

Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch

Year: 2018

Comparison of the pharmacodynamics of protamine zinc insulin and insulin degludec and validation of the continuous glucose monitoring system iPro2 in healthy cats

Salesov, Elena; Zini, Eric; Riederer, A; Lutz, Thomas A; Reusch, Claudia E

Abstract: With the aim to improve current therapeutic and monitoring options for diabetic cats, the present study compared pharmacodynamic parameters of protamine zinc insulin (PZI) and insulin degludec and validated the continuous glucose monitoring system (CGMS) iPro2 with Sof-sensor and Enlite-sensor focusing on the low glycemic range. Three doses (0.1, 0.2 and 0.3 IU/kg) of the two insulin preparations and the CGMS iPro2 with two different sensors were tested in six healthy cats. After each insulin administration, onset of action, time to glucose nadir and duration of action were calculated by measuring glucose concentrations with a portable blood glucose meter (PBGM). After sensor placement, paired PBGM and sensor glucose measurements were done and analytical and clinical accuracy were calculated according to the ISO 15197:2013 criteria. Onset of action, time to glucose nadir and glucose nadir were similar for both insulin formulations. Duration of action of insulin degludec was significantly longer than those of PZI at 0.1IU/kg (P=0.043) and 0.2IU/kg (P=0.043). Overall, 166/191 (87%) Sof-sensor measurements and 106/121 (88%) Enlite-sensor measurements met ISO criteria for analytical accuracy, and all sensor measurements fulfilled ISO criteria for clinical accuracy. Insulin degludec was well tolerated in healthy cats and showed longer duration of action than PZI. Further studies on the use of insulin degludec in diabetic cats might be recommended. Both sensors had good clinical accuracy, when used with the CGMS iPro2, but the analytical accuracy was below the minimum set by ISO 15197:2013.

DOI: https://doi.org/10.1016/j.rvsc.2018.01.019

Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-149511 Journal Article Accepted Version

The following work is licensed under a Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) License.

Originally published at:

Salesov, Elena; Zini, Eric; Riederer, A; Lutz, Thomas A; Reusch, Claudia E (2018). Comparison of the pharmacodynamics of protamine zinc insulin and insulin degludec and validation of the continuous glucose monitoring system iPro2 in healthy cats. Research in Veterinary Science, 118:79-85. DOI: https://doi.org/10.1016/j.rvsc.2018.01.019

1	Comparison of the pharmacodynamics of protamine zinc insulin and
2	insulin degludec and validation of the continuous glucose monitoring
3	system iPro2 in healthy cats
4	
5	Elena Salesov ¹ , Eric Zini ¹ , Angelina Riederer ¹ , Thomas A Lutz ² , Claudia E
6	Reusch ¹
7	
8	¹ Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University
9	of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
10	² Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich,
11	Winterthurerstrasse 260, 8057 Zurich, Switzerland
12	
13	
14	Corresponding author:
15	Elena Salesov, DVM
16	Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of
17	Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; E-mail:
18	esalesov@vetclinics.uzh.ch

19 Abstract

20	With the aim to improve current therapeutic and monitoring options for
21	diabetic cats, the present study compared pharmacodynamic parameters of
22	protamine zinc insulin (PZI) and insulin degludec and validated the
23	continuous glucose monitoring system (CGMS) iPro2 with Sof-sensor and
24	Enlite-sensor focusing on the low glycemic range.
25	Three doses (0.1, 0.2 and 0.3 IU/kg) of the two insulin preparations and the
26	CGMS iPro2 with two different sensors were tested in six healthy cats.
27	After each insulin administration, onset of action, time to glucose nadir and
28	duration of action were calculated by measuring glucose concentrations
29	with a portable blood glucose meter (PBGM). After sensor placement,
30	paired PBGM and sensor glucose measurements were done and analytical
31	and clinical accuracy were calculated according to the ISO 15197:2013
32	criteria.
33	Onset of action, time to glucose nadir and glucose nadir were similar for
34	both insulin formulations. Duration of action of insulin degludec was
35	significantly longer than those of PZI at 0.1 IU/kg ($P = 0.043$) and 0.2 IU/kg
36	(P = 0.043). Overall, 166/191 (87%) Sof-sensor measurements and 106/121
37	(88%) Enlite-sensor measurements met ISO criteria for analytical accuracy,
38	and all sensor measurements fulfilled ISO criteria for clinical accuracy.
39	Insulin degludec was well tolerated in healthy cats and showed longer
40	duration of action than PZI. Further studies on the use of insulin degludec in
41	diabetic cats might be recommended. Both sensors had good clinical

- 42 accuracy, when used with the CGMS iPro2, but the analytical accuracy was
- 43 below the minimum set by ISO 15197:2013.

