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ABSTRACT  

Many of the unanswered questions associated with hepatitis C virus assembly are related to the core 

protein (HCVcp), which forms an oligomeric nucleocapsid encompassing the viral genome. The 

structural properties of HCVcp have been difficult to quantify, at least in part because it is an 

intrinsically disordered protein (IDP). We have used single-molecule FRET techniques to study the 

conformational dimensions and dynamics of the HCVcp nucleocapsid domain (HCVncd) at various 

stages during the RNA-induced formation of nucleocapsid-like particles. Our results indicate that 

HCVncd is a typical IDP. When it forms small ribonucleoprotein complexes with various RNA hairpins 

from the 3 end of the HCV genome, it compacts but remains intrinsically disordered and 

conformationally dynamic. Above a critical RNA concentration, these ribonucleoprotein complexes 

rapidly and cooperatively assemble into large nucleocapsid-like particles, wherein the individual 

HCVncd subunits become substantially more extended. 
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HIGHLIGHTS 
 

 What role does the core protein play in nucleocapsid-like particle (NLP) assembly?  

 The core protein is highly dynamic and unstructured in the absence of RNA 

 A small, dynamic ribonucleoprotein complex forms at low RNA concentrations 

 At high RNA concentrations, these ribonucleoprotein complexes assemble into NLPs 

 The core protein adopts an expanded structure within the oligomeric NLPs 
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1.0 INTRODUCTION 

The hepatitis C virus (HCV) is a widespread pathogen that infects more than 1 in 50 people worldwide 

and is responsible for a range of progressive hepatotropic diseases [1], including a quarter of all 

instances of liver cancer [2]. The virus particle is a 50-60 nm diameter, lipid-enveloped nucleocapsid 

[3] (Figure 1a) that encompasses the viral genome, which is a  9600 nucleotide, positive-sense, 

single-stranded RNA [4] (Figure 1b). This RNA is directly translated by the host ribosome via an 

internal ribosomal entry site (IRES), resulting in a single  3000 amino acid polyprotein that is cleaved 

by both host and viral proteases into a total of 10 viral proteins [5] (Figure 1c); three of which—core 

protein (HCVcp), envelope protein 1 (E1), and envelope protein 2 (E2)—are responsible for the 

structural integrity of the fully assembled viral particle (Figure 1b).   

Viral particle assembly, in particular nucleocapsid formation, is driven by interactions between 

genomic RNA and the multifunctional HCVcp. This process represents a promising therapeutic target 

in the HCV life cycle that has not yet been fully exploited because many critical details remain 

unknown [5]. In particular, our understanding of nucleocapsid formation can greatly benefit from more 

structural information [6,7]. However, such experiments are often challenging for intrinsically 

disordered proteins (IDPs) like HCVcp [8]. Although IDPs are commonly found in viral proteomes [9], 

where their conformational plasticity allows them to perform a diverse collection of biological functions 

[10], their pronounced dynamic structural heterogeneity often makes them difficult to characterize 

using traditional ensemble techniques. 

One successful experimental technique for characterizing IDPs is single-molecule Förster 

Resonance Energy Transfer (FRET), which can be used to measure the conformational dynamics and 

dimensions of these disordered systems [11,12]. Unlike techniques that average over the entire 

ensemble, single-molecule methods can identify and characterize distinct subpopulations that may be 

present at equilibrium. This is particularly important for IDPs, which can transiently populate multiple 

conformations. Here we use single-molecule FRET to perform a quantitative investigation of the 

conformational dynamics and dimensions associated with the core protein’s nucleocapsid domain 

(HCVncd) at various points during RNA-induced formation of nucleocapsid-like particles (NLPs). In 

the absence of RNA, we find that HCVncd is largely unstructured and highly dynamic, making it a 

typical IDP. At low RNA concentrations, this IDP forms a small ribonucleoprotein complex with 

structured RNAs from the viral genome. Surprisingly, HCVncd appears to remain intrinsically 
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disordered and highly dynamic within this complex. At higher RNA concentrations, these complexes 

rapidly and cooperatively assembly into much larger NLPs, wherein the HCVncd subunits become 

substantially more expanded. 

2.0 RESULTS AND DISCUSSION 

2.1 HCVncd in the absence of RNA 

The hepatitis C virus core protein (HCVcp) is comprised of the first  191 amino acids of the host-

translated polyprotein (Figure 1c). HCVcp is a highly conserved, positively charged protein that 

oligomerizes around genomic RNA to form the viral nucleocapsid [13]. In addition to its role as a 

structural protein, HCVcp is also a nucleic acid chaperone that promotes viral genome dimerization 

[14-16] and a biomolecular hub that is thought to mediate critical virus-host interactions [17]. It 

consists of two domains (Figure 1d). The N-terminal nucleocapsid domain of HCVcp (HCVncd) is 

highly conserved, positively charged, and intrinsically disordered (Supplemental Figure 1)[8]. This 

region of the protein is both necessary and sufficient for: (i)  nucleocapsid-like particle (NLP) formation 

[18] and (ii) nucleic acid chaperone activity [14-16]. The more hydrophobic C-terminal domain is 

thought to direct HCVcp to lipid droplets [19] and the endoplasmic reticulum, the putative location of 

viral particle assembly [20]. Since the primary focus of this investigation centers around NLP 

assembly, we used site-specific mutagenesis to introduce two cysteines (S2C, T65C, C98M) into the 

N-terminal domain of a clinically isolated HCVncd variant (Figure 1e) [21]. These cysteines are then 

coupled to donor (Alexa 488) and acceptor (Alexa 594) fluorophores for single-molecule FRET 

experiments. In particular, these labelling sites allow us to sensitively probe the conformational 

dimensions and dynamics associated with this highly conserved region of HCVncd (Supplemental 

Figure 1) at various stages during NLP assembly. 

Circular dichroism (CD) experiments (Figure 2a) were used to characterize the degree of disorder 

associated with HCVncd. In accordance with previous CD spectra acquired for slightly different 

segments of HCVcp [8,15,22], HCVncd displays a minimum in ellipticity below 200 nma hallmark of 

polypeptides lacking secondary structure. A reconstruction of the CD spectrum [23] using protein 

reference sets [24-26] suggests that the helical content of this sequence is between 4% and 8%, 

similarly low as the previously studied constructs [15,22]. 
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To quantify the conformational dimensions and dynamics of HCVncd, we use diffusion-based 

single-molecule FRET experiments [27-29]. In phosphate-buffered saline, single FRET-labeled 

HCVncd molecules (100 pM) transiently diffuse through the confocal volume, giving rise to 1 ms 

long bursts each containing 50 - 100 fluorescence photons. The transfer efficiency, E, can be 

calculated ratiometrically using the number of donor and acceptor photons in each burst (see 

MATERIALS AND METHODS). The results from thousands of bursts yield an E histogram (Figure 2b, 

green; Supplemental Figure 2) with a single peak and a mean value of E = 0.62  0.01. The addition 

of either GdmCl or NaCl (Figure 2b and Supplemental Figure 3, respectively) results in a continuous 

shift of the peak, as expected for an intrinsically disordered protein. As previously observed for other 

IDPs[27,28,30], GdmCl shifts the E histograms to lower values (Figure 2b), corresponding to an 

expansion of the polypeptide chain [31,32], whereas NaCl shifts the E histograms to slightly higher 

values (Supplemental Figure 3). This continuous shift of a single population in the E histograms is in 

stark contrast to the redistribution of discrete subpopulations (e.g., folded and unfolded) associated 

with the cooperative folding/unfolding of proteins with large free energy barriers and interconversion 

kinetics [33]. 

