vehicles can
interact with. This includes static objects like street furniture
(such as traffic lights) andmoving objects (like road users), as,
for example, needed by CELC. For the majority of research
done on cooperative ADAS within our scope, the following
environmental features should be sufficient:

(i) Simulation road infrastructure for CACC and CELC
can be generated from simple multilane road seg-
ments, while applications like PACE require complex
street grids including at least the mapping of basic
traffic rules and obstructing objects like pillars and
walls.

(ii) Environmental objects should be representable by
low computationally demanding simple geometrics,
as already motivated in the context of sensor models.

(iii) Properties of objects and infrastructure influencing
vehicle dynamics and perception need to be param-
eterizable, for example, the friction of road surface or
weather conditions.

(iv) Location and time-bound triggers are needed; for
instance, to simulate CELC an obstacle has to be
moved in front of the vehicle very closely.

(v) Scriptable procedures are required, like braking
events in certain situations for CACC.

Generating and iteratively modifying scenarios including
complex road infrastructures as described, as well as its
parametrization and scripting, are a time-consuming job for
developers. Thus, at this point, we identify the need for a
scenario definition for our simulator as an additional separate
requirement, which enables rapid prototyping in a very time
effective way.

2.3.3. Driver. A driver moving a vehicle in our simulator
is needed first as input for a cooperative ADAS application
deployed on this vehicle and second to generate surrounding
traffic for sensor perception. In that way, certain situations
can be created as, for instance, required for simulating CELC.
In order to imitate driver behavior, the basic tool fitting
our scope is speed-annotated routes [5] to be defined by
developers.Defining such routes, however,may becomemore
andmore time-consumingwith a growing number of vehicles
and larger simulation scenarios as, for example, needed for
PACE. In order to reduce the effort for developers, in addition
to speed annotations, a set of basic driver behaviors and
related features should be provided by our simulator, such as
the following:

(i) Autonomous,microscopic driver behaviors regarding
traffic [26], including, stopping in front of red traffic
lights, giving way, regarding speed limits, and avoid-
ing collisions with other vehicles and objects

(ii) Scripted maneuvers defined by developers as part of
the scenario definition like speed changes and braking
maneuvers that can be triggered by the environment,
as required by CACC

(iii) Parameterization of the maneuvers that need to be
varied while prototyping as the driver reaction time
and randomized behavior (e.g., swaying in the lane)
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(iv) Different yet reproducible random seeds to guarantee
repeatability

2.3.4. Communication. As an integral aspect of cooperative
ADAS, communication between vehicles and infrastructure
needs to bemapped by our simulator.The applications within
our scope (vehicle control and cooperation) naturally focus
on short range real-time communication, like required by
CELC. Communication with such focus is enabled by single-
hop V2X communication which allows us to disregard com-
plex multihop propagation models [12, 27]. Additionally, cel-
lular communication might be required to integrate remote
information source. This could, for instance, be required to
include external traffic information in CACC, like positions
of occurring traffic jams or constructions sites ahead.

Similar to the approach of modelling sensors, our simu-
lator should provide simple set models for V2X and cellular
communication [27] including the following parameters for
developers to vary: delay, packet lost, range, and bandwidth.
Again we provide the ability to hook up further custom
models. To provide an example, researching CACC for very
large platoons could be required, which might result in the
demand for mapping multihop communication or packet
collision due to many communication nodes being involved.

2.3.5. Architecture. In order tomaximize the number of vehi-
cles that can be part of a simulation of cooperative ADAS, the
simulationmodels are to be designed to reduce their demand
on processing power.Themost important requirement to the
architecture of our simulator is to maximize the processing
power to be available for simulation. This can be achieved by
designing the architecture to be able to scale the simulation
over multiple instances running different machines. From
the perspective of developers, the architecture should further
enable the following:

(i) Visualization of the running simulation
(ii) Providing an open interface to hook up the applica-

tions instead of forcing a certain technology to this
end, for example, MATLAB�/Simulink�

(iii) Supporting the usage of the iterative process men-
tioned as separate requirement and in this context a
time effective parameterization of the simulation

2.3.6. Scenario. The scenario definition should contain all
relevant parameters of the simulationmodel (vehicle, sensors,
and communication), the parameter setting of the applica-
tions, and the definition of the environment and the defini-
tion of driver input for a simulation.Thus, the scenario should
contain all the information that developers need to specify
and vary with regard to the iterative prototyping process
which we already identified as a separate requirement.

2.3.7. Process. As already outlined in the preceding require-
ments, for prototyping cooperative ADAS, a process is
needed to support developers handling the application-
specific part of the related parameter space. The design of
all aspects of our simulator should be aligned with such a

process, which brings an idea of a cooperative ADAS through
an iterative process of refining and assessment towards a plau-
sible candidate for implementation. Thus, prior to designing
the simulator, we first need to define this iterative process.

2.3.8. Vehicle Dynamics Validation Method. As we identified
while defining the requirements of the vehicle simulation
model, parametrizing vehicle models in terms of vehicle
dynamics requires a method for validation. Such a method is
also required to validate the vehicle model of our simulator
and its parameterization done by developers against real
physics. Aligned with the paradigm of our iterative process
and the scope of our simulator, this validationmethod should
focus on balancing the degree of validity and the time
developers needed to invest for validation.

3. Related Work

In order to realize a prototyping environment for cooperative
ADAS meeting our requirements derived in the previous
chapter, we have reviewed existing simulators in the field of
ADAS research. In the following, we give an overview of the
work in this field and describe the most relevant simulators
with respect to their suitability tomeet our requirements.The
simulation tools relevant for cooperative ADAS research can
be divided into the following four groups.

3.1. Traffic Simulators. First, there are traffic simulation
tools. Among these traffic simulators, which can be distin-
guished between macro-, meso-, and microscopic modelling
approaches [26], SUMO [26] and VISSIM [28] are two
popular representatives of themicroscopic approach.The aim
of suchmicroscopic traffic simulators is to model traffic flows
with a focus on the impact of chances of the infrastructure or
of traffic influencing applications to the traffic. Each vehicle
taking part in simulations ismodelled as an individual object,
while its movement in the traffic is mapped by no collision
vehicle following models like Krauss, Wiedemann, or IDM
[26]. Although each vehicle is modelled, vehicle following
models are oriented on mapping the traffic flow as accurately
as possible. For this purpose, a high number of vehicles need
to be simulated, which implies for performance reasons to
almost disregard vehicle dynamics and apply a collision-free
movement by always keeping aminimum safety distance. For
this reason, microscopic traffic simulators cannot meet our
requirements and we therefore do not go into a more detailed
description.

3.2. Driving Simulators. The second group of simulators is
dedicated to the involvement of human drivers into the
simulation. For this group, OpenDS [29], OSS [30], and
SILAB [31] are popular examples. Such driving simulators are
used for testing or researching ADAS from a perspective of
interaction with human drivers, which makes realistic scene
visualization important. Although most driving simulators
are built upon submicroscopic vehicle models, the modelling
is mostly focused on a driving behavior that feels realistic
from the perspective of the driver instead ofmapping realistic
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physics. This is due to the missing inertia effect feedback
for the driver in a pure software simulation. There are also
driving simulators which do emulate such inertia effects
by utilizing motion platforms, like the NHTSA [32]. For
this simulator, mapping real physics has been implemented;
however the necessary hardware installation makes it quite
expensive and so it does not scale for more than one
vehicle. Expensive hardware brings it out of scope for our
requirements and leads to the next group of simulators.

3.3. Real World Vehicle Simulations. The third group include
real vehicles in simulation. This group of vehicles in the
loop simulators belongs to testing systems that leverage robot
controlled automated driving of series production vehicles
for testing ADAS in the last phase of their development cycle
[4], especially active safety systems. In this way, test and
verification procedures, which involve dangerous situations,
can be performed without endangering human drivers and
with a high precision in repeatability.Thus, maneuvers can be
tested precisely at the threshold between “system must react”
and “system should not react,” endless times. Such testing
systems are very expensive, as in addition to the vehicles to
be tested, a large overhead of equipment, testing areal, and
testing personnel is needed. This overhead grows with each
more vehicle taking part in the tests. Amiddle way here is the
VEHIL simulator [33], which involves a real world ego vehicle
deployed on a fixed location and dummy vehicles surround-
ing the ego vehicle, emulating traffic participants. This group
of simulators mainly belongs to the final development phase
of ADAS and does not fit our requirements for a prototyping
environment, in terms of cost and scale.

3.4. Vehicle Dynamics Simulators. The fourth group of sim-
ulation tools refers to the vehicle simulators. These simula-
tors are most relevant group for realizing the requirements
of our prototyping environment. Similar to the driving
simulators, they are built upon submicroscopic simulation
models; however the focus here is on vehicle dynamics and
realistic mapping of physics. When designing our proto-
typing environment, many simulators have been reviewed.
In the following, we give a more detailed look into some
representatives of this group, which we consider as the closest
candidates to fulfill our requirements.

3.4.1. SiVIC. SiVIC [34] is a simulation software developed
at INRETS, commercialized by the CIVITEC sarl. SiVIC
has physics based vehicle model which addresses realistic
mapping of vehicle dynamics [34]. However, it is hard to find
information if the vehicle dynamicsmodel has been validated
against real world vehicles. The focus is put on sensor
models and on simulating the behavior of the vehicle and its
embedded sensors to reproduce the reality of a situation from
the perspective of an ADAS [34]. A lot of work has been done
on developing very detailed sensor models like radar, lidar,
and camera [35]. The latter is a reason for the very accurate
rendering engine, which dedicatedly aims at accurate shad-
owing and lighting computation and a very detailed visual
mapping of the simulation. One of the dedicated assets of

SiVIC is its library of sensormodels. As interface between the
simulation and applications, RTMaps is used, through which
other development software like MATLAB/Simulink can be
coupled. SiVIC is built upon a distributed architecture, which
allows for deployment of the simulator over multiple com-
puters and by providing V2X sensors simulation, cooperative
ADAS development is also addressed [34]. The initial objec-
tive of the SiVIC platform was to prototype local perception
applications. Later, several extensions have been made to this
sensor simulation platform to allow the virtual prototyping
of new hardware in the loop and software-in-the-loop appli-
cations. This makes SiVIC an unattractive candidate for our
prototyping environment, as for our requirements, the focus
is not on sensormodels or hardware-in-the-loop simulations,
but on combining all prerequisites modelled on a level which
enables tuning large application related parameter spaces
for development of cooperative ADAS. And we consider
an implementation basis aiming at the final goal parameter
tuning to be crucial in order to meet the performance needs
issued by the requirement of involving as many vehicles
as possible in the simulation. Although sensor input is of
course of importance for cooperative ADAS, our prototyping
environment is meant to help developers more on designing
cooperative patterns instead of interpreting sensor input.
For this reason, we will rely on basic sensor models and
provide open interfaces to integrate existing models widely
available, finally, since SiVIC is a commercial product, which
is necessary to finance the development of the named features
that are not important for our requirements.

3.4.2. PreScan. PreScan is a simulation platform initially
developed by TNO and commercialized by TASSInterna-
tional, which is used in the automotive industry for devel-
opment of ADAS based on sensor and V2X communication
technologies as well as autonomous driving applications.
PreScan claims to be based on real physics [33] and can
be used for model-based controller design (MIL) to real-
time tests with software-in-the-loop (SIL) and hardware-in-
the-loop (HIL) systems, the latter in combination with the
earlier mentioned VEHIL. In contrast to SiVIC, description
of features and interfaces is at least on an informational level
available on a public website. According to [34], for SiVIC,
PreScan is the only comparative sensors simulation platform
available, but it mainly provides simple sensor models for
an easy traffic management and ADAS prototyping but not
enough realistic for control/command applications.However,
PreScan also provides sensor models for radar, lidar, camera,
and so forth and there is even a cooperation with LIDAR
manufacturer Ibeo in the field of automated scenario gen-
eration based on laser scanner technology. PreScan’s sensor
models and its vehicle dynamic model are exchangeable, so
models already validated with other simulators can be linked
in. Interfaces exist for MATLAB/Simulink, Java, CarSim,
veDYNA, dSPACE, and National Instruments. Cooperation
between ADAS is also addressed, by providing V2X commu-
nication sensors.

Using PreScan is a process divided into four steps [34]:
build scenario, model sensors, add control system, and run
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experiment.Once this is done, typically, 1000 scenarios can be
run within a couple of hours in an automated way.This whole
process is on a first glance a promising approach to meet the
requirements of our prototyping environment. However, this
process of using PreScan regarding MIL, SIL, HIL, and its
orientation on the V-Model [33] indicates that, in the end,
the focus is on test and verification, not on an iterative agile
approach as we need it regarding tuning large application
related parameter spaces. This is underlined by the fact
that TASSInternational has announced a cooperation with
CETECOM to provide a comprehensive validation service
of cooperative driving and connected vehicle technologies
on functional and communication level. The orientation of
PreScan might be well suited for in-depth analysis of existing
ADAS but is very extensive tool which makes it too time-
consuming and computational expansive for the prototyping
environment we are aiming at.