44

45 Keywords

- 46 Protamine zinc insulin; insulin degludec; iPro2; Sof-sensor; Enlite-sensor;
- 47 continuous glucose monitoring system
- 48

49 Abbreviations

- 50CGMScontinuous glucose monitoring system51DMdiabetes mellitus52ISOinternational organization for standardization53PBGMportable blood glucose meter
- 54 PZI protamine zinc insulin

1. Introduction

56	Insulin is the cornerstone of treatment of cats with diabetes mellitus (DM).
57	Duration of insulin action was reported to be the most important factor, that
58	influences choice of insulin (Smith et al., 2012). A protamine zinc
59	preparation (PZI) for use in cats recently became available on the European
60	market. It is an intermediate to long-acting recombinant human insulin that
61	has been shown to be effective in diabetic cats (Nelson et al., 2009;
62	Norsworthy et al., 2009; Ward et al., 2015), but information about its
63	pharmacodynamics in cats is scarce. Insulin degludec is a new ultra-long
64	acting human insulin analogue. The formulation with a concentration of 100
65	IU/mL is available on the market and could be used in diabetic cats.
66	Compared with insulin glargine, insulin degludec has a predictable and
67	stable glucose-lowering effect with fewer episodes of hypoglycemia in
68	human patients with type 1 or type 2 DM (Birkeland et al., 2011; Heller et
69	al., 2012; Rodbard et al., 2013). Moreover, when given three times a week,
70	insulin degludec provides glycemic control comparable to once-daily
71	treatment with insulin glargine (Zinman et al., 2011). To our knowledge,
72	there are no reports of the glucose-lowering effects of insulin degludec in
73	cats.
74	The generation of glucose curves is commonly used by veterinarians to
75	evaluate feline diabetic control (Smith et al., 2012). It helps in the
76	identification of hypoglycemia, and supports the decisions on treatment
77	adjustments. However, glucose curves have some limitations, even if the
78	glucose measurements are obtained in the cat's home environment. They do

not provide continuous information about blood glucose concentrations, or the glucose nadir and the glucose peak could be missed. In addition, the duration of action of the insulin cannot be determined if home monitoring is limited to a short period of time (i.e., <12 h). Another important limitation is that not all owners are able to collect blood from their cats and generate blood glucose curves.

85 Real-time continuous glucose monitoring systems (CGMS) continuously 86 measure the glucose concentration in the subcutaneous fat via a sensor 87 containing glucose oxidase and immediately display recorded values on a 88 monitor. These systems are considered useful for monitoring cats with DM 89 (Ristic et al., 2005; Moretti et al., 2010; Dietiker-Moretti et al., 2011; Gough 90 et. al., 2013; Hafner et al., 2013; Surman and Fleeman, 2013). However, 91 CGMSs are not suitable for home-monitoring because the maximum 92 distance between the cat and monitor should be only a few meters (Dietiker-93 Moretti et al., 2011; Hafner et al., 2013). The CGMS iPro2 was designed to 94 measure and record glucose values in humans for up to 7 days without 95 displaying the data on a monitor; instead, at the end of the monitoring 96 period, the data are uploaded on a computer and evaluated retrospectively. 97 Because the iPro2 does not involve a monitor, it may be suitable for use in 98 diabetic cats in their home environment. Two different sensor types are 99 available, the enhanced Enlite-sensor and the Sof-sensor; the former is 100 shorter, more flexible and more accurate than the latter (Siegmund et al., 101 2011). In human patients, the Enlite-sensor tends to measure glucose levels 102 lower than the reference over the entire glucose range, whereas the Sof103 sensor measurements tend to be higher than reference values in the

- 104 hypoglycemic range and lower than reference values in the hyperglycemic
- 105 range (Calhoun et al., 2013). The use of the CGMS iPro2 and its reliability
- 106 using these two sensors have not been described in cats.
- 107 The aims of the study were to compare pharmacodynamic parameters of
- 108 PZI and insulin degludec in cats, including onset of action, time to glucose
- 109 nadir, glucose nadir and duration of action. Furthermore, ease of use,
- 110 tolerability, side effects, reliability, and the accuracy of CGMS iPro2 using
- 111 the two different sensors were evaluated. Particular attention was paid to the
- 112 accuracy of the iPro2 in the low glycemic range, because reliability of
- 113 measurements is crucial in hypoglycemic cats.