Although the mean value of the E histograms can be quantitatively related to the average distance 

between the donor and acceptor fluorophores, the histogram width is dominated by shot-noise arising 

from the finite number of photons, because the intramolecular distance dynamics of unfolded and 

intrinsically disordered proteins are faster than the average interphoton time [34,35]. However, 

information about the width of the underlying FRET efficiency distribution (and thus the distance 

distribution) is contained within the fluorescence lifetimes of the fluorophores, because the distance 

dynamics in unstructured proteins are slower than the fluorescence lifetimes of fluorophores[36-39]. 

Lifetime information is available from the single-molecule data since they are recorded using time-

correlated single-photon counting (TCSPC) [40] and pulsed interleaved excitation [41]. In two-

dimensional density plots of normalized lifetimes vs transfer efficiency (Figure 2c), systems with a 

single fixed FRET efficiency are expected to lie on the diagonal black line in Figure 2c. However, 

when transfer efficiency fluctuations occur on a timescale between the donor fluorescence lifetime ( 

4 ns) and the inter-photon time ( 10 s), lifetimes for each event will cluster either above the diagonal 

if donor photons are analyzed or below the diagonal if acceptor photons are analyzed (Figure 2c, blue 
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and orange, respectively). The vertical displacement from the diagonal can be related quantitatively to 

the variance of the underlying FRET efficiency distribution, σ2 (see MATERIALS AND METHODS). 

An analysis of a lifetime density plot containing thousands of bursts (Figure 2c) reveals that the 

variance of the FRET efficiency distribution of HCVncd under near-physiological conditions is 

σ2 = 0.13 ± 0.02. As commonly seen in unfolded and intrinsically disordered proteins [34], this 

variance [38,39] arises from conformational dynamics within each burst, which gives rise to a 

distribution of inter-dye distances, P(rdye-dye). Simple polymer models provide a remarkably accurate 

approximation of these intramolecular distance distributions in unfolded and intrinsically disordered 

proteins [34]. This has been shown by experiments that probe multiple segments in the same protein 

[31,42,43], comparisons between FRET-derived distributions and distributions obtained using other 

techniques, like NMR [42] and SAXS [31,42], and distributions obtained using the most realistic all-

atom molecular dynamics force fields currently available [31,44,45]. For this work, we chose to use a 

wormlike-chain (WLC) model to describe P(rdye-dye), because it has a well-defined maximal value for 

rdye-dye, which is useful for calculating the expected behavior in the lifetime density plots. For a contour 

length of lc = 274 Å (corresponding to 64 amino acids plus the dyes), our experimentally determined 

transfer efficiency of E = 0.62 ± 0.01 corresponds to a persistence length of lp  4.8 Å, resulting in a 

P(rdye-dye) with a mean value of rdye-dye  49 Å (see MATERIALS AND METHODS). Most importantly, 

this P(rdye-dye) gives rise to a FRET efficiency distribution with a variance of σ2 = 0.11, which is 

consistent with the variance identified via the lifetime density plot*. This finding indicates that HCVncd 

molecules rapidly sample a broad intramolecular distance distribution during their transit through the 

confocal detection volume (Figure 2c). However, it does not necessarily imply that HCVncd 

corresponds to a fully random coil, because we only probe one large polypeptide segment (i.e., 64 

amino acids), which will result in averaging over any residual transient structure that may exist within 

the chain. 

In this way, the continuous shift of the E histograms resulting from the addition of GdmCl and NaCl 

can also be quantitatively analyzed to determine the corresponding change in rdye-dye, which 

illustrates the resulting expansion or compaction of the chain, respectively (Figure 2d). Interestingly, at 

low salt concentration, the dimensions of the FRET-labeled segment of HCVncd correspond to a 

                                                            
* The variance of the FRET efficiency distribution is also consistent with other simple polymer models 
(e.g., Gaussian chain, Self-avoiding Chain, etc.), because the shapes of the different distance 
distributions are very similar if lc is much larger than lp, as in the case of HCVncd. 
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length scaling exponent of   0.49 (see MATERIALS AND METHODS), very near the value of 1/2 

expected for an ideal chain under theta conditions where attractive intra-chain interactions balance 

the repulsive excluded volume interactions[28]. As previously reported for other IDPs, the enhanced 

electrostatic screening caused by the addition of NaCl weakens the repulsive interactions between 

the many positively charged amino acids in HCVncd, allowing the polypeptide to more easily sample 

compact, and thus charge dense, conformations[27]. Denaturants, such as GdmCl, are thought to 

bind to and more effectively solubilize the polypeptide backbone, which gives rise to the well-

document expansion of unfolded and unstructured proteins[28,31,32].   

The lifetime density plot (Figure 2c) indicates that HCVncd rapidly samples a distribution of 

intramolecular distances. This hypothesis can be further tested with nanosecond FCS techniques 

[46], which are sensitive to fluctuations in the donor and acceptor photon detection rates resulting 

from chain reconfiguration. Indeed, the donor-donor (g()DD) and acceptor-acceptor (g()AA) cross 

correlation functions show pronounced correlated behavior over the course of 150 ns (Figure 2e, blue 

and orange), and the donor-acceptor cross correlation function (g()DA) shows an anti-correlated 

component (Figure 2e, grey) on the same timescale, as expected for an IDP that samples a 

distribution of rdye-dye on a this timescale [29,47]. A global analysis of the nanosecond cross correlation 

functions results in a chain reconfiguration time of r = 47 ± 3 ns, thus defining the timescale 

associated with the rapid conformational dynamics of HCVncd. 

These biophysical experiments quantitatively characterize the dimensions and dynamics of 

HCVncd in the absence of RNA. They show that HCVncd does not have any persistent secondary 

structure, but instead that it samples a distribution of FRET efficiencies with the expected variance of 

an unstructured chain. As previously observed for other IDPs [29,44], our results indicate that 

HCVncd samples such a distribution on a 50 ns timescale. In the context of the well-established 

structure-function paradigm of molecular biology, it is remarkable that this unstructured protein can 

adopt multiple functional roles during the HCV life cycle [17], including that of an RNA chaperone [14-

16] as well as its namesake role as the primary constituent of HCV nucleocapsids [13]. We now turn 

to these functional interactions of HCVncd. 

2.2 HCVncd in the presence of RNA 
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Formation of nucleocapsid-like particles (NLPs) can be induced in vitro with high concentrations of 

structured RNAs [18]. For this study, we use four small viral RNAs (RNA1, RNA2, RNA3, RNA4; 

Figure 3a) from the 99 nt untranslated 3 X-RNA at the end of the viral genome (Figure 1b, black). We 

focused on this region because it is known to be part of an intricate RNA-RNA and RNA-protein 

interaction network that regulates various aspects of the viral life cycle [48-51], including viral 

assembly [52]. All four RNAs contain the dimer linkage sequence (DLS; Figures 1b and 3a, cyan), 

which is a 16 nt self-complementary sequence that can form a homodimeric kissing complex [53]. 