3.4.3. Torcs. In contrast to the commercial simulators already
described, there are some open source simulators (among
them RACER [36], TORCS [37], and VDrift [38]) which
we have considered to be the basis for our prototyping
environment. Most of them do not differ much from each
other regarding our requirements. However, for us the most
relevant among them is TORCS, as it is most widely used in
research and the best documented one.Thus, in the following
we describe TORCS in more detail.

TORCS is a free, open source car racing simulation imple-
mented in C++, available for Linux, FreeBSD,Mac OS X, and
MicrosoftWindows. TORCS is designed for the development
of racing bots, human players can also control vehicles with a
steering wheel and pedals. It has been used before for similar
use cases like our prototyping environment, for instance, as
input source of vehicle dynamics data for a test bed for ECU
testing and verification [39]. The vehicle dynamics model
has not been validated against real world vehicles. However,
the underlying engine models tire dynamics are based on
the Pacejka tire model [22], accessible engine related factors,
for example, torque, rpm, and the suspension, gearbox,
and variable road conditions. Thus, the models cover most
relevant aspects and can adapted as required, so prerequisites
for achieving realistic driving dynamics are present. Sensor
models need to be added; a basic implementation of ideal and
noisy front sensors for objects and tracks is available. V2X
communication needs to be added and distribution among
multiple computers exists very rudimentary by a system that
was actually designed for online competitions. The scenario
creation is oriented on designing racetracks but provides a
solid basis for our requirements.

Although SiVIC and PreScan are powerful and mature
simulation tools and despite a lot of missing features of
TORCS as described, after thorough investigation we con-
sidered TORCS as the most promising candidate as basis for
our prototyping environment. The most relevant fact is that
TORCS is open source and can be extended freely, which
has more weight than, for example, existing sensor models
and nice looking visualization engines. Nevertheless, this
approach of course implies that a decision to implement a

new simulator from scratch instead of using an existing one
has already been made.

3.5. Conclusion. Existing simulators in the field of ADAS
research can be divided into four groups, while the group
of vehicle simulators regarding vehicle dynamic are the only
relevant group to be considered as basis for our prototyp-
ing environment. The commercial tools among them, as
describedwith the examples SiVIC and PreScan, bring a lot of
powerful features, but regarding the requirements derived in
the previous section, these tools bring also a lot of overhead
of features, like sophisticated sensor models. This entails a
great complexity, which negatively affects the goal of having
a lightweight tool for rapid prototyping the class of applica-
tions in the field of cooperative ADAS, as described earlier.
Besides that, adding features to these commercial tools, which
necessary from our perspective, is difficult due to the closed
source code and limited interfaces. Indeed, among the open
source simulators, TORCS is the most promising candidate
as a basis for our prototyping environment. Although a lot
of requirements need to be added, it brings a decent physics
and vehicle dynamics implementation where we could start
from. However, after a deep analysis of the implementation
work needed to be done on TORCS, we eventually decided
setting up a new implementation and porting the relevant
aspects from TORCS. This new implementation, analyzed as
awhole, saves implementationwork for futurework and gives
us the opportunity to create a newdedicated architecturewith
a Java instead ofC++,which is better suited for addressing our
requirement distribution on different platforms.

4. The Simulator

In this section, we present our simulator, the prototyping
framework for cooperative ADAS as derived from the scope
defined in Section 2.2. As outlined in the scope, our simulator
does not intend to compete with specific detailed vehicle
dynamic simulators.The specific needs for prototyping coop-
erative ADAS are addressed instead. In order not to restrict
developers too much in case of a specific need for a higher
level of precision of modelling arises, the architecture of our
simulator is designed to allow extending and exchanging each
model.

In the following we present the design of the different
aspects of the simulator according to the technical require-
ments defined in Section 2.3. In the context of this paper, we
focus on the key design aspects to handle large parameter
spaces, that is, the tradeoff between modelling precision
and executing performance, and the iterative prototyping
process. We briefly address essentials of all other aspects
in a summarizing manner. We start with the design of the
iterative prototyping process for developers to be supported
by the simulator, since all other aspects of the simulator
are aligned with this process. Subsequently, we describe the
vehicle models and the simulator architecture in detail while
environment, driver, scenario definition, and the simulator
reference implementation are described briefly.The novelties
here are not the vehicle models and their related equations
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themselves, but their combination aiming at the tradeoff
between opposing requirements as described in Section 2.We
devote a separate section to the vehicle dynamics validation
method defined as the final requirement.

4.1. Prototyping Process. We propose the following process to
bring an idea of a cooperative ADAS through an iterative pro-
cess of refining and assessment towards a plausible candidate
for further development. Aligned with this process, devel-
opers can use our simulator in a trial and error manner to
create, refine, and assess. In this way, the idea of a cooperative
ADAS can either be brought incrementally through the stage
of prototyping or be discarded as quickly as possible.

The process is depicted in Figure 4. Starting with the
implementation of the cooperative ADAS application to be
prototyped, developers define a set of working parameters
of the application. An initial set of these parameters needs
to be given by developers in the first step. The same applies
to the simulation scenario and its parameters. Subsequently,
the process iteratively traverses an arbitrary number of cycles
including the three steps, running the simulations, assess-
ing its results, and tuning the parameters of scenario and
application.This cycle is completed as soon as the simulation
results suggest that the cooperative ADAS application under
research is realizable and has an effect as expected.Otherwise,
the cycle is to be terminated after a number of cycles high
enough without any progress on the expected results, so the
idea needs to be either reconsidered or discarded.

In order to reach either of both verdicts as fast as possible,
the cycle time needs to beminimized. Accordingly, the goal of
the simulator design is to minimize the execution time of one
cycle.The execution time of the simulation run is significantly
depending on the preferably low complexity of the simu-
lation models (vehicle, environment, and communication)
and the scalability of the simulator architecture. Tuning the
parameters of application and the scenario by developers
is highly depending on a pragmatic scenario description of

the simulator. These aspects will be object of the following
subsections.

4.2. Architecture. Figure 5 depicts a high level view of
the architecture of our simulator consisting of two parts,
the Developer Implementation containing the components
developers need to define and implement and the Simulation
Framework.The latter containsmultiple Simulation Instances,
which can be distributed over multiple machines, and the
Simulation Main Instance, which is coupled to the Visual-
izer. This architecture, its components, and its underlying
paradigms are described in the following.

As defined in the Section 2.3, the main requirement
of the architecture of our simulator is to maximize the
computational power that can be used for execution. For
this purpose, the simulation should be able to scale-out
[40] rather than scale-up, which requires the architecture
to decouple the simulation in space. The requirements of
the architecture issued by developers rather aim at extend-
ing/exchanging simulation models, on visualization, and on
open interfaces to hook up applications and models. This
requires the architecture to decouple the simulation from
theses aspects, which we will further refer to as decoupling in
complexity. To support the iterative prototyping process, the
architecture also needs to address the time aspect, which we
will further refer to as decoupling in time. In the following,
before designing the architecture, we will elaborate the three
dimensions of decoupling in more detail.

4.2.1. Decoupling Simulation in Time. The time aspect to be
regarded by the architecture is issued by the requirements,
which derive from the iterative prototyping process. At some
cycles of the process, the developer will face the need to
observe the simulations online very detailed in slow motion
or with a high resolution of single frames, either chart-based
or using a rendered visualization of the simulation scenario.
For this purpose, an arbitrary small simulation step time
is required to enhance the precision of the simulation and
its observable output. At other cycles in the prototyping
process, the level of precision and online observation might
be less relevant than the number of parameterizations and
simulation runs. This case rather requires to increase the
simulation step time, to run simulations faster than real time,
automated, and without visualization. These considerations
lead to the conclusion, to design our architecture to support
both a fixed simulation step size that results in variable
execution times and a fixed simulation time that results in a
variable simulation step size. In both cases, the variable part
depends on the complexity of the simulation and the available
performance of the executing machine.

4.2.2. Decoupling Simulation in Space. Decoupling in space
refers to the idea of splitting the simulation scenario area in
different cohesive subareas to enable distributing the execu-
tion of simulation models at different simulation instances
(see Figure 5), that is, on multiple machines. Such splitting is
required to cluster the vehicles in a scenario according to their
potential interaction radius. Vehicles that interact physically
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should be simulated on the same machine, that is, if they
are, for instance, recognizably mutually by sensors or can
even collide with each other. Otherwise the synchronization
effort for the underlying physics engine would be too high, as
the full physics state of the vehicles had to be synchronized
between different machines with each simulation step, by the
instance coordination component (see Figure 5).

For decoupling in space we propose a fixed discretization
the area of simulation scenario using a Discrete Global Grid
System (DGGS) as pursued by the DGGS StandardsWorking
Group [41]. For our architecture, the minimum cell size of
the grid needs to span at least a multiple of the mentioned
physical interaction radius (PIR) of the vehicles. Cohesive
areas covered by the cells need to be allocated to different
machines for simulation, to cover the whole area of the
scenario as exemplary depicted in Figure 6. In this example
a hexagonal DGGS is split in three areas (orange, green,
and blue) allocated to three different machines. At all cells
at the border between two areas, the physics simulation is
done by bothmachines synchronously. For these overlapping
cells, onemachine is themaster (indicated by the background
color) which determines the state of the vehicle actuators
for all vehicles in one cell. The master executes the vehicle
model and thereby determines the forces to be applied to the
vehicle body. These forces are synchronized with the other
machine, the slave (indicated by the border color), which
only does the physics simulation using the position and the
forces. The scenario of Figure 6 accordingly requires one cell
to have two slaves, as this cell in the center of the scenario
borders three cohesive areas. When a vehicle in a slave cell
gets within the PIR to a master cell at the same machine,
the former master needs to hand over the full state of all
sensors, actors, and vehicle submodels to the new master. In
this way the communicated information for synchronization

can be reduced to three vectors, position, orientation, and
forces applied to the vehicle.

4.2.3. Decoupling Simulation in Complexity. Decoupling in
complexity refers to designing our architecture to run several
parts of the simulation remotely and allow custom imple-
mentation of these parts by developers by providing open
interfaces. Implementing these interfaces the respective part
can either be deployed to the simulator or run remotely using
an execution environment of developer’s choice. Issued by the
requirements, these parts include the following:

(i) Cooperative ADAS application: the interfaces to be
implemented are sensor input and actuator output
(Figure 5).

(ii) Simulation models (sensors, vehicle, and communi-
cation): depending on the complexity of a simulation
model, developers can decide whether the compu-
tational effort for execution or the communication
overhead for synchronization of the simulator with
the model state remotely is more relevant in each case
(Figure 5).

(iii) Visualization: decoupling visualization from the sim-
ulation is necessary to enable developers to run
headless simulations on a remote server and visu-
alize it locally. However, a complete decoupling
would require to synchronize all visually relevant
object information from all simulation instances (see
Section 4.2.2) to the visualizing component. This
approach demands a high load of network traffic
(assuming a frame rate of above 25Hz for a smooth
object transition). We reduce this traffic by applying
the decoupling in space approach (see Section 4.2.2).
The visualization is coupled to one local simulation
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Figure 6: Physics simulation scale-out enabled by DGGS.

instance, which runs a dynamic area of cohesive
cells depending on the current view port of the
visualization. In that way, the synchronization rate
with other instances can be reduced to the simulation
step size while the visualization is interpolated by
the physics engine of the local simulation instance
(Figure 5).

The vehicle model describes the evolution of the vehicle
in the simulation influenced by physics. The vehicle body
in the simulation receives forces by interaction with the
environment (other objects, gravity, or the air) and by its
powertrain, beginning at the engine with the generation
of power and finally delivering it to the road surface. The
simulation of physics can be arbitrarily complex depending
on the envisioned level of accuracy. Due to this complexity,
and the related computational effort, the vehicle model is
the most important part for the design of our simulator. The
vehicle model is the crucial point in the simulator design
for balancing the two requirements, mapping real physics,
and scaling the number of vehicles in the simulation, since
both have an impact on the computational expense. For
the sake of this balance (see the scope in Section 2.2), we
have chosen to design the vehicle body as a solid without
deformation, interacting with its environment based on rigid
body dynamics [42], which is sufficient for us as earlier
described in the requirements in Section 2.3. In the following,
we describe in detail the aspects of the vehicle model used for
our simulator.The decisions we made on each aspect were an
iterative process on finding the balance of keeping complexity
as low as possible and still meeting our requirements, which
was finally validated as described in Section 5.

4.3. Vehicle Body. The vehicle body receives external forces
and moments following the three axes (longitudinal, lateral,
and vertical) coming from interaction of the wheels with the
road, interaction with the environment, and from the vehicle

Table 2: Degrees of freedom of the dual track model.