114 **2. Materials and Methods**

115 2.1 Animals

- 116 Six healthy purpose-bred, neutered male, domestic shorthair cats were used.
- 117 The median age was 3.7 years (range 3.4-3.7) and median body weight was
- 118 5.0 kg (range 4.7-5.9). All cats had body condition score of 5 on a 9-poin
- scale. They were housed in groups of two, and were fed a commercial dry
- 120 food for adult cats twice daily. Food intake was adjusted to maintain a stable
- body weight. During the 24 h before and after insulin administration, the
- 122 cats were individually kept in cages routinely used for hospitalized animals.
- 123 Food was withheld for 10 h before and 24 h after insulin injection. Cats had
- 124 free access to water. The study protocol was approved by the veterinary
- 125 office of the canton Zurich (permission number: 110/2014).
- 126

127 **2.2 Evaluation of two insulin preparations**

128 PZI 40 IU/mL (ProZinc, Boehringer Ingelheim, Basel, Switzerland) and

129 insulin degludec 100 IU/mL (Tresiba, Novo Nordisk Pharma, Küsnacht ZH,

130 Switzerland) were tested in a randomized crossover trial. Each cat received

131 0.1, 0.2 and 0.3 IU/kg of PZI and insulin degludec SC, respectively, two

132 weeks apart. Insulin syringes with 0.5 IU markings (Omnican 20, U-40

133 insulin, BBraun, Melsungen, Germany; BD MicroFine 0.3 ml, U-100

134 insulin, BD Medical, Le Pont de Claix, France) were used. The dose was

- rounded up to the nearest half unit. Capillary blood glucose was measured at
- the inner pinna of an ear with a portable blood glucose meter (PBGM)

137 AlphaTRAK2 (Abbott Animal Health, Baar, Switzerland) 30 and 5 minutes

138 before and 30, 60, 90, 120, 180, 240, 300 and 360 minutes after insulin 139 injection and then every 2 h for another 18 h. Biochemical hypoglycemia 140 was defined as blood glucose <3.6 mmol/L. 141 If hypoglycemia caused vocalization, vomiting, tremors, or seizures, cats 142 received canned food with glucose syrup (Jubin®, Andreas Jubin Pharma, 143 Bochum, Germany), or 50% glucose solution (0.5-1 mL/kg) was infused 144 intravenously. Hypoglycemia was not corrected, if only reduced physical 145 activity was observed. 146 Onset of insulin action, time to glucose nadir, and duration of insulin action 147 were calculated as described by Clark et al. (2012). The onset of insulin 148 action was defined as the interval between insulin administration and the 149 first glucose concentration that was at least 2 standard deviations lower than 150 baseline. The time to glucose nadir was defined as the interval between 151 insulin administration and the lowest measured glucose concentration. The 152 duration of insulin action was defined as the interval between the onset and 153 the end of insulin action, when measured glucose concentrations had 154 returned to within 2 standard deviations of baseline. The glucose data were 155 withdrawn from the calculation, if the insulin tests were terminated 156 (feeding, infusion of glucose solution), or if the onset of action could not be 157 achieved. 158

159 **2.3 Technical features of the CGMS iPro2 and the two sensors**

160 The CGMS iPro2 (Medtronic, Münchenbuchsee, Switzerland) consists of a

161 digital recorder (Fig.1a) and a disposable sensor. The Sof-sensor

9

162	(Medtronic, Münchenbuchsee, Switzerland) is 14.7 mm long and has a
163	volume of 3.6 mm^3 (Fig. 1b). It is inserted through the skin into the
164	subcutaneous fat by means of a 17 mm 22 G needle at an angle of $45-60^{\circ}$
165	and is fully hydrated within 10-15 minutes after positioning. The enhanced
166	Enlite-sensor (Medtronic, Münchenbuchsee, Switzerland) is 9.6 mm long
167	and has a volume of 0.2 mm ³ (Fig.1c). It is inserted by means of a 10.5 mm
168	27 G needle at a 90° angle and is fully hydrated within 5 minutes after
169	positioning. Both sensors measure the interstitial glucose concentration in
170	the subcutaneous fat via an electrode that contains glucose oxidase (Hafner
171	et al., 2013). The iPro2 measures glucose concentrations between 2.2 and 22
172	mmol/L every 5 minutes for up to 7 days. Data analysis is done using the
173	CareLink iPro software (Medtronic, Münchenbuchsee, Switzerland).
174	