This kissing complex, with the assistance of HCVcp acting as an RNA chaperone [14,54], rearranges 

into an extended RNA duplex thus linking two copies of the genome. Notably, a dimeric form of the 

genome has been proposed to be an important component of the aforementioned regulatory network 

[48,53,55]. 

To determine whether the conformational heterogeneity of HCVncd in isolation (designated as 

“FREE”) persists throughout the NLP assembly process, increasing amounts of each nucleic acid 

were added to solutions of FRET-labeled HCVncd to achieve final RNA concentrations between 0 M 

and 20 M. In addition to the 100 pM labeled HCVncd, all samples also contained 3 nM unlabeled 

HCVncd to minimize potential intermolecular FRET between the individual HCVncd subunits within 

the fully assembled NLPs (i.e., capsomeres). The E histograms for these four data sets (Figure 3b) 

show that HCVncd can sample at least three different populations during RNA-induced NLP 

assembly. The RNA-dependent stability of these three populations provides new structural insights 

into the conformational plasticity of HCVncd during RNA-induced NLP assembly. 

2.2.1 Formation of RNA-HCVncd ribonucleoprotein complexes at low concentrations of RNA 

 Low concentrations (i.e., < 4 M) of all four RNAs cause the FREE population (Figure 3, green) to 

transition to a population associated with small ribonucleoprotein (RNP) complexes (Figure 3, orange) 

at increased transfer efficiency, indicating a subtle RNA-induced compaction of HCVncd. The extent 

of compaction is so small for the three longest RNAs (i.e., RNA2, RNA3, and RNA4) that the FREE 

and RNP populations overlap substantially. Therefore, the RNA-induced redistribution of these two 

populations results in a single broadened peak that undergoes a small (ΔE ≈ 0.05) but significant shift 

(relative to our experimental precision of 0.01) to higher transfer efficiencies. A global analysis of the 

E histograms enables us to quantify the mean transfer efficiency of the RNP population, ERNP, as 
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well as its fractional abundance, fRNP, as a function of RNA concentration (see MATERIALS AND 

METHODS). Moreover, the transition from FREE to RNP can independently be monitored by an 

increase in the fluorescence anisotropy of labeled HCVncd, which results in transition midpoints that 

are in accordance with those found in the global analysis of the transfer efficiency histograms 

(Supplemental Figure 4). The agreement between these two methods provides additional support for 

the formation of a ribonucleoprotein complex at low concentrations of RNA.  

The RNA concentration dependence of fRNP (Figure 3c, orange) reveals that the midpoint of the 

transition to the RNP population, [RNA]RNP, occurs well below 1 M RNA for the three longest RNA 

sequences, whereas for the shortest sequence (RNA1), the RNP population is barely occupied. 

Furthermore, a comparison across the four titrations indicates that the lengths of the RNA constructs 

are correlated with their affinity to HCVncd (Figure 3c), but anti-correlated with the extent of 

compaction they impart on HCVncd in the RNP conformation (Figure 3b). Simply stated, longer RNAs 

interact more tightly with HCVncd than shorter ones, but give rise to less compaction. 

Since the dimensions of the RNP population of HCVncd are so similar to those associated with the 

FREE population, it is conceivable that this protein remains disordered when associated with the 

structured RNAs from the viral genome, resulting in a “fuzzy” [56,57] ribonucleoprotein complex.  To 

test this hypothesis, we employ the same single-molecule techniques used to characterize the 

conformational dynamics of the FREE population. For RNA 3, the FREE-to-RNP transition is well 

separated from the RNP-to-CAP transition, which allows us to work at an RNA concentration that 

saturates the formation of the RNP population but is insufficient for NLP formation (i.e., 2 M RNA3). 

A lifetime density plot (Figure 4a) for this data set reveals that the RNP population also rapidly 

samples a distribution of FRET efficiencies with a variance (2 = 0.1 ± 0.02) well-described by the 

distance distribution of a WLC, indicating that HCVncd samples a heterogeneous ensemble of 

conformations even when associated with RNA. Accordingly, nanosecond FCS experiments at the 

same RNA concentration (Figure 4b) reveal that HCVncd in the RNP population has a reconfiguration 

time of r = 44 ± 4 ns, within experimental uncertainty of the r = 47 ± 3 ns of the FREE population 

(Figure 2c). In summary, the dimensions of the FREE and RNP populations are remarkably similar, 

indicating that HCVncd remains unstructured when bound to nucleic acids. This finding support 

previous suggestions stating that “fuzziness” may be more common in nucleoproteins than previously 



 

12 
 

thought [58]. Furthermore, our nanosecond correlation experiments show that the reconfigurational 

dynamics of a disordered protein can remain exceedingly rapid and pronounced after RNA binding. 

Finally, we utilize fluorescence cross correlation spectroscopy (FCCS) to determine the 

translational diffusion times (d) of both the FREE and RNP populations of the FRET-labeled HCVncd, 

which report on the hydrodynamic radius and thus the overall dimensions of these species. An 

analysis of normalized donor-acceptor cross correlation functions, gDA() - 1, reveals that d for both 

populations are nearly identical (Figure 5a; FREE, green; RNP, orange), suggesting that the two have 

very similar hydrodynamic radii and therefore assemblies significantly larger than the dimer are 

unlikely to contribute to the RNP population. 

2.2.2 Formation of nucleocapsid-like particles at high concentrations of RNA. 

At RNA concentrations above 4 M, a third population begins to appear in the E histograms 

associated with the three shortest RNA constructs (i.e., RNA1, RNA2, RNA3). This population arises 

from individual HCVncd subunits within NLPs (i.e., capsomeres, designated as “CAP”) that adopt 

relatively extended conformations. The same analysis as above is used to determine ECAP and fCAP 

as a function of RNA concentration (see MATERIALS AND METHODS). The greatly decreased ECAP 

 0.35 indicates that the rdye-dye of HCVncd is about one nanometer larger in the CAP population than 

it is in the FREE or RNP populations and supports the notion that HCVcp undergoes a large  

conformational change during NLP assembly [59]. Additionally, the RNA-dependence of fCAP (Figure 

3c, purple) reveals that the extremely cooperative transition to this expanded population takes place 

over a very narrow range of concentrations. The increase in fCAP occurs simultaneously with a 

decrease in fRNP (Figure 3b and 3c), highlighting the existence of an RNA-dependent equilibrium 

between these two populations. 

Again, FCS can be used to gain additional information about the diffusivity of molecules in the CAP 

conformation. Although the inhomogeneous sample substantially lowers the data quality, it is evident 

that the HCVncd molecules from the CAP population are associated with large particles that diffuse 

50 times slower (Figure 5a) than either the RNP or FREE species. This observation is consistent 

with the notion that the CAP population is associated with large, slowly-diffusing NLPs comprised of 

hundreds of HCVncd capsomeres. Correspondingly, the bursts associated with the CAP conformation 

have higher photon count rates than those associated with the RNP population (Supplemental Figure 
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5), reflecting the presence of multiple FRET-labeled particles in each NLP. Note that the 30-fold 

excess of unlabeled HCVncd included in all experiments is sufficient to prevent intermolecular FRET 

between the many labeled HCVncd capsomeres within these NLPs. Although it would be desirable to 

quantitatively characterize the dimensions and dynamics of the CAP conformation using lifetime 

density plots and nsFCS, high fluorescence anisotropies  (> 0.3, Supplemental Figure 6) and the 

resulting dominance of the rotational contribution to the signal[60] severely complicate data analysis 

and interpretation, specifically regarding quantitative inter-dye distance correlations. 