Name in [20] Name in
this work Description

𝑥V, 𝑦V, 𝑧V 𝑝 (𝑡) Global coordinates of the center of
mass

𝜓V, 𝜃V, 𝜑V 𝑟 (𝑡) Vehicle orientation in the global
coordinates

𝜌𝑅𝑖, 𝑖 = 1 ⋅ ⋅ ⋅ 4 𝜔𝑤,𝑗 Rotation of wheel 𝑖(𝑗) around its
rotation axes𝑧𝑅𝑖 𝑖 = 1 ⋅ ⋅ ⋅ 4 𝑥𝑗 Vertical movement of wheel 𝑖(𝑗)

𝛿𝐻 𝛿𝑖,𝐻, 𝛿𝑜,𝐻 Steer angle (𝐻), inner (𝑖, 𝐻) and outer(𝑜,𝐻)
power train. In our simulator, the vehicles are considered as
solids concerning the interaction of objects, that is, terms of
collisions determination between objects. The evolution of
the vehicle objects is described in accordance with the dual
track model. The dual track model described in [20] offers
the following features:

(i) The vehicle body is modelled as a single rigid body
with uniform mass distribution.

(ii) Each wheel has an individual position relative to the
vehicle’s center of mass.

(iii) Wheel/road interaction is modelled with a separate
wheel model.

(iv) The vehicle suspension is simplified: the suspension
for every wheel has only a single degree of freedom in
vertical direction relative to the vehicle body.

(v) The steer angles of the front wheels are assumed
to equal, which is for our model replaced with the
Ackerman steer angle [20].

In total the dual track model describes 15 degrees of
freedom, as shown in Figure 7 and listed in Table 2.The forces
applied to the vehicle according to these degrees of freedom
are generated by the subsystems of the vehicle model (sus-
pension, braking system, power train, and aerodynamics).
These subsystems and the resulting forces to be applied are
described in the following subsections.

4.4. Wheel Model. For the driving wheels (the wheel at the
driven axle), the dynamic equation for the wheel rotational
dynamics can be described by (1).The inertia 𝐽𝑤,𝑗 of the wheel𝑥 is driven by the wheel torque 𝑇𝑤,𝑗 provided by the power
train. For the driven wheels, the inertia of the transmission
and the engine increases 𝐽𝑤,𝑗. 𝑇𝑤,𝑗 is reduced by the brake
torque 𝑇𝑏,𝑗 and the tractive force 𝐹𝑡,𝑗 acting on the wheel
radius 𝑟. In that way, the rotational wheel speed 𝜔𝑤,𝑗 is
changed:

𝐽𝑤,𝑗�̇�𝑤,𝑗 = 𝑇𝑤,𝑗 − 𝑇𝑏,𝑗 − 𝐹𝑡,𝑗 ⋅ 𝑟. (1)

The tractive force at eachwheel is determined by the TNO
MF-Tyre 5.2 tire model [43] introduced by Hans B. Pacejka
in [22], an empirical model that simulates the wheel friction
based on a large set of parameters measured for a set of
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Figure 7: Degrees of freedom of the dual track model [20].

real tires. The default parameters are taken from [44] and
adapted to specific tires using a suitable tool (ADAMS/Tire
in our case), using the method proposed in [44]. The tire
model is of high importance in terms of physically realistic
simulation, as it models the contact between the vehicle and
the road surface. It thereby turns all forces generated by
the vehicle into motion with regard to the external forces
acting on its body. Thus, the tire model cannot be simplified
too much. Pacejka’s model fits our needs at this point, as it
provides a decent tradeoff between realism and complexity.
The brush model [22] and the Burckhardt model [45] are
two alternatives for tire modelling we have reviewed and
discarded, as we were not able to find parameter settings
which lead to a sufficient level of validity for our desired span
of driving dynamics (see Section 5).

As proposed in [46] the brake torque 𝑇𝑏,𝑗 on each wheel𝑗 is model according to (2) as a function of the main brake
cylinder pressure 𝑃𝑚 with proportional distribution factor 𝑘𝑝
between rear axle (𝑇𝑏,𝑟) and front axle (𝑇𝑏,𝑓) and a constant
brake gain 𝑘𝑏. The pressure is function (3) of the brake
actuator position 𝑃𝑎[0 ⋅ ⋅ ⋅ 1] with a first-order system plus
a constant time delay 𝜏𝑑, which models the actuator delay.
According to the method described in [46] the parameters𝐾, 𝑇, and 𝜏𝑑 can be obtained from experimental data.

𝑇𝑏,𝑟 = 𝑃𝑚𝑘𝑏𝑘𝑝,
𝑇𝑏,𝑓 = 𝑃𝑚𝑘𝑏 (1 − 𝑘𝑝) , (2)

𝐾 ⋅ 𝑃𝑎 (𝑡 − 𝜏𝑑) = 𝑇 ⋅ ̇𝑃𝑚 (𝑡) + 𝑃𝑚 (𝑡) . (3)

4.5. Suspension. The suspension model we use for our sim-
ulator induces a simple spring damper system with one
degree of freedom along the vertical axis of each wheel (see
also Section 4.3). This approach is similar to the full car
suspension model in [21], except for the separate modelling
of the wheel stiffness. Suspension systems found in real
vehicles offer a more complex nonlinear damping behavior
and more degrees of freedom as variable camber angles [20].
Themain purpose of the vehicle suspension is tomaintain the
contact between wheel and road for varying road conditions
including holes and bumps. For our simulator we observed
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through validation (see Section 5) that such a simple spring
damper system is sufficient to meet our requirements. The
wheel load 𝐹𝑧 (the force acting perpendicular to the road) is
modelled by a simple spring damper system, defined by two
forces: the oscillatory force 𝐹𝑠 and the damping force 𝐹damp.

𝐹𝑧 = 𝐹𝑠 − 𝐹damp, 𝐹𝑠 = −𝑘𝑥, 𝐹damp = −𝑐�̇�. (4)

𝐹𝑠 changes the length of the spring 𝑥, in our case the
distance between the attachment point of the wheel suspen-
sion at the vehicle body and the wheel axle, about a certain
amount. The damping force acts against any change of the
spring length. The system is defined by two the coefficients,
stiffness (spring constant) 𝑘 and the damping coefficient 𝑐. If
the vehicle stands still, the system will rest in an equilibrium,
where 𝐹damp is zero and 𝐹𝑠 equals 0.25 times the gravity force
(for four wheel vehicles). For an attached mass 𝑚 (in case
of a vehicle suspension this mass is the wheel), the damping
characteristic 𝜁 of the system is given by

𝜁 = 𝑐2√𝑚𝑘. (5)

The damping characteristic can be divided into three
categories: overdamped (𝜁 > 1), underdamped (𝜁 < 1), and
critically damped (𝜁 = 1).
4.6. Powertrain. The powertrain is a cascade of components
beginning at the engine with the generation of torque, deliv-
ering it to the wheels, and describing the changes of torque
to rotation speed. For our simulator we describe the model
of the powertrain in accordance with [21] as a composition of
four the submodels engine, torque converter, transmission,
and wheel model. Since we also consider vehicle models with
semiautomatic transmissions, the torque converter model
in our simulator can be replaced with an automated clutch
model. Figure 8 depicts the interaction between these four
submodels and the brake.

4.6.1. Torque Converter/Clutch. In vehicles with automatic
transmissions, the torque converter transfers the rotating
power generated by the engine to the transmission. The
torque converter normally is a fluid coupling, which decou-
ples the engine from the load of the vehicle. This enables the
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engine to run in idle speed when the vehicle is stopped, while,
at high speed difference between transmission and engine,
the torque converter multiplies the torque of the engine
transmitted to the transmission due to this decoupling.
In vehicles with semiautomatic transmissions, the coupling
between engine and transmission is realized with a clutch,
which is automatically operated by actuators and therefore
removes the need for a clutch pedal that is normally operated
by drivers in manually shifted vehicles. Both options, torque
converter and clutch, are modelled in our simulator.

The torque converter is modelled according to the static
model of Kotwicki [21] because of its simplicity. We have
observed a sufficient agreement with experimental data for
the range of operating conditions relevant for the focus of
our simulator. The model is a quadratic regression from a
simple experiment of measuring the input and output speeds
and torques of the torque converter obtaining the coefficients𝑎1, 𝑎2, 𝑎3, 𝑏1, 𝑏2, 𝑏3. The torque at the engine side (pump
torque) 𝑇𝑝 and the torque at the transmission input side
(turbine torque) 𝑇𝑡 as functions of the engine speed 𝜔𝑒 and
the transmission input speed 𝜔𝑡 are written as

𝑇𝑝 = 𝑎0𝜔𝑒2 + 𝑎1𝜔𝑒𝜔𝑡 + 𝑎2𝜔𝑡2
𝑇𝑡 = 𝑏0𝜔𝑒2 + 𝑏1𝜔𝑒𝜔𝑡 + 𝑏2𝜔𝑡2. (6)

The clutch model also decouples speed and torque on
the transmission site (connected to the clutch disk) from the
engine site (connected to the flywheel disk). There are three
states of the clutch, open, slipping, and closed, which can
be modelled independently. For our simulator, the open and
closed aremodelled simply by transferring full and no torque;
however the slipping state needs a more precise modelling.
As described in [47], the slipping state, to be accurate,
should be modelled regarding nonlinear characteristics of
the clutch including changing friction coefficients depending
on temperature, pressure of the disks, and the dynamics of
the clutch actuator. For the requirements of our simulator, a
sufficient accurate model for the clutch in slipping state that
can be written as

𝐽𝑒 ̇𝜔𝑒 = 𝑇𝑒−𝑇𝑡 (𝑥𝑐) . (7)

The derivative of the angular speed of the engine is �̇�𝑒.
The engine inertia 𝐽𝑒 is driven by the engine torque 𝑇𝑒 on the
engine side of the clutch and is loaded by the clutch torque𝑇𝑡 on the transmission side of the clutch. The clutch torque is
modelled as a function of the clutch actuator 𝑥𝑐, the so-called
clutch transmissibility curve.The nonlinear characteristics of
this curve are identified from the experimental tests. When
the clutch is open, 𝑇𝑡 is zero; when the clutch is closed, 𝑇𝑡 is
the full torque load of the vehicle. For our model, we were
able to achieve satisfactory results (see Section 5) using a
linear curve of 0 ⋅ ⋅ ⋅ 1, for fixed time intervals (measured from
experiments) of clutching and declutching in each gear.

4.6.2. Transmission. The transmission translates the out-
put torque of the clutch/torque converter according to the
current gear. The transmission output is forwarded to the

wheel model, where the updated wheel speed is fed back
through transmission and clutch/torque converter to the
engine model to update the engine speed. Additionally,
the transmission lowers the output torque by introducing
a torque loss, which depends on the modelled vehicle and
the external forces acting on the vehicle, proportioned by
the ratio of the current selected gear. In our model, the
transmission also covers the differential, which distributes the
transmission output torque to the drive shafts of each driven
wheel and the propeller shaft (in case of rear-wheel drive).
The translation of the torque 𝑇𝑡 and angular speed 𝜔𝑡 on the
clutch/torque converter side of the transmission to the side
of the driven wheels 𝑇𝑤 and 𝜔𝑤 is defined by (8) considering
the ration 𝑅, the transmission inertia 𝐽𝑔 of the gear 𝑖, and the
differential ratio 𝑅𝑑. The torque is split to drive the left wheel𝑙 and the right wheel 𝑟 according to (9), while their resulting
angular speed is averaged to determine the angular speed of
the driven axle.

𝑇𝑤 = 1𝑅𝑖 ∗ 𝑅𝑑𝑇𝑡−𝑇𝑔 | 𝑇𝑔 = 𝐽𝑔𝑖�̇�𝑤,
𝜔𝑡 = 1𝑅𝑖 ∗ 𝑅𝑑𝜔𝑤

(8)

𝑇𝑤,𝑟 = 𝑇𝑤,𝑙 = 𝑇𝑤2 ,𝜔𝑤,𝑟 + 𝜔𝑤,𝑙2 = 𝜔𝑤.
(9)

The resulting wheel torque is forwarded to the wheel
model to drive the vehicle. For positive wheel torques the
vehicle accelerates and the wheel speed increases and the
updated angular wheel speed is fed back to the gearbox
which translates it to the updated engine speed through the
clutch/torque converter.

The transmission model includes an automatic gear
selection mode, which is oriented on the model for operating
characteristics of automatic transmissions described in [48].
The determination of shifting gears up and down is done
using a gear shifting schedule as depicted in Figure 9. The
map is a diagram of engine speed in 1/s and accelerator pedal
in percent. There is a separate curve for each gear to shift up
and down through the diagram. The data describing these
curves is determined from experiments. The same applies
for the operation of the clutch actuator. For our model we
determined the clutch actuator dynamics to be sufficient
represented by a fixed time for shifting from and to each gear,
and startup respectively.

4.6.3. Engine. The engine model in general translates a given
throttle position into a drive torque generated to drive the
vehicle. We consider this engine torque 𝑇𝑒 to be limited by
a maximum torque depending on the engine rotation speed𝜔𝑒. The throttle position maps the engine torque request𝑇𝑒,𝑟 on the range between minimum and maximum torque,
depending on the current rotation speed. This mapping is
realized using a vehicle-specific steady-state engine map as
described in [46, 49]. The dynamics of the actual engine
torque𝑇𝑒 are modelled as a function of𝑇𝑒,𝑟 using a first-order
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system plus a constant time delay, following the approach
of modelling the brake pressure as described in Section 4.4.
This approach is inspired by the throttle actuator model
in [46]. The difference here is that our approach allows
enabling applications to interact with the vehicle model using
the torque request as direct input. The engine inertia 𝐽𝑒 is
driven by 𝑇𝑒 and loaded by the transmission torque 𝑇𝑡. The
parameters 𝐾, 𝑇, and 𝜏𝑑 can be obtained from experimental
data [46]. In case of a connected torque converter or an open
clutch, the engine dynamics are described by (10). Otherwise,
for a closed clutch, the engine speed is calculated as amultiple
of the wheel speed.