174

175 **2.4 Evaluation of CGMS with two sensors**

176 The cats were alternately implanted with a Sof-sensor or an Enlite-sensor 24 177 h before the insulin injection. The insertion and removal of the sensors were 178 performed without sedation. Each sensor was placed in the subcutaneous 179 tissue of the neck area on the right side and secured with cyanoacrylate 180 adhesive (Cyanolit universal classic, 3M Consumer Healthcare, Rüschlikon, Switzerland) as described previously (Hafner et al., 2013). The recorder was 181 182 connected to the sensor, initialized and then secured using a 3×7 cm piece of 183 adhesive tape (Fig.1d). The video in the E-book chapter (Rand and Gottlieb, 184 2017) contains detailed information about placement of the glucose sensor 185 and iPro2-recorder. Calibrations were achieved by measuring capillary

blood glucose concentrations 1 and 3 h after insertion of the sensor and then
every 8-12 h. Blood glucose concentrations were determined by use of the
PBGM AlphaTRAK2 previously evaluated for use in diabetic cats
(Cohenen et al., 2009; Zini et al., 2009). Each cat carried the sensor and the
recorder on it for seven days. Thereafter, they were gently removed from the
skin, and the glucose curve was downloaded. Ease of use of the sensors,
tolerability, reliability of the measurements and side effects were recorded.

194 **2.5 Statistical analysis**

195 Results are reported as median and range or as percentage, as appropriate. 196 Differences in pharmacodynamic parameters (onset of insulin action, time 197 to glucose nadir, glucose nadir and duration of insulin action) between the 198 same doses of two insulin preparations were analyzed using the Wilcoxon 199 matched pairs signet rank test. The Friedman test was used to compare three 200 different doses of one insulin formulation. Analytical and clinical accuracy 201 of the sensors was calculated conforming to the international organization 202 for standardization (ISO) 15197:2013 using Bland and Altman diagrams 203 and consensus error grid coordinates, respectively (Bland and Altman, 204 1986; Clarke et al., 1987). Accordingly, to be considered accurate, at least 205 95% of glucose readings had to fall within \pm 0.83 mmol/L of those 206 measured with the reference method for concentrations <5.5 mmol/L or 207 within $\pm 15\%$ for concentrations ≥ 5.5 mmol/L, and at least 99% of readings 208 had to be in zones A and B of the consensus error grid. To address the 209 clinical importance of hypoglycemia, glucose curves with concentrations

- 210 predominantly <3.6 mmol/L were chosen for analysis. Paired glucose
- 211 readings from the PBGM and the two sensors were divided into a group
- with PBGM readings < 5.5 mmol/L and a group with PBGM readings \geq 5.5
- 213 mmol/L. Additionally, Spearman correlation coefficients (rho) were
- 214 calculated for paired glucose readings. Differences were considered
- significant at P<0.05. A commercial software (GraphPad PRISM 6,
- 216 GraphPad Software, La Jolla, USA) was used for analysis.

3. Results

3.1 Evaluation of PZI and insulin degludec

219	Protamine zinc insulin and insulin degludec were well tolerated by all cats
220	and there were no injection site reactions. If the glucose lowering effect
221	could be achieved, all three doses of both insulin formulations caused
222	transient mild weakness, that was associated with biochemical
223	hypoglycemia and resolved without treatment within 1-3 h in all cats. The
224	onset of insulin action could not be achieved in three different cats treated
225	with 0.1 IU/kg of PZI (one cat), 0.1 IU/kg of insulin degludec (one cat), and
226	0.2 IU/kg of PZI (one cat). At the highest dose (0.3 IU/kg), PZI caused
227	hypoglycemia, and vomiting in 3/6 (50%) cats; one of these cats had the
228	same reaction after 0.3 IU/kg of insulin degludec. The hypoglycemia was
229	corrected by feeding in three cats, and the glucose data were withdrawn
230	from the calculation. One cat treated with 0.3 IU/kg of PZI quickly
231	recovered without any interventions.
232	Medians and ranges of pharmacodynamic parameters of both insulin
233	formulations are shown in Table 1. Blood glucose curves are presented in
234	Fig. 2 (a-f). Equal doses of PZI and insulin degludec did not differ with
235	respect to glucose nadir, onset of action, and time to glucose nadir. Median
236	duration of action was significantly shorter for 0.1 IU/kg of PZI (7 h; range
237	1.5-7) than for 0.1 IU/kg of insulin degludec (11 h; range 9-22.5) (P =0.043)
238	and for 0.2 IU/kg of PZI (6.8 h; range 4.5-10.5) than for 0.2 IU/kg of insulin
239	degludec (12.5 h; range 8.0-20.0) (P=0.043). However, there were no