Nevertheless, to gain some kinetic insight into the appearance of the CAP population and the 

formation of NLPs, we utilize mixing experiments wherein NLP formation is induced by adding RNA to 

the sample at a final concentration of 20 M. To accomplish this, we use RNA 1 because at these 

concentrations the CAP conformation is both well separated from the RNP population and nearly 

saturated.  Prior to the addition of RNA, the short 1 ms bursts associated with the FREE population 

of HCVncd give rise to a constant fluorescence signal with relatively small fluctuations when binned at 

1 s (Figure 5b, left). After addition of RNA, NLPs begin to form, giving rise to a decrease of the signal 

associated with the rapidly diffusing FREE and RNP species (Figure 5b, right) as they are 

incorporated into large slowly diffusing NLPs. This decrease is accompanied by an increase in the 

signal associated with slowly diffusing NLPs comprised of more extended HCVncd capsomeres.  

Importantly, the signal from the CAP population is no longer averaged out in the 1 s time bins, giving 

rise to large fluctuations (i.e., spikes) in the fluorescence signal on this timescale. A single-exponential 

fit to the decaying signal from the FREE and RNP populations suggests that the NLP assembly 

process achieves equilibrium with an apparent rate of k(CAP) = 0.59 ± 0.09 min-1 (Figure 5b, black 

line). 

Finally, a comparison of the RNA concentrations associated with the transition midpoints (i.e., 

[RNA]RNP and [RNA]CAP) suggests that the length and structure of the RNAs are important factors for 

efficient NLP assembly. For example, RNA1 (16 nt) is the shortest RNA and forms the least stable 

complex with HCVncd (i.e., [RNA]RNP = 11 ± 6 M), however, it is most effective at promoting NLP 

formation (i.e., [RNA]CAP = 0.9 ± 0.6 M);  because  [RNA]CAP ≪ [RNA]RNP the RNP population is never 

highly abundant . Conversely, RNA4 (99 nt) is the longest RNA and forms the most stable complex 

with HCVncd (i.e., [RNA]RNP = 0.030 ± 0.001 M), however, it is unable to form NLPs under any of the 

experimental conditions. It is tempting to propose that the different efficiencies for NLP assembly are 
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not solely the result of different RNA lengths, but also the result of a context-dependent presentation 

of the dimer linkage sequence (DLS). This idea is supported by the observation that RNA2 (26 nt), 

which presents the DLS as a hairpin primed for the formation of a homodimeric kissing complex, is 

more efficient at inducing NLP formation than RNA3 (27 nt), which incorporates most of the DLS 

within its stem. Given that NLP formation appears to depends on the context of the DLS, it is 

conceivable that there is a biochemical link between genome dimerization and nucleocapsid 

assembly, especially since HCVcp is known to effectively chaperone genome dimerization at the DLS 

[14,16]. Such a relationship between these two processes could explain how the 3`X-RNA is able to 

act as a molecular switch between biomolecular synthesis and viral assembly [49-51]. This would 

imply that nucleocapsid assembly cannot begin until the host has produced enough HCVcp and 

genome to effectively chaperone genome dimerization at the otherwise sequestered DLS of the 3`X-

RNA. Interestingly, genome dimerization and nucleocapsid assembly are also thought to be intimately 

related in many retroviral systems [61,62]. 

2.2.3 Global structure of nucleocapsid-like particles. 

To visualize the topological architecture of the large NLPs, single-molecule FRET samples were 

loaded onto negatively-charged transmission electron microscopy (TEM) grids, stained with uranyl 

acetate, and imaged at 180,000  magnification. Given that Flaviviridae virus particles are thought to 

have a triangulation number of T=3 [63], a properly formed nucleocapsid is likely to consist of 180 

HCVncd capsomeres. Because our single-molecule experiments only contain 3 nM HCVncd, one can 

estimate that the total concentration of NLPs is less than 20 pM. When a few L of these single-

molecule samples are loaded onto TEM grids, it is possible to identify some approximately spherical 

particles with dimensions that are consistent with the 20-50 nm diameters observed in previous 

experiments where tRNAs were used to promote NLP formation for a similar HCVcp sequence 

consisting of the first 82 amino acids [18]. However, due to the low surface density (resulting from the 

low initial HCVncd concentration) it was difficult quantify the dimensions of these NLPs. However, 

higher concentrations of both HCVncd and RNA (150 nM ulHCVncd; 150 M RNA1) give rise to TEM 

grids that are more densely covered with these NLPs (Figure 5C), with an average diameter of d = 

24  4 nm (n = 46). The relatively broad distribution of diameters observed in the TEM images is 

consistent with previous reports of NLPs lacking a host-derived lipid envelope [18] and may be 
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responsible for  heterogeneous translational diffusion observed in our FCCS analysis (Figure 5a, 

purple). Finally, it is worth noting that the slow diffusivity and low E of HCVncd molecules from the 

CAP population is mostly insensitive to the molar ratio of nucleic acid and protein,  = 

[RNA]/[HCVncd], indicating that the NLPs are not random polyelectrolyte complex coacervates [64] 

but contain a relatively well-defined amount and stoichiometry of the two components. 

2.3 A three-state pathway for NLP assembly 

The conformational plasticity of HCVncd during RNA-induced nucleocapsid-like particle (NLP) 

formation can be succinctly summarized by two coupled, RNA dependent, equilibria (Figure 6a). In 

the absence of RNA, the FREE population of HCVncd is an IDP that rapidly samples a broad 

ensemble of conformations. At RNA concentrations lower than 4 M, the interaction between this 

positively-charged protein and its viral RNAs give rise to the RNP population, where HCVncd 

compacts, yet remains disordered and dynamic. Increasing the RNA concentration further promotes a 

second, highly cooperative, transition to the CAP population. These HCVncd capsomeres appear 

when hundreds of molecules from the RNP population quickly assemble with free viral RNA hairpins. 

One important consequence of the intermediate RNP population is that the thermodynamic stability of 

the CAP population, and thus NLPs, depends on both the concentration and the molar ratio of RNA 

and HCVncd,  = [RNA]/[HCVncd]. This aspect of the model is most apparent when one increases  

by titrating RNA into samples containing 3 nM HCVncd. The abundance of the RNP conformation 

increases until   103, at which point increasing  further begins to favor the CAP population of 

HCVncd.  However, if one then decreases  by greatly increasing the concentration of HCVncd, the 

model predicts that the additional HCVncd molecules will interact with and sequester the excess free 

RNA, resulting in conditions where the concentration of free RNA is less than [RNA]CAP and NLP 

formation is no longer favorable. Indeed, this predicted behavior appears when comparing 

experiments performed at 20 M RNA2 with 3 nM (  6600) and 483 nM (  40) HCVncd. In 

particular, higher concentrations of unlabeled HCVncd shift the equilibrium from the CAP population 

back towards the more compact, high E, RNP population (Figure 6b). This result highlights that both 

the absolute concentrations of RNA and protein, and the corresponding molar ratios are important 

factors for the thermodynamic stability of the NLPs.  