𝐽𝑒 ̇𝜔𝑒 = 𝑇𝑒 − 𝑇𝑝, (10)

𝐾 ⋅ 𝑇𝑒,𝑟 (𝑡 − 𝜏𝑑) = 𝑇 ⋅ ̇𝑇𝑒 (𝑡) + 𝑇𝑒 (𝑡) . (11)

4.7. Aerodynamics. The drag force applied to the vehicle
model by air resistance is determined by the aerodynamics
model.The drag is directly velocity-dependent, in contrast to
the rolling resistance of the wheels. As a result of a study on
different air resistance models in automotive simulation and
their impact on our vehicle model within our scope, we came
to the conclusion that a simple air resistancemodel as used in
[21] is sufficient.Themodel is described by (12), where 𝜌 is the
mass density of air, 1.293 kg/m3, V is the speed of the vehicle,𝑐𝑤 is the drag coefficient of the vehicle, and 𝐴 its frontal area.

𝐹𝑑 = 12𝜌V2𝑐𝑤𝐴. (12)

4.8. Rigid Body Dynamics. Derived from the scope (see
Section 2.2) the results of collisions between objects are
not of relevance for our simulator. Hence, the only relevant
information is if a collision occurs or not, which allows us to
disregard the simulation results after the point in timewhen a
collision has occurred. Assuming this, the objects being part
of the simulation and their interaction can be model employ-
ing rigid body dynamics. This approach requires assuming
the objects in the simulation to be rigid; that is, objects
collide elastically.Thus, theirmotion can be determinedusing
Newton’s second law, which is less computationally expensive

than regarding the deformation of objects. An introduction to
the simulation of rigid bodies including collision response is
given in [42].The vehicle body is, hence,modelled as a cuboid
object. The sum of all forces determined by the submodels
described above and by collision with other objects is applied
to the vehicle body to change its speed. According to (13),
the vehicles acceleration 𝑎 is proportional to the force 𝐹
acting on its mass 𝑚, while its angular acceleration �̇� results
from force that acts on the vehicle body inertia at a point𝑝𝑎 different from the vehicle body center of mass 𝑝cm. The
current position 𝑝(𝑡) of the vehicle body and its orientation𝑟(𝑡) are then calculated according to (14) and (15).𝐹 is the sum
of the forces acting on the vehicle body (Sections 4.3–4.7):

�̇� = 𝜏𝐼 | 𝜏 = (𝑝𝑎 − 𝑝cm) × 𝐹 | 𝑎 = 𝐹𝑚, (13)

𝑝 (𝑡) = ∫𝑡
0
V (𝑡) 𝑑𝑡 | V (𝑡) = ∫𝑡

0
𝑎 𝑑𝑡, (14)

𝑟 (𝑡) = ∫𝑡
0
𝜔 (𝑡) 𝑑𝑡 | 𝜔 (𝑡) = ∫𝑡

0
�̇� 𝑑𝑡. (15)

4.9. Sensors and Communication Models. The state of the
vehicle and its environment is perceived using sensors. The
specific quality of perception in real world ismuch influenced
by the specific sensor. The same applies for the specific
communication hardware in terms of communication. As
motivated in Sections 2.2 and 2.3, from the perspective of
the application to be prototyped, these specific properties are
reflected in the precision of information about the vehicle and
its environment. For our simulator, we consider this precision
to be representable by a set of sensor and communication
models and their parameters, which can be extended by
developers. The most important aspect for this approach
is to assure a sufficiently precise ground truth for these
models to work. This ground truth is created by the vehicle
and environment models, by representing the position and
motion of all sensible objects and their state in the simulation.
Table 3 summarizes all sensor and communication models
with their parameters. For all of them, aGaussian randomized
noise, processing delay, and variation are provided.

4.10. Environment, Driver, Scenario. As mentioned earlier,
in the context of this paper, we do not go into detail
about the modelling of environment and driver behavior of
our simulator. However, for the sake of completeness with
respect the requirements derived in Section 2.3, we briefly
describe the essential aspects of our design decisions towards
environment and driver behavior to address simulation
performance and developers interaction. The key features of
the environment are as follows:

(i) The simplicity of all objects other than vehicles is
modelled by simple geometrics (polygonal planes,
cuboids, and tetrahedrons) for safe computational
effort and human effort for design. Coping without
textures to the greatest extent, our visualization still
allows for an appealing puristic scene rendering using
simple Phong shading techniques [50] (see Figure 10).
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Table 3: Sensor and communication models.

Sensor/measurands Property Character Parameters

GPS:
position [lat, lng]

Atmospheric
error Changes over time Magnitude

Shadowing
error Depends on distance to buildings Magnitude, distance weight

Noise Changes each sample Magnitude
Delay Emulates signal processing time Average time, variation

Frontal object sensor:
distance [m]

Aperture Sensing on vehicle frontal axis
plus angel Magnitude, steering offset

Noise Changes each sample, grows with
distance Magnitude, distance weight

Delay Emulates signal processing time Average time, variation
Lane marking sensor:
distance [m, m]

Noise Changes each sample Magnitude
Delay Emulates signal processing time Average time, variation

Lateral object sensor:
Rel. position [m, m], length [m]

Noise Changes each sample Magnitude
Delay Emulates signal processing time Average time, variation

Aperture Fixed angles (front/rear) Magnitude
Vehicle state:
all parameters (Sections 4.3–4.7)

Noise Changes each sample Magnitude
Delay Emulates signal processing time Average time, variation

V2X ad hoc communication:
short range, 802.11p

Delay Emulates signal travel and
processing time

Average time, variation, distance
weight

Packet loss Loss rate per distance Loss rate, distance
Cellular communication:
same as V2X + region, bandwidth

Region Specific coverage areas Circle or polygon
Max.

bandwidth
Reached maximum causes

addition delay Limit in byte per second

(ii) Automatic generation of traffic infrastructure and
static objects from existing map material is in order
to speed up scenario generation by developers. The
plain generated infrastructure can be modified and
complemented by developers. Event triggers and
scripted procedures are related to the environment;
for example, time-bound occurrence road geometry
changes (see constructions site in Figure 10) can be
added.

The key features of the driver input are as follows:

(i) Definition of driver behavior using speed-annotated
routes along the road map links (see Figure 10): in
addition to the target speed, developers can attach
time or event triggered, scripted maneuvers to these
routes to create specific situations.

(ii) Automatic generation of driver behavior in traffic is
realized by an extendable driving controller hierarchy
of various speed and steering controllers.

The description of a simulation scenario defined by
developers contains all scenario specific information about
environment, driver input, simulation models, and their
parameterization. For all position related elements of a
scenario, our simulator provides visual tool support, for
example, to place objects and vehicles and define routes. All
scalar elements are defined in a set of configuration files.
This refers, for instance, to parameters of vehicle models,

sensors, and randomized behavior on routes like swaying or
driver reaction time. The scenario definition bundles all that
information and distributes it to all simulation instances (see
Section 4.2) by the instance coordination. In order to enable
a high repeatability of a simulation, the scenario definition
optionally includes a seed set for all randomized parameters
of the simulation models.

Examples of scenario created for our simulator can be
found in [51, 52]. Figure 10 gives an impression of an example
scenario displayed by the Visualizer (see Figure 5). The
scenario is near Ernst-Reuter-Platz in Berlin, Germany, that
has been generated automatically from Open Street Map
(OSM) [53]. A route defined by the developer is depicted as
a blue line. In this example scenario the route has no anno-
tated speeds. The target speed is taken from the imported
OSM map speed limit. Three speed controllers provided by
the simulator work together in this example scenario. The
target speed is realized by the mission-controller, which is
overridden by the traffic-light-controller if the vehicle needs
to stop at a red traffic light. Both of themare overridden by the
follow-vehicle-controller in case a slower vehicle is in front.

4.11. Implementation. The implementation of our simulator
design has been used in research before ([51, 52, 54–56])
under the name PHABMACS. Although the focus of this
work is not on implementation, we give a brief overview
of its key aspects. We have chosen Java as programming
language. Although C++ as a native language may provide a
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Figure 10: Simulator reference implementation, example scenario:
construction site at round about, Ernst-Reuter-Platz, Berlin, Ger-
many.

higher execution performance, we consider the performance
of recent Java Virtual Machines (VM) as sufficient. The VM
approach of Java addresses distribution over heterogeneous
systems (see Section 4.2.2 decoupling in space) better than
C++. Aspects like built-in memory management, garbage
collection, andmodern language features like lambda expres-
sion make Java the better candidate with regard to rapid
prototyping.

4.11.1. Interfaces. Application code and additional sensor
models can either be created in Java and deployed to
the PHABMACS framework or be interfaced from MAT-
LAB/Simulink. For interaction with further technology of
developer’s choice, we have integrated PHABMACS with
VSimRTI [57], a runtime infrastructure which enables cou-
pling with an arbitrary number of different simulators of the
various aspects, such as network simulators. In combination
with our CAN-Bus hardware interface, PHABMACS can also
be hooked up with in vehicle controller setup and replace real
world vehicles for testing.

4.11.2. Visualization. The implementation of the Visualizer
(see Figure 5) for the PHABMACS visualization engine is a
custom implementation based on LWJGL [58], a Java based
library to access OpenGL [58] functions on the target system.
This engine was initially introduced in [55]. The screen shot
in Figure 10 was rendered by this visualization engine.

4.11.3. Vehicle Dynamics. The implementation of the vehicle
dynamics is realized in PHABMACS as follows.The dynamics
models of the vehicle (see Figure 5) as described in Section 4.2
are implemented in plain Java. For performance reasons, all
differential equations are solved using Euler’s method [59],
which is sufficient for the required precision, as shown in
Section 5. In one simulation loop, all the forces acting on
each vehicle are calculated and fed to the physics engine,

which applies these forces to the objects in the simulation and
calculates their position for the next loop. Figure 11 depicts
the calculation flow for one simulation step using equations
(1), (2)–(4), and (6)–(15). Beginning with the simulation
loop, the simulation instance triggers the vehicle to apply the
external forces of aerodynamics and suspension to its rigid
body. Subsequently, the actuator positions are updated on the
wheel model and the power train, which result in updated
internal forces to be applied to the rigid body. Finally, all
forces are combined and transmitted to the physics engine,
which determines the position update of the vehicle body in a
simulation step.Theminimum frequency of simulation steps
is configurable (default value is 200Hz). If the simulation is
running in real-time mode, the simulation speed is lowered
if the execution time of one simulation step exceeds the
minimum frequency for performance reasons.

The physics engine implementation is built on top
JBullet10, a Java port of the Bullet Physics Library11. Using
an existing implementation safes some very time-consuming
work regarding the execution of rigid body dynamics. We
have reviewed alternatives like libGDX12 and Ode4j13 which
did not meet our requirements concerning real-time behav-
ior, matureness, and clean, object oriented APIs. Although
the native version of JBullet offersmulticore support and even
GPU accelerated physics computation, the Java version is
single-threaded. For this reason, we are currently developing
a custom physics engine. The results described in Section 5,
however, were generated using JBullet.

5. Vehicle Dynamics Validation

Bevor the simulator described in Section 4 can be used
to analyze cooperative ADAS applications; its ability to
map vehicle dynamics sufficiently realistically needs to be
validated.This validation assures that the accuracy of the sim-
ulation’s representation of real vehicles is sufficient to apply
simulation results of an applications to its behavior in the
real world. As earlier pointed out for our simulator, mapping
vehicle dynamics is supposed to be realistic below the highly
nonlinarites near the limits of driving dynamics. Derived
from the simulator scope in Section 2.2, this mapping needs
to be evaluated within the specific span of driving dynamics
for which a specific application is supposed to work. For
validating our simulator, we propose a validationmethod that
is able to testify validity for such a certain span of driving
dynamics. This method is aligned with the requirements to
our simulator issued by the three applications (CELC, CACC,
PACE). Moreover, the method aims to enable developers to
match the simulationmodels to specific real world vehicles of
their choice in reasonable time.This time aspect is addressed
by minimizing the number of required driving maneuvers,
while maximizing the number of validated driving dynamics
parameters in the defined span.

5.1. State of the Art in Validating Vehicle Dynamics. To deter-
mine if a vehicle dynamics simulation model is valid over
the complete domain of its applicability would be very costly
and time-consuming, especially when extremely high model
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Figure 11: Calculation sequence of simulation models.

confidence is required. In [60], the relationship between
the effort to gain model confidence and the value of this
confidence to the user is described as depicted in Figure 12.
For our validation method, we consider the maximum value
threshold of the required model confidence to be imposed by
the application range of the respective ADAS to be simulated.
Examples for such thresholds will be given in the remainder
of this section. This restriction is the key aspect of our
method, which enables reduction of effort and time for
validation.