240 significant differences in the duration of action between two insulin

formulations at 0.3 IU/kg.

242 The duration of action of PZI never reached 12 h, while that of insulin

- 243 degludec was ≥ 12 h in two cats with 0.1 IU/kg and in three cats with 0.2 and
- 244 0.3 IU/kg (data not shown). Glucose nadir, onset of insulin action, time to

245 glucose nadir, and duration of insulin action of PZI and insulin degludec

246 were similar between different doses of each insulin formulations.

247

248 **3.2 Evaluation of CGMS with the Sof-sensor and Enlite-sensor**

249 The use of a total of 36 sensors (18 Sof and 18 Enlite) was scheduled.

However, we used 48 sensors (24 Sof and 24 Enlite), because some sensors

had to be replaced. Twenty of twenty-four (83%) Sof-sensors and 17/24

252 (71%) Enlite-sensors were properly placed and initialized. The remaining 11

sensors failed because of faulty manufacturing (1 Sof and 2 Enlite) or lack

254 of initialization (3 Sof and 4 Enlite). One Enlite-sensor was bent during

insertion. Both sensor types were easy to place and well tolerated by all

256 cats. Abnormal behavior related to the sensors did not occur. All cats had

257 mild local erythema after sensor removal, which resolved spontaneously

within 12-24 h. One cat had a small dry scratch wound in the skin at the

259 caudal border of the Sof-sensor and another cat had a similar wound at the

260 caudal border of the Enlite-sensor. Both healed without treatment within 7-

261 10 days after sensor removal.

262 Glucose concentrations were recorded by all 20 properly placed and

263 initialized Sof-sensors and by 13/17 (76%) Enlite-sensors. Four (24%)

264	Enlite-sensors failed to record glucose concentration, because the recorder
265	malfunctioned (two cats), the cat removed the sensor 1 h after insertion or
266	for unknown reasons (one cat). Seventeen of the twenty (85%) functioning
267	Sof-sensors and 6/13 (46%) functioning Enlite-sensors recorded the glucose
268	concentration during the entire 7-day study period. The remaining 3/20
269	(15%) functioning Sof-sensors and 3/13 (23%) Enlite-sensors recorded
270	glucose concentrations during at least 50% of the study period. The four
271	(31%) other functioning Enlite-sensors recorded glucose concentration
272	during <50% of the study period.
273	Uninterrupted recording of glucose concentrations occurred in 8/20 (40%)
274	functioning Sof-sensors and in 8/13 (66%) functioning Enlite-sensors.
275	Overall, there were 27 and 23 interruptions with the Sof-sensor and the
276	Enlite-sensor, respectively. Twenty-three of the twenty-seven (85%)
277	interruptions that occurred with the Sof-sensor and 16/23 (70%) that
278	occurred with the Enlite-sensor lasted <1 h. The remaining four (15%)
279	interruptions with the Sof-sensor and seven (30%) with the Enlite-sensor
280	lasted between 1 and 24 h.
281	A total of 191 paired PBGM-Sof-sensor and 121 paired PBGM-Enlite-
282	sensor glucose measurements were analyzed. One hundred and seventy-
283	seven of one hundred and ninety-one (93%) Sof-sensor measurements and
284	113/121 (93%) Enlite-sensor measurements were between 2.2 and 5.5
285	mmol/L. The remaining measurements were equal to 5.5 mmol/L or in the
286	range between 5.5 and 22 mmol/L. The differences between glucose
287	measurements from the PBGM and the two CGMS iPro2 sensors are shown