3.0 CONCLUSION 
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Using advanced single-molecule spectroscopic techniques in combination with other biophysical 

methods, we have shown that the protein domain responsible for forming the HCV nucleocapsid 

(HCVncd) is a typical IDP that rapidly samples a broad ensemble of conformations. HCVncd can form 

a complex with small RNA structures from the HCV genome at concentrations below a few M, 

resulting in a slightly more compact, yet still very dynamic ensemble of disordered conformations. At 

higher RNA concentrations (e.g., 20 M), these ribonucleoprotein complexes assemble with additional 

RNA on the timescale of minutes, giving rise to a distribution of large, slowly diffusing, nucleocapsid-

like particles (NLPs), each of which contains many individual HCVncd capsomeres. Within the NLPs, 

the HCVncd capsomeres adopt relatively expanded conformations. These results highlight the 

conformational plasticity of HCVncd during the assembly of NLPs and yield a model for NLP assembly 

that consists of two coupled, RNA dependent, equilibria. Finally, various genomic RNA constructs 

from the 3 X-RNA of HCV differentially induce NLP formation, depending on the structural context of 

the dimer linkage sequence (DLS). If genome dimerization is indeed a prerequisite for nucleocapsid 

formation, then context dependent DLS-mediated dimerization may explain how the 3 X-RNA could 

act as molecular switch to turn off viral replication and induce particle assembly. 

4.0 MATERIAL AND METHODS 

4.1 Expression, labeling, and purification of HCVncd 

The PFAM [65] database was used to identify a suitable variant (GenBank: CAE46584.1 [21]) of the 

nucleocapsid domain of the hepatitis C virus core protein (HCVncd) that contains a minimal number of 

cysteine residues (which interfere with labelling) and aromatic residues (which can quench single-

molecule fluorophores). Four mutations were introduced into this sequence in order to produce a 

single-molecule FRET-viable HCVncd protein: S2C, T65C, C98M, and W134 (Supplemental Figure 

1). The corresponding gene was codon optimized for E.coli, cloned into a pET-47b(+) vector, and 

transfected into BL21 (DE3) cells. Recombinant expression was performed in accordance with 

existing protocols [13,22,42] with slight modifications. Briefly, cells were grown in 2 L of LB media for 

3 h at 37 C. Expression was induced with 0.5 mM isopropyl β-D-1-thiogalactopyranoside (IPTG), 

followed by an additional 3 h growth period at 37 C. Cells were pelleted, lysed, and homogenized in 

denaturing buffer containing 6 M guanidinium chloride (GdmCl). After the insoluble material was 

removed from the homogenate, His-tagged HCVncd was purified using denaturing immobilized metal 
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ion affinity chromatography (IMAC). The His-tag was enzymatically cleaved using recombinantly 

expressed 3C protease, at which point HCVncd was isolated from the His-tag and the protease via a 

second round of denaturing (6 M GdmCl) IMAC. Unlabeled HCVncd was further purified using a high 

performance liquid chromatography (HPLC) instrument (1100 Series, Agilent; Santa Clara, CA) and a 

reversed-phase column (Reprosil Gold 200 C18 5 m, Dr. Maisch HPLC GmbH; Ammerbuch-

Entringen, Germany) using a water/acetonitrile gradient containing 0.1% trifluoroacetic acid. The 

protein mass, and thus peptide sequence, was confirmed by electrospray ionization mass 

spectrometry (Functional Genomics Center, University of Zurich; Zurich, Switzerland). Purified 

HCVncd was buffer exchanged into 50 mM sodium phosphate pH 7.0 with 40 mM KCl and stored at -

20 C. After reduction with tris(2-carboxyethyl)phosphine (TCEP), HCVncd was allowed to reacted 

with 5 molar equivalents of both Alexa 488-maleimide (donor) and Alexa 594-maleimide (acceptor) 

under denaturing conditions (6 M GdmCl). The HPLC elution profiles confirmed that all of the protein 

was coupled to fluorophores. However, the similar retention times for the donor-donor, donor-

acceptor, acceptor-donor, and acceptor-acceptor species prevented complete separation of the 

FRET-labeled HCVncd populations (Supplemental Figure 2). However, residual populations of the 

differently labeled species can be useful for determining correction factors such as direct excitation, 

cross-talk, relative detection efficiencies, and other photophysical parameters like the intrinsic lifetime 

of the donor (D) and acceptor (A) fluorophores [66]. The FRET-labeled HCVncd was lyophilized and 

re-suspended to a final concentration of 10 nM in storage buffer (50 mM sodium phosphate buffer pH 

7.0, 10% v/v glycerol, 1 M GdmCl, and 0.1% Tween-20) before being split into 50 l aliquots and 

stored at -80 C until use. We note that our non-native IMAC and HPLC purification procedures do not 

affect HCVncp activity, as demonstrated by its ability to bind RNA [14-16] and form nucleocapsid-like 

particles [13,18], and as expected for IDPs in view of their flat and smooth free energy surfaces [67]. 

4.2 Circular Dichroism Spectroscopy 

Unlabeled HCVncd was brought to a final concentration of 1.4 M in a 50 mM sodium phosphate 

buffer (pH 7.0) containing 40 mM KCl and measured at room temperature on a spectropolarimeter (J-

810, Jasco; Oklahoma City, OK) in a cylindrical quartz cell with a 0.5 mm path length. Data were 

acquired by scanning the circularly polarized light from 185 nm to 250 nm over the course of 10 
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minutes; this process was repeated for a total of 8 hours. The resulting spectrum was analyzed using 

the DichroWeb online analysis tool [23].   

4.3 Single-Molecule Fluorescence Instrument 

Single-molecule fluorescence experiments were performed on modified version of a commercially-

available, inverted confocal microscope system (MicroTime 200, PicoQuant; Berlin, Germany) 

operated in an epifluorescence configuration. Briefly, a 1.2 NA 60 water immersion objective 

(UPLSAPO 60XW, Olympus; Tokyo, Japan) was used to focus the light from the excitation sources to 

a diffraction-limited spot. For direct excitation of the donor, a diode laser (LDH-D-C-485, PicoQuant; 

Berlin, Germany) was operated at either 488 nm in continuous wave mode or at 485 nm in pulsed 

mode (20 MHz with a pulse width < 550 ps). For direct excitation of the acceptor, the broadband 

output of a pulsed (20 MHz with a pulse width < 10 ps) super continuum laser (SC450-PP, Fianium; 

Southampton, United Kingdom) was filtered to  585 nm using a band pass filter (z582/15, Chroma; 

Bellows Falls, VT). The same objective collects the emitted fluorescence, which is directed through a 

100 m confocal pinhole via a dual band dichroic beam splitter (z485/568, Chroma; Bellows Falls, 

VT), before being separated first by polarization and then by color (585 DCXR, Chroma; Bellows 

Falls, VT), resulting in a total of four photon detection streams (i.e., horizontally and vertically 

polarized light for both donor and acceptor channels). Additionally, band pass filters were used to 

reject unwanted fluorescence from both the donor (ET525/50M, Chroma; Bellows Falls, VT) and 

accepter (HQ650/100, Chroma; Bellows Falls, VT) channels.  The arrival times of individual 

fluorescence photons detected by single-photon avalanche diodes (-SPAD fast, PicoQuant; Berlin, 

Germany) were recorded by a time-correlated single-photon counting module (HydraHarp 400, 

PicoQuant; Berlin, Germany) with 16 ps resolution prior to being saved for analysis using an in-house 

software package and Mathematica (version 10.4, Wolfram Research). All single-molecule 

measurements were conducted in phosphate-buffered saline containing 50 mM sodium phosphate 

buffer at pH 7.0, 80 mM NaCl (unless noted otherwise), 5 mM GdmCl (unless noted otherwise), 

0.01% w/v Tween 20, 143 mM -mercaptoethanol, and 3 nM unlabeled HCVncd. Despite being a mild 

detergent, Tween 20 has no detectable effect on the conformational dimensions or dynamics of 

HCVncd. It only serves to inhibit the absorption of proteins onto the surfaces of the sample cell, 

thereby enabling prolonged measurements. The focus was set 50 m into solution above a 
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Polyethylene glycol-coated quartz coverslip (PEG_02, Microsurfaces, Inc.; Englewood, NJ), which 

was used to minimize protein adsorption. 