The standard for validating vehicle dynamics simulations
is to compare results of vehicle simulations with real world
measurements [61]. An in-depth literature review on this
topic and on the question of how to verify vehicle dynamics
simulation can be found in [61]. Most works in this field use a
set of standardized maneuvers, which were created to assess
the performance of vehicle dynamics of real world vehicles.
A list of such maneuvers and their ability to expose driving
dynamics behavior can be found in [61]. These maneuvers
can be classified in two groups. First, fundamental, artificial
maneuvers (like ISO 7401) are created to determine main
dynamical characteristics of vehicles and second purpose-
dependentmaneuvers to approximate real world driving (like
ISO 3888-2).The relevant response type of themaneuvers can
be identified as transient or steady-state.The system behavior
of transient responses is observed between an initial and a
final equilibrium state (e.g., in ISO 3888-2), while in a steady-
state response the variables of interest do not change with
the time. Kutluay and Winner [61] recommend combining
maneuvers fundamental and purpose-dependent maneuvers
with transient and steady-state responses for validation and
analyze them in the time and the frequency domain, to cover
as much aspects of driving dynamics as possible.

Comparing the outputs of the simulation with real world
measurements is mostly done by graphical comparison of
charts and subjective judgement about the quality of the

matching as done in [62]. Heydinger et al. [63] improved
this method by obtaining different metrics from time and
frequency domain of the measured outputs of simulations
and real world experiments.This includes a statistical analysis
of several repetitions of different maneuvers by deriving
the 95% confidence interval from the experiments and a
check if the simulation stays within this interval. Kutluay
and Winner [64, 65] improved this approach by introducing
further metrics and a method to handle, split, and align
the data of simulation and experiment. This enables to
determine where the simulation performs weakly and to
gain more confidence on the validated simulation models.
Unfortunately, this method was created for validating lateral
dynamics only.

5.2. Proposed Vehicle Dynamics Validation Method. Our pro-
posed validation methodology uses six selected maneuvers
and is inspired by the work of [63, 64]. Both works aim
at validation of the full spectrum of dynamics, so that, for
instance, regarding lateral dynamics, a rollover situation of
a vehicle can be predicted. As explained above, our method
does not aimat finding the limits of validity, but to validate the
simulation within a certain range of driving dynamics, issued
by the scope of our simulator and the specific application to
be simulated. This allows us to define a validation method
with fewer parameters to be checked, using fewer repetitions
of maneuvers to be driven by a human driver in public traffic,
without the need for driving robots or a dedicated test area, as
well as a simple set of tools for the measurement. This makes
ourmethod applicable for validating our simulator against an
arbitrary real world vehicle in a reasonable time frame. The
validation method consists of four steps:

(1) The simulation models are preparameterized accord-
ing to the specification of the real world vehicle to be
matched.
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(2) The lateral dynamics are considered isolated from
the longitudinal dynamics. The lateral dynamics are
matched and validated inspired the requirements
imposed by the CELC application (Section 2.2).
Beginning with a fundamental maneuver, the J-Turn,
lateral acceleration and yaw rate are analyzed in
a linear region. Subsequently, a purpose-dependent
maneuver, the double lane change, is used analyze
behavior of the lateral vehicle dynamics comprehen-
sively.

(3) The longitudinal dynamics arematched and validated
inspired by the requirements of theCACCapplication
(Section 2.2). Beginning with a coasting maneuver,
inertia, rolling resistance, and drag of the vehicle
are determined isolated from the power train of
the vehicle. Followed by a straight line braking and
a straight line deceleration maneuver, the braking
characteristics and the drag torque of the power train
are analyzed isolated from each other. Subsequently,
a straight line acceleration maneuver reveals the
matching of the power train characteristics while
accelerating.

(4) The isolated lateral and longitudinal dynamics ana-
lyzation of steps two and three are combined. Inspired
by the requirements of the PACE application (Sec-
tion 2.2) an oval driving maneuver is conducted
including acceleration, deceleration, and braking ele-
ments under observation by an extern positioning
measurement system.

For each maneuver of step two to four, a set of experi-
mental data is chosen for calibrating the simulationmodel by
modifying its parameters.The validation is done using a set of
experimental different from the one used for calibration once
the calibration is done for all steps. This process is necessary
to separate calibration from validation, since otherwise the
resulting method would aim at a best possible reproduction
of the experimental data by the parameterizing the simulation
model, instead of validation. In the following,wewill describe
our proposed validation method by example for these three
applications CELC, CACC, and PACE. For this purpose, we
calibrate and validate the vehicle simulationmodel of a Smart
for two (W451) series vehicle with a 75Kw engine.

5.3. Step I: Preparation. To begin the calibration with an ini-
tial parameterization of the vehicle, we obtain some param-
eters that can be taken from specifications or can be easily
measured or estimated with sufficient accuracy see Table 4.
The vehicle body dimensions, wheelbase, track width, and
vehiclemasswere taken from the vehicle datasheet.Thewheel
radius was directly measured at the vehicle. The maximum
steer angle as well as the steering ratio is calculated from
the turning circle diameters driven with different steering
wheel angles. The wheel inertia is calculated from the wheel
mass and radius. The capturing of the vehicle data is done
via CAN-Bus access. No additional sensors were used, that
is, measurement of acceleration is based on the output of
the ESC (Electronic Stability Control) system sensors of the
vehicle.

5.4. Step II: Lateral Dynamics. Considering lateral dynamics,
the most relevant input parameter for the simulation model
and real world vehicle is the steering wheel angle. The most
relevant output parameters for comparing both are yaw rate
and lateral acceleration. The basic approach of the validation
is to capture all three parameters in real world experiments
rather than feeding the steering wheel angle for each exper-
iment to the simulation model and compare the output
parameters of the simulation model with the ones of the real
world experiment. The span of lateral dynamics for which
our Smart vehicle has been validated is derived from the
CELC application. The experiments were performed at two
different speeds, 50 km/h and 25 km/h with a target steering
wheel angle of 100 degrees. For our Smart vehicle, these
numbers result in a maximum lateral acceleration of around
0,4 g, which is roughly the limit to drive the Smart without
the Electronic Stability Control to intervene. This defines the
span of driving dynamics for which the application can be
simulated with validated simulation models later.

5.4.1. Maneuver Lat-I. For the first maneuver to calibrate and
validate the lateral dynamics of the simulation model, we
propose the J-Turn.Thismaneuver, defined in ISO 7401.2003,
provides information about the lateral direction attributes of
the vehicle [64]. It begins with the vehicle going straight at
a certain speed. The driver then turns the steering wheel to
a certain angle quickly, holds it fixed for some seconds and
keeps the vehicle speed as constant as possible. In this way, a
step input for the steering angle is emulated, which generates
the step response and the steady-state response of the vehicle.
While the former pertains to driving the vehicle near the
limits of driving dynamics, the latter is the more relevant for
our validation method. According to the method of [65] we
capture and handle data from this maneuver, with a rise time
of below0.15 s between 10%and90%of the final (steady-state)
steering wheel angle. To improve repeatability, the driver had
a set of training runs and from the final captured data, a set
of runs were selected, which had most similar characteristics
of the steering input.

(a) Data Handling. A set of 11 experiments for each speed was
selected for validation. The experiments driven at 50 km/h
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Table 4: Vehicle properties.

Parameter Value
Body dimensions (l/w/h) 2.50m/1.52m/1.55m
Wheelbase/wheel radius/Track width 1.81m/0.242m/1.35m
Mass of vehicle/test crew/wheel 730 kg/130 kg/20 kg
Engine inertia 0.16 kg/m2

Suspension stiffness (spring constant) 26.5 kN/m
Transmission inertias (N/1/2/3/4/5/6/R) 0,0/37/0.34/0.42/0.4/0.4/0.4/0.37 kg/m2

Frontal area, drag coefficient 1.93m2, 0.37
Steering ratio 2.31
Clutch curve engaging (R/N/1 ⋅ ⋅ ⋅ 6) 0.26/0.0/2.618/0.667/0.6313/0.5/1.15/1.20 s
Clutch curve disengaging (R/N/1 ⋅ ⋅ ⋅ 6) 0.6/0.0/0.60/0.617/0.57/0.30/0.3/0.3 s
Clutch curve open (R/N/1 ⋅ ⋅ ⋅ 6) 0.367/0.0/0.367/0.367/0.317/0.317/0.317/0.317 s

(±2 km/h) are described exemplary in the following. The
reference point at which the steering angle reaches 50% of
its steady-state value in each experiment are calculated and
aligned in time. As the 10 experiments can be considered as
samples drawn from a full population, we employ Student’s𝑡-distribution to calculate experimental data zone (EDZ)
by the 95% confidence interval around the mean values
[65] of lateral acceleration and yaw rate for visual graphical
comparison. This EDZ can be used to check if the time
histories of the simulation outputs remain inside them, which
has been originally proposed as a validity criterion by [63].
The upper and lower bounds𝑈 and 𝐿 of the confidence band
are calculated according to (16) [65]. The calculation is done
using the MATLAB implementation of Student’s 𝑡 inverse
cumulative distribution function “𝑡 inv”, and the standard
deviation “std” for 𝜎, where V is the degree of freedom (the
number of experiments) and 𝜇 is the mean value of data.

𝑈, 𝐿 = {𝜇 ∓ 𝐶 𝜎√𝑁} ,
𝐶 = 𝑡 inv (0.95, V) , 𝑁 = V2 − 1.

(16)

(b) Metrics. According to [65], in addition to lateral accelera-
tion and yaw rate, this process is also done for the following
further metrics: steady-state gains, rise times, peak times,
maximum magnitudes, and maximum overshoot ratios. As
earlier mentioned, for the part of the J-Turn in our validation
method, it is sufficient to reach validity for the steady-
state gain and to check the EDZ visually. The other metrics
are omitted for the presentation of the following results.
However, although less relevant, they are still valuable to gain
information about the behavior of simulation model at the
limits of driving dynamics.

(c) Results. The results of the steady-state gains valida-
tion are shown in Table 5. The steady-state interval for
yaw rate and lateral acceleration of the experiment data
is determined [65], the gain values are averaged (“average
of experiments”), and the confidence interval around them
is calculated (“confidence interval”). The same procedure is
applied for the simulation data (“average of simulations”)

Table 5: Validation results: Maneuver Lat-I.

Steady state gains Lat. acceleration
[m/s2] Yaw rate [∘/s]

Average of experiments −40.24 19.82
Confidence interval −42.07–−38.41 19.52–20.12
Average of simulations −40.64 19.85
Average of simulations Err. 0.4 (0.99%) 0.03 (0.15%)
Averaged simulation −40.93 19.91
Averaged simulation Err. 0.69 (1.71%) 0.19 (0.96%)
Verdict Pass Pass

and error between both averages is calculated (“average of
simulations error” absolute/percentage). Finally, the input
values of the experiment data, the steering wheel input, is
averaged and fed to one simulation run. For the resulting
gains (“averaged simulation”), the error to the experiment is
calculated.The first validity criterion is fulfilled as the average
of simulations stays within the 95% confidence interval.
For the averaged simulation, there are no other samples to
generate a confidence interval. Therefore, a 5% subjective
error allowance is introduced as the second validity criterion
[65], which is also fulfilled as shown on Table 5. The third
validation criterion is to the check the EDZ of the steady-state
part visually, which begins at 7.95 s. As depicted in Figure 13,
both simulation graphs (yaw rate and lateral acceleration)
stay within the confidence band for the steady-state part; that
is, we consider maneuver Lat-I to be valid. A look at the
transient part before second 7.95 reveals that both simulation
graphs rise too quickly and settle too late in comparison with
the experiment. However, as earlier mentioned this transient
part relates to driving the vehicle near the limits of driving
dynamics and is therefore not a necessary validity criterion
for our validation method.

5.4.2. Maneuver Lat-II. For the secondmaneuver to calibrate
and validate the lateral dynamics of the simulation model,
we propose the double lane change, a purpose-dependent
maneuver. Once we have validated the lateral steady-state
behavior of the vehicle as a subset of the lateral dynamics by
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the J-Turn, we extend the examination to a maneuver which
exhibits comprehensive characteristics of lateral dynamics in
a real world maneuver. The double lane change, defined in
ISO 3888/1, approximates the behavior of the vehicle in an
emergency maneuver situation like CELC, where the driver
needs to switch from one lane to the other and back. Heavy
understeering, oversteering or even a rollover situation can
occur during such a maneuver. In addition to the steady-
state gains already validated, with the double lane change
maneuver we gain information about the response of the
vehicle on suddenly changing steering wheel inputs in real
world situation. This information is gained according to the
method of [64]mainly by comparing the peaks of the yaw rate
and the lateral acceleration off simulation and experiment, as
well as their phase shift to the steering wheel input.

(a) Data Handling. For the validation of the Smart vehicle
simulation model, a set of 6 experiments were selected, again
each of two different speeds as defined for maneuver Lat-I.
The experiments driven at 50 km/h (±2 km/h) are described
in the following for explanation of the general method. To
improve the alignment of the experimental data, the first and
the second half wave of each maneuver are split depending
on the middle portion of the steering wheel angle between
them.Themiddle portion either reaches one ormultiple local
extrema, or a steady-state part. The split points are either the
first and the last extremum, or the beginning and the end
of the steady-state part. If there is only one local extremum,
this the data is split at this point [64]. The first and the
second half waves each of all experiments are then aligned by
their reference points, which are selected to be at 50% of the
steering angle value of the first maximum of each half wave
[64].