288	in Fig. 3. Considering the paired glucose measurements <5.5 mmol/L,
289	160/177 (90%) Sof-sensor measurements and 102/113 (90%) Enlite-sensor
290	measurements were within \pm 0.83 mmol/L of the reference method and met
291	the ISO accuracy criteria. Of the paired glucose readings ≥ 5.5 mmol/L, 6/14
292	(43%) of Sof-sensor measurements and 4/8 (50%) Enlite-sensor
293	measurements were within \pm 15% of the reference method and met the ISO
294	accuracy criteria. Overall, 166/191 (87%) Sof-sensor measurements and
295	106/121 (88%) Enlite-sensor measurements met the ISO criteria for
296	analytical accuracy. All glucose concentrations measured with both sensors
297	were in zone A or B of the consensus error grid coordinates and met the ISO
298	criteria for clinical accuracy (Fig. 4). There were moderate positive
299	correlations between paired measurements from the PBGM and the Sof-
300	sensor (rho=0.67, P<0.0001) and between paired measurements from the
301	PBGM and the Enlite-sensor (rho=0.69, P<0.0001).

4. Discussion

303	This study compared pharmacodynamics of PZI and insulin degludec in
304	healthy cats. Marked biochemical hypoglycemia and weakness occurred
305	with both insulin formulations in all tests, when the glucose lowering effect
306	was achieved. Vomiting was limited to three cats receiving the highest dose
307	of PZI and to one cat receiving the highest dose of insulin degludec.
308	Both types of insulin had a similar onset of action, time to glucose nadir and
309	glucose nadir. Median duration of action was significantly longer for insulin
310	degludec than for PZI at 0.1 and 0.2 IU/kg. The differences between two
311	insulins at 0.3 IU/kg was not significant. However, the duration of action
312	was about 1.5 times as long for insulin degludec than for PZI at all dose
313	levels. The duration of action of PZI was shorter than 12 h in all cats
314	irrespective of the doses. This differed from results of a recent study, in
315	which PZI had a duration of action exceeding 12 h in some of the treated
316	diabetic cats, and was therefore considered potentially useful for once-a-day
317	treatment (Ward and Louviere, 2015). Longer duration of action of PZI in
318	the mentioned study could be explained by the applied insulin dose (0.5
319	IU/kg or higher). In our study, higher insulin dose was not associated with
320	longer duration of action most likely due to rebound effect from
321	hypoglycemia. In contrast to PZI, duration of action of insulin degludec was
322	\geq 12 h in the most cats irrespective of the doses. These preliminary data
323	justify a study on the use of insulin degludec as once-a-day treatment in
324	diabetic cats.

325	Another objective of this study was to evaluate the CGSM iPro2 with the
326	Sof-sensor and the Enlite-sensor. From a technical standpoint, the process of
327	initialization of the iPro2, its calibration, and the range of glucose
328	concentrations measured were similar to the real-time CGMS previously
329	validated by our group (Moretti et al., 2009; Moretti et al., 2010; Hafner et
330	al., 2013). Sensor insertion was straightforward, and the implanted sensor
331	did not adversely affect cat's well-being. A unique feature of the CGSM
332	iPro2 is that it allows for continuous glucose monitoring in cats in a home
333	setting, which is a considerable advantage over the currently used real-time
334	CGMSs that require the presence of a digital recorder in close proximity to
335	the sensor. Therefore, the use of iPro2 might be recommended for cats with
336	poor controlled DM, or if stress-induced hyperglycemia, rebound
337	hyperglycemia, or large glycemic variability are suspected.
338	The Sof-sensor was more reliable with regard to the initial glucose readings;
339	all 20 placed Sof-sensors but only 13/17 Enlite-sensors successfully
340	initiated glucose measurements after placement. Moreover, 17/20 Sof-
341	sensors but only 6/13 Enlite-sensors recorded glucose data during the entire
342	7-day study period. Of note, 4/13 Enlite-sensors recorded glucose data
343	<50% of the study period. Despite the overall superior performance of the
344	Sof-sensor, the Enlite-sensors had numerically fewer interruptions of <1 h
345	in glucose recording than the Sof-sensors; however, we considered
346	occasional short interruptions in glucose recording of minor importance
347	from a clinical standpoint, because they do not affect the interpretation of