4.4 Single-Molecule Fluorescence Time Traces 

Because the arrival time of each and every detected photon is recorded with 16-ps precision, the four 

photon steams can be binned with any desired choice of bin size, resulting in a fluorescence time 

trace that can be easily visualized. A convenient bin size for free diffusion experiments is 1 ms, which 

is large enough to encompass a single molecule diffusing through the detection volume without 

including either additional background fluorescence or neighboring bursts. A larger bin time of 1 s can 

be used to visualize slower dynamics (Figure 5b), like the translational diffusion of nucleocapsid-like 

particles (NLPs) or a change in the solution concentration of rapidly diffusing species (e.g., free and 

RNA-bound HCVncd). 

4.5 Single-Molecule Transfer Efficiency Histograms 

When using pulsed interleaved excitation [41] (PIE; 485 nm and 582/15 nm), individual bursts were 

identified by binning the record of photons at 1 ms and identifying bins with more than 75 photons 

(after correcting for background, differential excitation and detection efficiencies of the two dyes, cross 

talk, and direct excitation) resulting from either donor or acceptor direct excitation. Only bursts with a 

fluorescence stoichiometry [66] (S = signal after donor excitation/signal after both donor and acceptor 

excitation) between 0.3 and 0.7 were considered for analysis to prevent complications associated with 

the donor-donor and acceptor-acceptor species that were not fully removed during HPLC purification 

(Supplemental Figure 2). Multiple experimental parameters like fluorescence lifetime, fluorescence 

anisotropy, and ratiometric transfer efficiency (E) are calculated for each 1-ms burst, which are 

displayed as a histogram to show the frequency of bursts detected over a specific range of transfer 

efficiencies, for example. The mean transfer efficiency, E, of the single distributions were determined 

by fitting the histograms to a log-normal distribution. To convert the experimentally determined E into 

a reliable mean inter-dye distance, rdye-dye, one must ensure that: (1) the relative orientation of the 

two fluorophores is isotropic and, (2) the distribution of inter-dye distance, rdye-dye, is sampled on a 

timescale that is between the mean interphoton time ( 10 s) and the fluorescence lifetime of the 

donor ( 4 ns), both of which are valid in this case. As a result, E = ׬ dr
ஶ
଴ 	E(rdye-dye) P(rdye-dye) with 
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E(rdye-dye) = 1/(1+( rdye-dye/R0)6), where R0 = 5.4 nm is the Förster Radius for this donor-acceptor FRET 

pair. For this work we choose to use a worm-like chain [68] to describe the distribution of inter-dye 

distances, 
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2

݈ܿ
2ቈ1െ൬rdye-dye

݈ܿൗ
൰
2
቉

9
2ൗ
expቌെ 3݈ܿ

ቈ1െ൬rdye-dye݌4݈

݈ܿൗ
൰
2
቉
ቍ, 

where lp and lc are the persistence and contour length of the chain, and N is a normalization constant. 

For HCVncd, we assume lc = 274 Å, which corresponds to 3.8 Å per residue[69] plus an additional 

1.54 Å for each of the 10 bonds in the linkers connecting the dyes to the cysteine. 

Following the work of Hofmann et al. [28] and Aznauryan et al [42], we use the relationship rdye-dye
 

21/2 = r0N to calculate the scaling exponent for HCVncd, where the number of segments, N, contains 

63 amino acid segments plus an additional 9 segments to account for the linkers that attach the 

fluorophores to the protein. The prefactor, r0 = (2lpb)  6.0 angstroms, is determined using our 

experimentally determined persistence length, lp = 4.8 angstroms, and a peptide segment length of b 

= 3.8 angstroms, corresponding to the well-documented C- C distance of extended polypeptides 

This relationship give rise to a scaling exponent of   0.49, which is very near the value of ½ 

expected for a polymer under theta conditions.  

 To determine E and the fractional abundance (f) of each population as a function of a given 

experimental variable, E histograms were globally fit to a sum of three log-normal distribution 

corresponding to the FREE, RNP, and CAP conformations, where peak positions, widths, and 

asymmetries were shared parameters. The two coupled, RNA-dependent, equilibria (Figure 6a) are 

each assumed to be well described by simple cooperative binding models:  

   KFREE-RNP = 
[RNA]n1

	ሾRNAሿRNP
n1 and ܭRNP-CAP= 

[RNA]n2

 ሾRNAሿCAP
n2,    (1) 

where [RNA]RNP and [RNA]CAP are the RNA concentrations required to establish an equilibrium 

constant of one and n1 and n2 measure how strongly the equilibrium constant depends on the RNA 

concentration (i.e., 
߲	ln	KFREE-RNP 

߲	lnሾܴܰܣሿ
 and 

߲	ln ௄RNP-CAP

߲	ln ሾܴܰܣሿ
) [70]. The fractional abundance, f, of both states can 

be described in terms of these two equilibrium constants as a function of RNA concentration (Figure 

3c):  
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 fRNP =
KFREE-RNP 

ଵା	KFREE-RNP ାሺKFREE-RNP ௄RNP-CAPሻ	
 and fCAP = 

KFREE-RNP 	௄RNP-CAP

ଵା	KFREE-RNP ାሺKFREE-RNP ௄RNP-CAPሻ	
.  (2) 

Because of the shared parameters, both fRNP and fCAP are fit simultaneously. 