(b)Metrics. Subsequently, themetrics for the yaw rate and the
lateral acceleration of the double lane change are calculated.
According to [65], these metrics are as follows:

(i) The time lags to the steering wheel angle are consid-
ered to be valid for errors below 0.05 s. An absolute
acceptance band is better applicable then percentage,
since the absolute values of the experiments are very
small.

(ii) The temporal coordinates of the four extrema in both
half waves are valid within the confidence interval
and if their peak time error is smaller than 0.05 s for
the average of simulations and smaller than 0.1 s for
the averaged simulation. Using a percentage validity
would be impractically, as the cumulative character of
the time value would cause the percentage error band
to grow along the time axis.

(iii) The spatial coordinates of the four extrema in both
half waves are validwithin the confidence interval and
if the gain error of the averaged simulation is smaller
than 5%.

(iv) Finally, the EDZ is checked visually for the yaw rate
and the lateral acceleration.

(c) Results.Themetrics are calculated similar to the procedure
for the J-Turn maneuver (Lat-I Section 5.4.1). As the time
lag results in Table 6 show that the average of simulations
error and the averaged simulation error stay below 0.05 s
for the lateral acceleration. The same applies for the yaw
rate, except for the average of simulations at the second
half wave, which exceeds the validity limed by 0.0017 s. The
spatial and temporal coordinates of the yaw rate are presented
in Table 8. The yaw rate temporal coordinates errors stay
within the confidence interval, below 0.05 s for the average
of simulations and below 0.1 s for the averaged simulation.
All yaw rate spatial coordinates errors stay below 5%. The
same applies for the lateral acceleration presented Table 7,
except for the average of simulations error at the first and the
fourth extremum, which exceed the 5% validity limit. Finally,
checking the yaw rate and lateral acceleration charts of the
simulation visually presented in Figure 14 reveals that both
remain within the EDZ of the experiment completely. From
the result of the validity analysis, we can observe that the
metrics we derived for double lane changemaneuver fulfill all
objective criteria except for three specific points.These points
reveal potential weaknesses of the simulation model, which
we need to check individually in the following.

(1) The yaw rate time lag of the second half wave exceeds
the validity limit by (0,0017 s), small enough that we
can subjectively rate that point as valid.

(2) The fourth lateral acceleration gain extremum
exceeds the 5% validity limit by 0.82%. The
experiments lateral acceleration graph at this
point shows an unusual shape with a dent and a small
peak, instead of the parabolic shape as expected. We
figured that this shape is due to the eccentric position
of the ESP acceleration sensor in our test vehicle,
which causes the measurement of lateral acceleration
to be influenced by high changes of the roll angle.
We were able to reproduce a comparable shape by
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Table 6: Validation results Maneuver Lat-II: time lags.

Time lag to steering wheel angle [s] 1st half
Lat. Accel.

2nd half
Yaw Rate

1st half
Lat. Accel.

2nd half
Yaw Rate

Average of experiments 0.1368 0.1300 0.1204 0.1314
Confidence interval 0.1121–0.1616 0.119–0.1409 0.1107–0.1301 0.1208–0.142
Average of simulations 0.0879 0.0878 0.0800 0.0797
Average of simulations error 0.049 (35.79%) 0.0422 (32.46%) 0.0404 (33.56%) 0.0517 (39.35%)
Averaged simulation 0.0912 0.0866 0.0789 0.0813
Averaged simulation error 0.0456 (33.32%) 0.0434 (33.39%) 0.0415 (34.48%) 0.0501 (38.13%)
Verdict Pass Pass Pass Fail > 0,05

Table 7: Validation results Maneuver Lat-II: lateral acceleration extrema.

Lat. acceleration extrema First Second Third Fourth
Gain in m/s Time in s Gain in m/s Time in s Gain in m/s Time in s Gain in m/s Time in s

Average of experiments −38.84 13.15 36.36 14.32 36.06 16 −36.23 17.11
Confidence interval −46.49–−33.56 13.12–13.18 34.28–40.03 14.32–14.18 31.51–42.05 16.14–16.01 −40.63–−31.85 17.1–17.11
Average of simulations −34.3 13.18 36.13 14.35 37.41 15.96 −34.09 17.08

Average of simulations error 4.54 (11.7%) 0.03
(0.19%)

0.22
(0.62%)

0.03
(0.21%)

1.35
(3.73%)

0.05
(0.28%) 2.13 (5.88%) 0.03 (0.2%)

Averaged simulation −35.55 13.13 35.89 14.22 37.71 15.91 −34.12 17.01

Averaged simulation error 3.29 (8.47%) 0.02
(0.15%)

0.47
(1.29%) 0.1 (0.7%) 1.65

(4.58%)
0.09

(0.56%) 2.11 (5.82%) 0.1 (0.58%)

Verdict Fail > 5% Pass Pass Pass Pass Pass Fail > 5% Pass
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Figure 14: Validation Maneuver Lat-II: experimental data zones.

moving the virtual sensor in our simulated vehicle
from the vehicle center to the same eccentric position
as in the test vehicle. This gave us the confidence
to rate the point as valid, without repeating the
validation with a dedicated sensor equipment.

(3) The first lateral acceleration gain extremum exceeds
the 5% validity limit by 3.47%, which is considerably
high. The experimental data graph (see Figure 14) at
this point shows a nonparabolic, almost triangular
shape for the upper third of the curve, which reveals
the reason. We observed that the steepness of the first

amplitude in the maneuver shows a high variance,
as the test driver fails to reach a higher repeatability
in this phase. This fact, in addition to the eccentric
sensor position, results in a weak matching of the
aligned raw data for averaging. Since the lateral
acceleration at the extremum two to four, as well
as the other metrics, indicates sufficient validity, we
consider the missing validity at the first extremum as
a measuring error.

Therefore we consider the double lane change maneuver
as valid. Again, for the described three points, we override
the objective verdict derived from themetrics, by a subjective
verdict. If a higher and more objective confidence is desired,
a repetition of the experiment with a higher driving repeata-
bility and a dedicated sensor setup would be needed.

5.5. Step III: Longitudinal Dynamics. Once the lateral dynam-
ics are validated, we proceed with validating the longitudinal
dynamics isolated from the lateral dynamic accordingly. Our
validation method currently covers simulation models using
the clutch model. The torque converter is disregarded so far
andwill be part of an extension of ourmethod in future work.
Considering longitudinal dynamics, the input parameter for
the simulation model and real world vehicle are the throttle
and the brake pedal. The output parameters for comparison
are the vehicle speed and longitudinal acceleration.The basic
approach of the validation is analogue to lateral dynamics, to
capture all four parameters in real world experiments rather
than feeding the input parameters for each experiment to the
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Table 8: Validation results Maneuver Lat-II: yaw rate extrema.

Yaw rate extrema First Second Third Fourth
Gain in ∘/s Time in s Gain in ∘/s Time in s Gain in ∘/s Time in s Gain in ∘/s Time in s

Average of experiments 13.45 13.15 −14.26 14.15 −14.76 15.93 13.27 17.03
Confidence interval 12.51–15.2 13.17–13.05 −15.56–−13.57 14.15–14.26 −16.48–−13.25 15.92–15.9 12.35–14.26 17.03–16.98
Average of simulations 13.42 13.13 −14.16 14.18 −14.67 15.94 13.34 17.03

Average of simulations error 0.03
(0.24%)

0.03
(0.19%) 0.1 (0.71%) 0.03

(0.18%) 0.09 (0.58%) 0.01
(0.06%)

0.07
(0.54%) 0 (0%)

Averaged simulation 13.72 13.18 −14.08 14.09 −14.53 15.9 13.17 17.03

Averaged simulation error 0.27
(2.01%)

0.03
(0.23%) 0.18 (1.26%) 0.06

(0.42%) 0.23 (1.56%) 0.03
(0.19%) 0.1 (0.75%) 0 (0%)

Verdict Pass Pass Pass Pass Pass Pass Pass Pass

simulation model and compare the output parameters of the
simulationmodel with the ones of the real world experiment.

The longitudinal dynamics of the simulation are pre-
dominantly influenced by the powertrain submodels, the
brake model, and the aerodynamics model. In order to get
confidence about the validity or nonvalidity for each of
these specific parts, each part should be validated separately.
However, this approach would require an immense effort.
Our proposed validation method aims at reducing the vali-
dation effort to driving five separate maneuvers. Using these
maneuvers, aerodynamics, brake and power train can be
considered isolated from each other. In that way, the power
train submodels can be validated in combination without a
dedicated validation for each mode separately. This is further
enabled by introducing the engine output torque and rounds
per minute (rpm) as intermediate input/output parameters.

The span of longitudinal dynamics for which our Smart
vehicle has been validated is derived from the CACC appli-
cation (see Section 2.2). Analogue to the lateral dynamics
validated for the constraints of the CELC application, this
longitudinal dynamics span defines the limits for which the
CACC application can be simulated with validated simula-
tionmodels later.The span is defined by amaximum speed of
45 km/h (displayed as 50 km/h on tachometer), a maximum
deceleration of −0,4 g, and a maximum acceleration of a
span between 0,4 g and 0,2 g mapped on the speed interval
between 0 km/h and 45 km/h.

5.5.1. Maneuver Long-Ia Coasting. For the first maneuver we
propose the straight line coasting as used in [66] to calibrate
the aerodynamics of the simulation model. The vehicle is
accelerated up to a certain initial speed on a trackwhich needs
to have no slope. Once this initial speed is reached, the driver
switches the transmission to neutral and the vehicles rolls
to standstill. In that way, the decelerating forces, air drag,
and rolling resistance are isolated. The reference point for
alignment we define to be the point in time when the vehicle
stops, since this is the best identifiable point in each run at
which the vehicle reaches the same state. The main metric
for validation is the longitudinal acceleration. The vehicle
speed is less suitable for quantitative validation due to its
cumulative character, which causes the validation error to
grow with the time progress during the maneuver. Besides

that, measuring the speed using the series on board sensors
is typically quite error-prone. Thus, we use the vehicle speed
as a qualitative error indicator only. Analogue to the lateral
dynamics validation, themaneuver is valid if the longitudinal
acceleration of the averaged simulations has an error of
below 5% and the average of simulation stays within the 95%
confidence interval of the averaged experimental data. For the
validation of our Smart vehicle, we have chosen 50 km/h
as initial speed. The results of the maneuver were used to
calibrate the drag coefficient and the resistance between
wheels and road surface.

5.5.2. Maneuver Long-Ib Braking. For the second maneuver
to calibrate the brake torque, we propose to extendmaneuver
Long-Ia (straight line coasting) by applying a constant brake
force after switching the transmission to neutral. The driver
needs to apply the same brake pedal position for each run to
create a high repeatability of the brake torque. In that way, the
brake force can be analyzed as isolated quantity, as is it added
to the deceleration forces which already have determined by
maneuver Long-Ia. The input parameter for the simulation
model of the brake is the brake torque captured from the
experiments. The reference point for data alignment is again
the time when the vehicle stops. The brake system of our
Smart vehicle has been validated with an initial speed of
50 km/h using different brake torques. The results of the
maneuver were used to calibrate the brake torque of the
simulation model.

5.5.3. Maneuver Long-Ic Decelerating. For the third maneu-
ver, we propose another variation of the straight line coasting
maneuver (Long-Ia und Long-Ib) to validate the drag torque
of the power train. Instead of applying the brake, the driver
does not switch to neutral, so that the engine drag torque
decelerates the vehicle to standstill. In that way, the drag
torque of the whole power train can be analyzed as an isolated
quantity.

(a) Data Handling. In contrast to the maneuvers Long-Ia und
Long-Ib, we need a different data splitting and alignment
method in order to expose the power train dynamics. Using
the standstill time again would result in a good matching
of the average vehicle speed; however the flanks of the
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Figure 15: Validation Maneuver Long-Ic: experimental data.

longitudinal acceleration and the rpm curvature while clutch
operating would get unsharp. Thus, we introduce the points
in time when the clutch is opened and closed as reference
points for splitting and aligning the data. In this way, the
state transition between engaged gears and gear switching
operations is sharpened and clearly exposed for analyzation.
Although, this method causes the confidence interval around
the speed graph of the experimental data to grow more with
the time, but sharpens the average graph of the longitudinal
acceleration, which is themore relevantmetric for validation.

The powertrain of our Smart vehicle has been validated
with an initial speed of 45 km/h with set of 6 experiments,
described in the following for explanation of the general
method. Additional maneuver Long-Ia und Long-Ib, the
desired engine torque, the clutch times, and the current gear
are taken from the experiments as further input parameter
for the simulation. Two aspects of the power train simulation
model are therefore not part of the validation, the gear
shifting schedule and the engine map which calculates the
desired engine torque from the pedal position. Both models
are very specific so that it would take a lot of time to
determine their parameters and there is little benefit for the
validation of the longitudinal dynamics. Therefore, both of
them are isolated by feeding the desired engine torque of the
experiments to the engine model and the gear shift times to
the transmission model and the clutch. Similar to the process
used for the J-Turnmaneuver (Lat-I), the experimental data is
split and aligned and the metrics are calculated. In Figure 15,
the average of the engine rpm, the vehicle speed and the
longitudinal acceleration is presented.The vertical linesmark
the points in time when the clutch is opened and closed.

(b) Metrics. The metrics to be evaluated here are the averaged
longitudinal acceleration gains against the 95% confidence
interval and a 5% error interval while the clutch is engaged
for each gear separately (presented in Table 9), as well as
the visual comparison of the graphs while clutching. The
reason for validating the averaged longitudinal acceleration
gains instead of applying a more complex shape comparison

approach, results from the following thoughts. While the
clutch is closed, the negative torque request forcing the engine
drag torque to decelerate the vehicle is constant as the min-
imum engine torque is applied by the motor management.
Thus, the negative acceleration is almost constant most of
the time. There are some exceptions in this consistency
issued by the motor management as for example in our
case during the first second of the third gear and during
the second gear. However these exceptions are not due to
the test driver’s behavior and therefore constant with each
experiment. Consequently, if the cumulated deceleration
brings the simulationmodel down to the same speed as in the
experiment at the end of each gear, the averaged acceleration
within this gear is a sufficient validation criteria. Further
confidence in this assessment is reached by checking the EDZ
of the longitudinal acceleration.

(c) Results. As the results in Table 1 show, our Smart vehicle
model is valid for the longitudinal acceleration gains in each
gear. The vehicle speed and the engine rpm are analyzed by
graphical comparison of the EDZ.TheEDZ in this case is very
narrow while experimental driving a high reproducibility
could be achieved. The vehicle speed graph matches the
EDZ during the whole maneuver, while the rpm and the
longitudinal acceleration leave the EDZ while clutching.
This is an indicator that our clutch simulation model is in
line with our expectations, too simple to precisely map the
highly nonlinear processes of a clutch (see Section 4.6.1).
The shape of the longitudinal acceleration graph seems to
match qualitatively, however the peaks exceed the EDZ up to
0.02m/s.This is probably caused by a delay of about 0.2–0.3 s
at the flanks of the simulation model while declutching.
Although the absolute error is comparatively low, it exceeds
the confidence interval. This fact needs to be considered
by application developers when using our simulator as a
potential limitation of the simulation model.

5.5.4. Maneuver Long-II Combined Braking Decelerating.
The fourth maneuver combines all decelerating longitudinal
forceswe have isolated and validated before. For that purpose,
we combine maneuvers Long-Ib and Long-Ic, which causes
the vehicle to be decelerated by the power train drag torque
and a constant brake torque at the same time. In this
way, all forces applied during a regular braking maneuver
are included in the validation. (see straight line braking
maneuver [63, 66]).

(a) Data Handling and Metrics. Our Smart vehicle has
been validated for this maneuver with an initial speed of
45 km/h using different brake torques. A set of 6 experiments
done with 40Nm target brake torque are described in the
following for explanation of the general method. Similar to
maneuvers Long-Ib and Long-Ic, the experimental data is
aligned and the metrics are calculated. The reference points
for alignment are defined by the times when the clutch opens
and closes, as well as the time when the vehicle stops. The
mainmetric for validation is again the steady-state gain of the
longitudinal acceleration while braking and the vehicle speed
and rpm are qualitative indicators. The steady-state gain of
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Table 9: Validation results Maneuver Long Ic: long acceleration gains.

Long. acceleration gains [m/s2] Gear 3 Gear 2 Gear 1 Neutral
Average of experiments 4.553 4.227 3.935 2.026
Confidence interval 4.151–4.955 3.832–4.622 3.778–4.092 1.773–2.279
Average of simulations 4.361 4.332 4.085 1.994
Average of simulations error 0.192 0.105 0.150 0.032
Averaged simulation 4.680 4.362 4.126 1.966
Averaged simulation error 0.127 (2.79%) 0.135 (3.19%) 0.191 (4.85%) 0.06 (2.96%)
Verdict Pass Pass Pass Pass

Table 10: Validation results Maneuver Long II: steady-state gains.

Steady state gains Long. acceleration [g] ∗ 100
Average of experiments 21.168
Confidence interval 19.395–22.941
Average of simulations 20.950
Average of simulations error 0.218
Averaged simulation 20.214
Averaged simulation error 0.95 (4.51%)
Verdict Pass

the longitudinal acceleration is calculated form the point in
time when the average brake torque of all experiments is
applied until the vehicle stops.

(b) Results. The results of this validation are presented in
Table 10. The validity criterion if fulfilled, as the averaged
simulation error does not exceed 5% and the average of
simulations remains within the confidence interval. Finally
the EDZ is checked visually (Figure 16). The average of
simulations graph for the longitudinal acceleration remains
within the confidence interval, except for the last second
before the vehicle stops. Different from the simulation graph,
the experiment graph rises with a little dent in that last
second, although the brake torque does not rise.This behavior
probably originates from a nonlinearity of the disc brake
system at low rotation speeds, which we have not modelled
in our brake model. However, since the brake torque in
sum brings the vehicle and the simulation model to stand
still in the same time (the rising and the falling flanks of
the longitudinal acceleration match the confidence interval)
we can rate the behavior of our simulation model at this
point as valid. Checking the speed EDZ reveals as small
mismatch between 17 km/h and standstill. As we can observe
the speed difference in experiment and simulation between
initial speed and standstill in the same time period, we can
rate this mismatch as a sensor measuring error of the vehicle.

5.5.5. Maneuver Long-III Accelerating. The final maneuver
to validate the longitudinal dynamics aims at studying the
accelerating forces of the power train. For that purpose,
we propose a straight line acceleration maneuver [66]. This
maneuver requires a test track with no slope and the driver
needs to apply the accelerator pedal with a constant angle for
each experiment. The power train of our Smart vehicle has
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Figure 16: Validation Maneuver Long-II: experimental data zones.

been validated up to 50 km/h with different acceleration of
30%, 50%, and 70% pedal position. A set of 6 experiments
done at 50% are described in the following for explanation
of the general validation method. The experimental data is
fed to the simulation using the desired engine torque, the
current gear, and the times when the clutch opens and closes,
as motivated for maneuver Long-Ic.

(a) Data Handling and Metrics. The data handling is also
done in accordance with maneuver Long-Ic. For the metrics,
we propose to apply a regression analysis of the longitudinal
acceleration instead of averaging as done formaneuver Long-
Ic for the following reason. For our Smart vehicle, in contrast
to the drag torque of the power train while deceleration,
its drive torque while accelerating is not kept constant by
the motor management while the clutch is closed. While
acceleration, a constant pedal position leads to a slightly
falling desired torque. For this reason, it is not possible for
the driver to produce a constant desired torque when driving
an experiment. Assuming the test driver would be able to
apply a precisely constant pedal position, this would still lead
to the same highly reproducible behavior as in maneuver
Long-Ic, and therefore the same metric of averaging the
longitudinal acceleration could be applied. However, due
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Figure 17: Validation Maneuver Long-III: experimental data zones.

to the falling torque, we need an indicator which exhibits
possible uncertainties of the test driver’s pedal input that
result in a varying slope of the desired torque.

For this purpose, we propose to apply a simple linear
regression of the longitudinal acceleration for each section
between the clutch operations. The calculation is done using
least square matching method [67]. We use the MATLAB
function “polyfit” to calculate the slope and the intercept [67]
from the resulting regression line. Since the intercept of a line
is not a suitable value for validation,we calculate themidpoint
of the regression line from the slope and the intercept at the
mid time value between the split points of each gear. This
is done for the averaged experiment data to calculate the
average slope and the average center of the graph and for
each experiment separately to calculate the 95% confidence
interval in accordance with the maneuver Long-Ic.

(b) Results. Figure 17 depicts the resulting graphs and Table 11
presents the validation results, which pass the validation
criteria similar to maneuver Long-Ic by fitting all confidence
intervals and an overall error below 5%. The longitudi-
nal acceleration graph shows negative acceleration peak of
2.3 cm/s2 for the simulation during the gear switch from gear
1 to gear 2, which is 1.5 cm/s2 different from the experiment.
This fact needs to be considered by application developers.
Finally we check the EDZ of vehicle speed and engine rpm,
which remain within the 95% confidence. The latter tells
us that our clutch simulation model does a better job for
shifting up than for shifting down (see maneuver Long-Ib).
The speed EDZ grows with the progress of the experiment
due to cumulative error of the pedal position over time,
as described earlier for maneuver Long-Ic. Although the
simulation graph does not match the experiment, it still fits
the EDZ. In general this deviation could be issued by the
speed error of the simulation model cumulated over time.
And in general it could be considered as a valid deviation
as far as the cumulative model error does not exceed the
cumulative error of the pedal position which broadens the

Accelerate

Brake

Start/stop

Coast

Figure 18: Oval maneuver combined dynamics.

speed EDZ.However in our case, the deviation of both graphs
is most likely due to a measuring error of the vehicle speed
in the experiment. We came to that conclusion since the
integrated acceleration of the experiment leads to a higher
final speed thanmeasured.This means that there is no way to
match the speed and the acceleration graph at the same time
in simulation. In this case, the acceleration graph represents
the more relevant value, as it has no cumulative error.

5.6. Step IV: Combined Dynamics. After calibrating and vali-
dating the longitudinal and lateral driving dynamics isolated
from each other, in the final step of validation we combine
lateral and longitudinal dynamics. In this way, we uncover
potentially disregarded interdependencies between both. At
the same time we aim at validation of the requirement on
correct evolution of the vehicle position in our simulator,
motivated by the requirements to our simulator issued by
the PACE application (Section 2.2.3). Additionally, with the
combined dynamics validation, we complement the maneu-
vers for longitudinal validation (Long-I–Long-III), which are
all steady-state maneuvers, by a transient maneuver. In order
achieve these goals, we need a set of maneuvers, which cover
braking and acceleration on a straight and while turning,
as well as some load changes for the transient part of the
longitudinal dynamics. Towards these goals, we propose an
oval drivemaneuver that covers all these aspects in one single
maneuver.

The maneuver is depicted in Figure 18. The vehicle starts
at a fixed position with a straight line acceleration followed
by an acceleration in a U-turn [66]. At the end of the U-turn,
the test driver continues with a deceleration on a straight line.
The next U-turn is driven with the brake applied constantly
until the start point on the straight is reached again (see
brake in a turn maneuver [66]). Having the start point and
the end point at the same position turn the maneuver in a
closed loop driving maneuver. Moreover, it creates the same
equilibrium state for the start and the end of the transient
response of the vehicle, which also serves as splitting point
for data alignment. Both aspects, the open loop character
and the equilibrium state, help to enhance repeatability of the
experiments. The maneuver is driven in both directions in
order to cover right and left turns. Acceleration and braking
need to be applied as constant as possible by the test driver
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Table 11: Validation results Maneuver Long II: steady-state gains.

Gear 1 Gear 2 Gear 3 Gear 4

Slope[cm/s3]
Midpoint

gain[cm/s3] Slope [cm/s3] Midpoint
gain[cm/s3] Slope [cm/s3] Midpoint

gain[cm/s3] Slope [cm/s3]
Midpoint

gain[cm/s3]
Average of experiments −2.518 20.05 −1.389 13.45 −0.39 7.94 −0.403 4.38
Confidence interval −2.74–−2.29 17.79–22.3 −1.442–−1.336 12.61–14.29 −0.403–−0.376 7.59–8.29 −0.443–−0.362 2.95–5.8
Average of simulations −2.431 20.6 −1.394 13.55 −0.402 7.94 −0.388 4.15
Average of simulations
error 0.087 0.55 0.005 0.1 0.012 0 0.015 0.23

Averaged simulation −2.621 19.98 −1.345 12.9 −0.375 7.591 −0.419 4.288
Averaged simulation
error 0.1 (4.09%) 0.07

(0.35%) 0.04 (3.17%) 0.55
(4.09%) 0.01 (3.85%) 0.34

(4.4%) 0.016 (3.97%) 0.092
(2.1%)

Verdict Pass Pass Pass Pass Pass Pass Pass Pass

in each run in order to achieve a high reproducibility of the
resulting response.

5.6.1. Data Handling. All experiments are driven in a row, to
reach best possible repeatability of the position and speed.
With each oval driven in a row, the test driver’s skill to
drive the same trajectory of position and speed will rise. In
our case, we dropped the first 10 of 40 experiments (ovals
driven) as training sets. From the remaining 30 experiments
21 were selected for validation in each direction. We use
a set of 21 experiments driven counterclockwise to explain
the validation exemplary. In our example, we aim at precise
driving in narrow spaces with low speeds, as motivated by the
PACE application. We therefore have validated the combined
dynamics with a maximum speed of around 25 km/h in an
oval of 24 × 11.5 meter. For position tracking, we used the
camera-based localization system described in [68]. Due to
the size of the area to be covered for the oval maneuver, the
camera was positioned at a height of 21.6 meters at the south
side of the area. The lateral viewing angle and height lead to
a calculated precision between 6.6 cm and 4.8 cm depending
on the distance between the tracked object and the camera
[68].The experimental data is split at the points in time when
the vehicle starts and stops at the equilibrium point. Each
oval drive is simulated separately, while the start position
of the simulated vehicle its set to the start position of the
experiment.