4.6 Lifetime vs E Density Plots (Photon Delay Time vs E)  

A burst identification procedure, similar to the one describe above, was used to identify bursts, except 

that a more stringent threshold of 100 photons per burst was used in order to better determine the 

mean excitation-emission delay time of donor, tD =	߬஽, and acceptor, tA = 	߬஺, photons within each 

burst. The donor lifetime in the absence of the acceptor (߬஽
଴ ) was determined by fitting the 

fluorescence decay histogram of the donor-only species (S > 0.9) to a convolution of the instrument 

response function and a single exponential decay. These values differed by less than 5 % from those 

obtained by fitting the tail of this histogram to a single exponential decay. The acceptor lifetime in the 

absence of the donor (߬஺
଴), was obtained using the same procedure to fit the acceptor-only species (S 

< 0.15) after direct excitation. The mean excitation-emission delay time for donor photons can be 

used to calculate the relative mean donor lifetime (i.e., ߬஽/߬஽
଴ ) of the FRET-labeled population (i.e., 

0.3 < S < 0.7). As previously shown[38,39], a similar quantity can be calculated using the mean 

excitation-emission delay time of acceptor photons (i.e., (߬஺- ߬஺
଴)/߬஽

଴  = ߬஽
஺/߬஽

଴ ). For systems with a 

single fixed FRET efficiency, these two quantities are equal and related to E via: 

     ߬஽/߬஽
଴  = ߬	஽

஺ /߬஽
଴  = 1-E,     (3) 

which corresponds to the diagonal black line in Figure 2c. When transfer efficiency fluctuations occur 

on a timescale between the donor fluorescence lifetime (4 ns) and the burst duration (1 ms), events 

will cluster above (߬஽/߬஽
଴  vs E) or below (߬஽

஺/߬஽
଴  vs E) this line (Figure 2c, blue and orange, 

respectively). Quantitatively, the vertical displacement from the diagonal line is related to the variance 

of the underlying FRET efficiency distribution, σ2, via 

   ߬஽/߬஽
଴  = (1- E) + 2/(1-E)    and    ߬஽

஺/߬஽
଴  = (1-E) -2/E.   (4) 

The curved lines above and below the diagonal of the lifetime density plots correspond to the 

expected behavior for a rapidly sampled rdye-dye distribution determined by a worm-like chain (WLC) 

with a fixed contour length and a variable persistence length (lp) used to modulate the mean inter-dye 

distance, rdye-dye, as a function of experimental conditions.    
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4.7 Single-Molecule FRET Fluorescence Cross Correlation Spectroscopy. 

The donor-acceptor cross correlation functions, g(), were generated using photon lag times () 

between 10-6 s and 101 s and analyzed using a model for three-dimensional diffusion through a 

Gaussian observation volume in order to determine the translational diffusion time [71]. For 

nanosecond FCS experiments, the donor excitation source was operated in continuous wave mode. 

Only photon lag times between 0 and 150 ns are included in the correlation analysis. The resulting 

correlation functions, g(), for the donor-donor, donor-acceptor, and acceptor-acceptor signal were 

globally fit with two common time constants: a negative-amplitude (anti-correlated) low-ns (< 10 ns) 

component (corresponding to the antibunching behavior of single emitters), and a slower (> 10 ns) 

component for protein chain dynamics that has a negative amplitude (anti-correlated) only for the 

donor-acceptor correlation. 

4.8 Transmission Electron Microscopy 

All transmission electron microscopy images were acquired at the Center for Microscopy and Image 

Analysis (University of Zurich; Zurich, Switzerland). Briefly, negatively charged TEM grids were 

inverted and placed, for a duration of three minutes, onto a 20 L drop of sample where experimental 

conditions favor NLP formation. Low particle density conditions were: 100 pM labeled HCVncd, 3 nM 

unlabeled HCVncd, 20 M RNA1, whereas for high particle density conditions were: 100 pM labeled 

HCVncd, 150 nM unlabeled HCVncd, 150 M RNA1. Then, the inverted TEM grids were placed on 

top of 20 L drops of water for three minutes to wash away any loosely bound material. Finally, the 

inverted TEM grids were placed on top of 20 L drop of 2% uranyl acetate for three minutes to 

enhance image contrast. TEM grids were imaged on a 100 kV microscope (TEM CM100, Phillips; 

Amsterdam, The Netherlands), and the associated digital images were acquired using a charge-

coupled device (Orius 1000, Gatan; Pleasanton, CA).    
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8.0 FIGURES AND FIGURE CAPTIONS 

 

 

Figure 1: Architecture of the hepatitis C virus. (a) Cross section of a cryo-electron microscopy-

based 3D reconstruction of a HCV-like particle (figure adapted from ref. [3]) colored to show the 

multilayer structural organization, which includes: (i) the outer shell (orange) made up of envelope 

proteins (E1/E2), (ii) the lipid envelope (blue), and (iii) the nucleocapsid (green). Of particular interest 

to this study is the hepatitis C virus core protein (HCVcp, green), which interacts with the genomic 

RNA to form a nucleocapsid. (b) Schematic representation of the positive-sense single-stranded RNA 

genome depicting relevant sequence elements associated with viral replication and assembly. 

Domain maps of (c) the viral polyprotein and (d) the HCVcp. (e) Amino acid sequence of core 

protein’s nucleocapsid domain (HCVncd), highlighting the positive (red) and negative (black) charges 

along the polypeptide. The blue and orange amino acids represent the location of the cysteine 

residues introduced for coupling of donor (Alexa 488) and acceptor (Alexa 594) fluorophores.   
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Figure 2: Intrinsic disorder within HCVncd. (a) Circular dichroism spectrum of HCVncd in non-

denaturing buffer (green line). The inset shows a backbone representation of HCVncd colored 

according to Figure 1e. (b) Transfer efficiency (E) histograms for single HCVncd molecules in buffered 

solutions with increasing (green  blue  orange) concentrations of guanidinium chloride (GdmCl); 

higher concentrations shift E to lower values. (c) Two-dimensional lifetime density plots of 

߬஽/߬஽
଴ 	(blue) or ߬஽

஺/߬஽
଴ 	(orange) photons (see MATERIALS AND METHODS for details). The solid 

black line indicates the expected dependence for a single fixed FRET efficiency; blue (߬஽/߬஽
଴ ) and 

orange (߬஽
஺/߬஽

଴ ) lines correspond to the expected dependence for a worm-like chain (WLC) that rapidly 

samples its distance distribution; black points correspond to the average values obtained by 

combining all bursts. (d) Plot of rdye-dye vs salt concentration for both GdmCl (blue) and NaCl (red) 

highlighting the corresponding changes in dimensions. The addition of NaCl minimizes electrostatic 

repulsion, allowing HCVncd to sample more compact conformations. The addition of GdmCl leads to 

an expansion of the peptide chain that outcompetes the compaction driven by charge screening. (e) 

Donor-donor (g()DD, blue), donor-acceptor (g()DA, grey) and acceptor-acceptor (g()AA, orange) 

nanosecond cross correlation functions from diffusing FRET-labeled HCVncd molecules in non-

denaturing buffer. A global fit (black lines) to all three correlation functions using a common decay 

time shows that a reconfiguration time of r = 47  3 ns can describe the correlated components of 

g()DD and g()AA, as well as the corresponding anti-correlated component of g()DA. The sharp 

decrease in g() at inter-photon times () approaching 0 ns results from the characteristic anti-

bunching behavior of single emitters.  
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Figure 3: Interactions between HCVncd and segments of the 3 X-RNA. (a) Secondary structure 

diagrams of the four RNA sequences from the viral genome (Figure 1b) used to induce nucleocapsid 

formation. Dashed lines correspond to regions of the 3 X-RNA that were excised in each of the four 

nucleic acids; the cyan line represents the dimer linkage sequence (DLS). Insets show the predicted 

secondary structure [72] for each of the three truncated sequences. (b) Example E histograms of 

HCVncd at RNA concentrations ranging from 0 to 20 M. At concentrations below 4 M, the FREE 

population (green) binds to RNA, resulting in the more compact RNP population (orange). At higher 

RNA concentrations, this ribonucleoprotein intermediate begins to form nucleocapsid-like particles, 

wherein the individual HCVncd capsomeres sample an expanded, low E, CAP population (purple). 