5.6.2. Metrics. The main aspects for the metrics of this
maneuver are to validate first if the final position of the
simulation is close to the position of the experiment and
second if it travelled the on similar trajectories to this
position. Towards these aspects, we introduce the position-
speed-domain and the travelled-distance-domain. In contrast
to the maneuvers for lateral and longitudinal dynamics
validation, which have been analyzed in the time domain, we
employ the position domain. This enables both to reduce the
cumulative position error rising with the time and to validate
of the correct evolution of the position. For this purpose,
we consider the speed of the vehicle over its 2-dimensional
position, which results in a 3-dimensional state space to be

validated (the position-speed-domain). The position domain
has been used for model validation in [69] however the
speed was disregarded. In addition to the position domain,
we introduce the travelled-distance-domain, which enables
reducing the 2-dimensional position domain to a scalar value.

We further introduce the deviation between twopositions
in both domains to be validated as metric for the following
three validity criteria:

(1) The spatial deviation between the final position of the
experiment and the simulation is considered to be
valid below 5% error of the travelled final distance and
within the 95% confidence interval bounds.

(2) The travelled-distance-domain EDZ of the spatial
deviation between each position of the experiment
and the simulation for which the travelled distance is
equal is checked visually.

(3) The position-speed-domain EDZ is visually checked in
3-dimensional state space span by the position and
the speed.

The first step to calculate the metrics is to calculate the
average position trajectory for the experiments 𝐴 and the
simulations𝐴. For this purpose, one trajectory𝑔 is selected as
base and for each position (𝑥𝑖, 𝑦𝑖) in this base trajectory, the
closest position (𝑥, 𝑦) in each of the𝑚 remaining trajectories,
the family 𝑓𝑠 with 𝑠 = 1, . . . , 𝑚 and the family ℎ𝑡 = {𝑓𝑠, 𝑔}
with 𝑡 = 1, . . . , 𝑚 + 1 is determined according to (17). The
resulting sets 𝐴 and 𝐴 of 𝑛 positions form the averaged
position trajectories according to (18).

𝑃𝑖 = {(𝑥, 𝑦) | (𝑥, 𝑦) ∈ 𝑓𝑠; (𝑥, 𝑦) − (𝑥𝑖, 𝑦𝑖)min} ,
{(𝑥𝑖, 𝑦𝑖) | 𝑖 = 1, . . . , 𝑛; (𝑥𝑖, 𝑦𝑖) ∈ 𝑔} , (17)

𝐴 𝑖 = (𝑥, 𝑦)𝑖
= 1𝑚 + 1 ((𝑥𝑖, 𝑦𝑖) + ∑

𝑗=1,...,𝑚

(𝑥𝑗, 𝑦𝑗)) | (𝑥𝑗, 𝑦𝑗)
∈ 𝑃𝑖.

(18)
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Figure 19: Validation combined dynamics: travelled-distance
domain.

(a) Travelled-Distance-Domain. For each position 𝐴 𝑖 in the
averaged experiment, the spatial distance to the preceding
position 𝐴 𝑖−1 is summed up to the travelled distance 𝑑𝑖. The
deviation 𝐷𝑖 between averaged simulation 𝐴 and averaged
experiment 𝐴 is determined by finding the positions in
both graphs for which the travelled distance is minimal
and calculating spatial distance between them. The same
method is applied to determine the confidence interval
using the spatial distances between all experiments and the
averaged experiment according to (19). The upper bound of
the confidence interval 𝑈𝐷 is calculated according to (20),
while the lower bound is not relevant this time.

𝐷𝑖 = {𝐴 𝑖 − 𝐴𝑗 𝑖, 𝑗 = 1 ⋅ ⋅ ⋅ 𝑛 𝑑𝑖 − 𝑑𝑗min} ,
𝑑𝑖 = ∑
𝑘=1⋅⋅⋅𝑖

𝐴𝑘 − 𝐴𝑘+1 , 𝑖 = 1 ⋅ ⋅ ⋅ 𝑛 − 1, (19)

𝑈𝐷𝑖 = { 𝑒𝑖𝑚 + 1 + 𝐶 𝜎𝑖𝑖√𝑁} ,
𝜎𝑖𝑖 = std (𝐷𝑖) , 𝑒𝑖 = ∑

𝑘∈𝐷𝑖

𝑘. (20)

The resulting graphs are depicted in Figure 19. Checking
this graph visually validates the second validation criterion.
The spatial deviation between the average of simulations
and average of experiments is valid within the confidence
interval (between the upper bound and zero). The spatial
deviation between the averaged simulation and the averaged
experiment is valid below 5% of the travelled distance.

(b) Position-Speed-Domain. First, we calculate the position
EDZ around the averaged position trajectory of the experi-
ments 𝐴. For each position 𝐴 𝑖 in 𝐴 (see (18)), we determine
the distance to each of the trajectories ℎ𝑡 (see (17)) by
intersecting the normal 𝑟𝑖 to 𝑞𝑖 (𝐴 𝑖 to its successor position)
as set 𝑀 according to (21). From 𝑀𝑖 we can calculate the

Table 12: Validation results combined dynamics.

Final travelled
distance (FTD) [m]

Position error at
FTD [m]

Average of experiments 59.66 -
Confidence interval 58.51–60.81 −1.26–1.26
Average of simulations 60.24 -
Average of simulations error 0.58 1.06
Averaged simulation 60.02 -
Averaged simulation error 0.36 (0.6%) 1.02 (1.71%)

position EDZ at 𝐴 𝑖 consisting of the two points 𝐿 𝑖 and 𝑈𝑖 by
determining the confidence interval of all distances in𝑀𝑖 and
multiplying it with the orthogonal 𝑟𝑖 according to (22).
𝑀𝑖 = {(𝑥, 𝑦)𝑖 − (𝑥, 𝑦) | (𝑥, 𝑦) ∈ ℎ𝑡 ∧ (𝑥, 𝑦) ∈ 𝑟𝑖} ,

𝑟𝑖 ⊥ 𝑞𝑖 | 𝑞𝑖 = →𝐴 ̇𝑖𝐴 ̇𝑖+1,
(21)

𝐿 𝑖, 𝑈𝑖 = {(𝑥, 𝑦)𝑖 ∓ 𝑟𝑖𝑟𝑖 ⋅ 𝐶
𝜎𝑖√𝑁} ,

𝑁 = 𝑚 + 12 , 𝜎𝑖 = std (𝑀𝑖) , 𝐶 = 𝑡 inv (0.95,𝑁 − 1) .
(22)

To calculate the speed EDZ, for each position in 𝐴 𝑖, the
measured speed of the vehicle is used to calculate its average
and its confidence interval accordingly, which are finally
plotted as the third dimension on the 2-dimensional position.
The same process is done for the simulation. The resulting
graphs are depicted in Figure 20. The thus obtained position-
speed-domain EDZ has two dimensions to be checked, the
position and the speed. As the graph shows, in contrast to
maneuver Long-III, the confidence intervals do not grow
with the time progress of the experiment and shrink to about
zero at the start/stop position. In this way, the deviation
of the position between averaged simulation and averaged
experiment can be checked visually regarding the question if
the cumulative position error of the simulation stays within
the EDZ of the experiments. Hereby, the third criterion can
be validated. The drawback here is the fact that since the
simulated data does accumulate the error of its deviation
from the real world model, it is unlikely that the averaged
simulation graph will stay inside the confidence intervals for
the whole maneuver. Accordingly, for the third validation
criterion, the location where the EDZ is left is checked and
rated by a subjective verdict.

5.6.3. Results. The results related to the first validation crite-
rion are presented in Table 12. At the final travelled distance
of the average of experiment at 59.66m, the position error of
the average of simulations is 1.06m (within the confidence
interval) and the position error of the averaged simulation is
1.71%. Thus, the first validation criterion is passed.

Figure 19 reveals that in the travelled-distance-domain
the average of simulations graph stays below the confidence
interval graph and the averaged simulation graph stays below
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Figure 20: Validation combined dynamics: position-speed domain.

5% for the whole maneuver. Thus, the second validation
criterion is passed.

Concerning the third validation criterion, the position-
speed-domain graph (Figure 20) shows that the final position
of the simulation model value overshoots experimental one
by 0,443m. Hence, the average speed of the simulation
model leaves the EDZ 9 cm away from the averaged stopping
position of the experiment at 4.02 km/h as the subjective
verdict is valid in this case. As the EDZ is left very close to
the final position while braking, a potential inaccuracy of
the brake model can hardly be distinguished frommeasuring
inaccuracies of the experiment. This refers to measuring the
speed at very low speeds as well as themeasured brake torque
that is fed to the simulation mode. In order to cope with this
subjective aspect, we have rated the first and second criterion
validated objectively in the travelled-distance-domain.

(a) Discussion. The motivation to apply both domains for
validation can be summarized as follows. In both domains
the speed is regarded decoupled from position, which isolates
the cumulative speed error over the time. The position-
speed-domain however disregards the travelled distance. The
simulation graph could vermiculate very close to experiment
and still be apparently valid if it stays within the confidence
interval. Besides that, the confidence interval of the position-
speed-domain will be reduced to zero at the final position;
that is, the simulation will eventually leave the confidence
interval due to its cumulative position error. For this reason,
a subjective verdict of the user is needed for validation. In
the travelled-distance-domain the experiment cumulates the
deviation error and so provides a magnitude for objective

validation. However, valid magnitudes bounds can reach
relatively high deviations, in our case about 1.5 meters after
50m travelled distance. If this deviation had an orthogonal
direction, which would be unacceptably high as the simula-
tion model would drive that 1.5 meters off the track. For this
reason, we need to consider both domains complementary.
From the travelled-distance-domainwe can derive a necessary
but not sufficient condition for the simulation model to be
valid. As the same applies for the position-speed-domain, only
both domains considered together can deliver the sufficient
condition for the simulation model to be valid.

6. Conclusion

Very large parameter spaces need to be regarded during the
development of cooperative ADAS, as their complexity grows
with each vehicle involved in an automated and cooperative
maneuver. Thus, novel development approaches are required
to bring an idea for a cooperative ADAS through the proto-
typing stage towards a plausible candidate for further devel-
opment. In this paper we propose such an approach with our
rapid prototyping environment based on vehicle simulation,
aligned with an iterative prototyping process of application
refining and assessment. This environment addresses the
opposing requirements of automation and cooperation by
a tradeoff between simulating multiple vehicles at the same
time, while mapping their vehicle dynamics as precisely as
required.

With this compromise we describe simulation mod-
els which reduce computational effort and we propose an
architecture which provides scalable computational power to
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execute these models. The novelty here is not the models
and their related equations themselves, but their combination
aim at the named tradeoff between opposing requirements.
Therefore, we focus on mapping vehicle dynamics precisely
and computational efficiently to this end, as vehicle dynamics
are the key feature to realize the aforementioned compromise.
For this purpose, we define a scope of application for our
prototyping environment, which excludes simulation at the
limits of driving dynamics.Within this scope, we can validate
realistic mapping of vehicle dynamics.This validation assures
that the representation of real vehicles in simulation is
sufficient to apply simulation results of an application to its
behavior in the real world. To this end, we propose a vehicle
dynamics validation method, which is based on existing vali-
dation approaches and fitted to our scope.This method com-
bines isolated and combined consideration of longitudinal
and lateral vehicle dynamics. Its key enabler to address rapid
prototyping is reducing the required validity to a specific span
of vehicle dynamics within the boundaries of the scope of
our prototyping environment, instead of finding the limits of
validity. In this way, minimizing the number of required driv-
ing maneuvers while maximizing the number of validated
vehicle dynamics parameters in the defined span is realized.

As a proof of concept we have implemented the proposed
prototyping environment in Java. We have validated this
implementation against a real world vehicle (Smart W451
series) in terms of vehicle dynamics, using the proposed
validation method. We have demonstrated this method for
the specific span of driving dynamics issued by three example
applications CELC (Cooperative Emergency Lane Chance),
CACC (Cooperative Adaptive Cruise Control), and PACE
(Parking Autonomously in Cooperative Environment).
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Endnotes

1. http://www.path.berkeley.edu/.
2. PROgraMme for a European Traffic of Highest Effi-

ciency and Unprecedented Safety, 1986–1994.
3. Dedicated Road Infrastructure for Vehicle safety in

Europe, 1989–1995.
4. Intelligent Vehicle Initiative 1998–2005.
5. www.cvisproject.org.

6. http://www.drive-c2x.eu/.
7. http://www.safespot-eu.org/.
8. http://www.autonet2030.eu/.
9. http://www.imagine-online.de.
10. JBullet, http://jbullet.advel.cz/.
11. Bullet Physics Library, http://bulletphysics.org/.
12. libGDX, https://libgdx.badlogicgames.com/.
13. Ode4j, http://ode4j.sourceforge.net/.
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