All E histograms within a single RNA titration series are globally fit to a sum of three log-normal 

functions, i.e. using shared peak parameters. (c) Fits are used to determine the fractional abundance, 

f, of each population as a function of RNA concentration. Solid lines represent fits to cooperative 

binding functions (see MATERIALS AND METHODS).  
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Figure 4: Conformational dynamics of the RNP population. (a) Lifetime density plot for FRET-

labeled HCVncd molecules in the presence of 2 M RNA3 where the RNP population is most 

abundant. Colors and lines are the same as in Figure 2c. (b) Nanosecond FCS cross correlation 

functions. The donor-donor (g()DD, blue), donor-acceptor (g()DA, grey) and acceptor-acceptor (g()AA, 

orange) correlations are globally fit (black lines) to measure the correlated component of g()DD and 

g()AA, as well as the anti-correlated component of g()DA. This analysis reveals a reconfiguration time 

of r = 44 ± 4 ns associated with rdye-dye fluctuations. 
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Figure 5: RNA-induced nucleocapsid-like particle formation of HCVncd. (a) Normalized donor-

acceptor cross correlation functions, gDA() - 1, showing the translational diffusion of FRET-labeled 

HCVncd at conditions where the FREE (green), RNP (orange), and CAP (purple) populations 

dominate. (b) Confocal fluorescence recordings of diffusing HCVncd molecules before (left) and after 

(right) addition of 20 M RNA1. Prior to the addition of RNA, the 1 ms bursts associated with the 

FREE population of HCVncd are averaged out in each of the 1 s time bins. After addition of RNA, 

NLPs begin to form, resulting in a decrease in the signal associated with the FREE and RNP species 

and a concurrent increase in the abundance of large spikes of fluoresce associated with the CAP 

population of HCVncd. Importantly, these spikes have much higher photon count rates than the bursts 

associated with the FREE and RNP populations and are no longer averaged out in the 1 s time bins. 

The accumulation of the CAP population takes place with an apparent rate constant of k(CAP) = 0.59 

± 0.09 min-1. (c) Transmission electron microscopy images of NLPs formed using FRET-labeled and 

unlabeled HCVncd and RNA1. Images were taken at 180,000  magnification; scale bar is 50 nm. 
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Figure 6: Model for nucleocapsid-like particle assembly. (a) The FREE population of HCVncd is 

comprised of IDPs that rapidly sample a broad distribution of FRET efficiencies, which can be well 

described by an unstructured chain. This conformational ensemble interacts with genomic RNAs at 

concentrations below a few micromolar, resulting in the more compact yet still dynamic and 

disordered, RNP population of HCVncd. Higher RNA concentrations promote a second, much more 

abrupt, conformational transition wherein the ribonucleoprotein complexes from the RNP population 

assemble with free RNA to form large nucleocapsid-like particles (NLPs). These NLPs contain many 

individual HCVncd capsomeres, which have a much larger rdye-dye. (b) E histograms at various molar 

ratios of RNA to protein (i.e.,  = [RNA]/[HCVncd]). Increasing  first populates the RNP population 

and then the CAP population. However, increasing the concentration of unlabeled HCVncd, thus 

decreasing , shifts the equilibrium back towards the higher E population associated with the RNP 

population. 
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10.0 SUPPLEMENTAL DATA 

 

 

Supplemental Figure 1: Choice of the hepatitis C virus nucleocapsid domain (HCVncd) variant. 

(top) Multiple sequence alignment for five representative sequences from the HCVncd family 

(PF01543) in the Pfam database [65]. Asterisks (*) indicate complete conservation across all five 

seed sequences. The sequence Q70GD2 was used in this study because it contains the fewest 

number of tryptophan residues, which can cause quenching of the FRET dyes and interfere with the 

quantitative analysis of transfer efficiencies and protein dynamics [73]; red font indicates positively 

charged residues, black font indicates negatively charged residues, blue and orange font indicate the 

location of the cysteine mutations used for labeling. The sequence separation of the dyes was chosen 

in order to achieve a mean inter-dye distance, rdye-dye, that is similar to the Förster radius of this 

FRET pair, R0 = 54 Å. As a result, we are able to work in a regime where FRET is most sensitive to 

distance changes. (bottom) Predicted disorder using the PONDR [74] (Predictor of Natural Disordered 

Regions) predictor VLS2.  
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Supplemental Figure 2: Homogeneity of FRET-labeled sample assessed by pulsed interleaved 

excitation. Each data point in the transfer efficiency vs. stoichiometry plot represents a 1-ms burst 

event associated with a freely diffusing HCVncd. A projection of the data onto the stoichiometry axis 

(right) reveals that most bursts arise from FRET-labeled HCVncd molecules containing active donor 

and acceptor fluorophores. The mean transfer efficiency, E, associated with these molecules is 

obtained by fitting a histogram of transfer efficiencies from all bursts with a stoichiometry value 

between 0.3 and 0.7 to a log-normal function (top).   
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Supplemental Figure 3: Salt concentration has a small effect on the dimensions of HCVncd. (a) 

E histograms for HCVncd at increasing concentrations of NaCl in the presence of 5 mM GdmCl and 

50 mM sodium phosphate, pH 7.0. 
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Supplemental Figure 4: Transition from FREE to RNP probed by subpopulation-specific 

fluorescence anisotropy. (a) Secondary structure diagrams of the four RNA sequences from the 

viral genome (Figure 1b) used to induce nucleocapsid formation. Dashed lines correspond to regions 

of the 3 X-RNA that were excised in each of the four nucleic acids; the cyan line represents the dimer 

linkage sequence (DLS). Insets show the predicted secondary structure [72] for each of the three 

truncated sequences. (b) The acceptor fluorescence anisotropy was determined for all bursts within 

the shaded region to monitor the transition from the FREE conformation to the RNP conformation. (c) 

RNA binding results in HCVncd molecules with higher acceptor fluorescence anisotropy. Fits are used 

to determine the transition midpoint, [RNA]RNP, associated with RNA binding. Solid lines represent fits 

to a cooperative binding model. Importantly, the transition midpoints are consistent with the values 

determined using the transfer efficiency data (Figure 3). 
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Supplemental Figure 5: The bright fluorescence bursts of the CAP population of HCVncd. 

Photon count rate probability density histogram, for thousands of 1 ms bursts containing more than 75 

photons after donor excitation when accounting for the experimental correction factors (see 

MATERIALS AND METHODS). In the absence of RNA (i.e., the FREE population, green), nearly all 

bursts contain 75 - 300 photons. In the presence of 20 M RNA1 (i.e., the CAP population, purple), 

bursts are substantially more likely to contains more than 300 photons. These additional photons are 

probably the result of multiple (5-10) FRET-labeled capsomeres in each freely diffusing NLP, which 

contain 100s of individual HCVncd capsomeres. 
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Supplemental Figure 6: Subpopulation-specific fluorescence anisotropy of HCVncd in different 

conformations. Acceptor anisotropy vs E at 5 M RNA3, where both the CAP and RNP populations 

are present. The large anisotropy (0.33) associated with the CAP conformation indicates 

orientational restriction of the dyes in the large, slowly tumbling nucleocapsid-like particles comprised 

of FRET-labeled HCVncd capsomeres. In the RNP population, the average anisotropy is 0.18, 

indicating that the fluorophores have more orientational freedom. 

 