349 may occur with either sensor if they are not properly hydrated or regularly 350 calibrated. Even slight changes in the position of the sensor caused by strain 351 on the recorder or the overlying skin can temporarily interrupt 352 measurements. The Enlite-sensor is thinner and shorter than the Sof-sensor 353 and therefore might be more susceptible to interruptions. Taken together, 354 our results suggest that the Sof-sensor is better suited to generate glucose 355 curves in cats than the Enlite-sensor. 356 Both sensors yielded similar and relatively good analytical accuracy based 357 on correlation analysis but did not completely fulfil the ISO criteria. In fact, 358 at glucose concentrations <5.5 mmol/L, both sensors had an analytical 359 accuracy of 90%, which is below the required 95%, and at glucose 360 concentrations \geq 5.5 mmol/L, the analytical accuracy of the Sof-sensor and 361 Enlite-sensor was 43% and 50%, respectively, both considerably lower than 362 the required 95% accuracy. However, the present study involved healthy 363 cats and focused on hypoglycemia and thus the number of glucose readings 364 \geq 5.5 mmol/L was low. Including diabetic cats in future studies will aid in 365 evaluation of the analytical accuracy of these sensors for glucose readings 366 \geq 5.5 mmol/L. 367 Clinical accuracy was evaluated by error grid analysis and was 100% for 368 both sensors in the hypo- and normoglycemic ranges. According to ISO

369 criteria, good clinical accuracy is achieved when at least 99% of glucose

370 measurements fall within zones A and B of the consensus error grid

371 coordinates, which occurred with both sensors in all cats.

372 The study has some limitations. First, it was performed in a small number of 373 healthy young cats, and it might not reflect the effect of tested insulin 374 formulations in older diabetic cats. Sensor glucose readings are affected by 375 the hydration status of the subcutaneous fat, and it might be possible, that 376 the reliability and accuracy of the Sof-sensor and the Enlite-sensor are 377 adversely affected in older diabetic cats with compromised hydration. 378 Second, the method used in the study to assess pharmacodynamic 379 parameters of two insulin formulations is inferior to a isoglycemic clump 380 method, which has been considered as a gold standard for the study of 381 pharmacodynamics of insulin in people (Heise and Pieber, 2007; Gilor et 382 al., 2010). Traditional blood glucose curves display the effects of exogenous insulin, endogenous insulin, glucagon, and stress hormones. Following 383 384 severe hypoglycemia, a return of glucose to baseline reflects not only the 385 diminishing effect of exogenous insulin, but could also be the result of 386 activation of glucagon and stress hormones. In few cases (both insulin 387 formulations, data not shown), we recognized a return of glucose 388 concentration to baseline followed by another decline to a smaller degree as 389 before. These could represent counter-regulatory response that masks the 390 effect of exogenous insulin. However, it could also represent physiological 391 glucose fluctuations. It is possible, that pharmacodynamic parameters of 392 both insulin formulations were underestimated due to activation of glucagon 393 and stress hormones. However, we assume, that the counter-regulatory 394 response in cats was similar with both insulin formulations, and 395 pharmacodynamic parameters could be easily compared. Third, we used

396	insulin syringes to inject small amounts of insulin $(0.5 - 1.5 \text{ IU})$. Insulin
397	syringes are known to be inaccurate and imprecise at doses lower than 5 IU
398	(Keith et al., 2004).
399	Fourth, the blood glucose was measured with PBGM and not with a routine
400	chemistry analyzer. However, the PBGM AlphaTRAK is specially designed
401	for use in pets. It was evaluated by different research groups, and was
402	shown to be precise and accurate at low, normal and high glucose levels;
403	glucose concentrations measured by AlphaTRAK did not significantly
404	deviate from the reference method (Cohen et al., 2009; Zini et al., 2009).

5. Conclusions

406	Pritamine zinc insulin and insulin degludec are well tolerated by healthy
407	cats and cause similar degrees of hypoglycemia. Insulin degludec showed
408	longer duration of action than PZI. Further studies on the use of insulin
409	degludec in diabetic cats might be recommended. The CGMS iPro2 with the
410	Sof-sensor or the Enlite-sensor is well tolerated by healthy cats. Both
411	sensors provide good clinical accuracy but analytical accuracy does not
412	reach the minimum set by ISO 15197:2013. The Sof-sensor seems more
413	suitable for use in cats than the Enlite-sensor, because it produces initial
414	glucose readings more reliably and has a better potential to generate glucose
415	curves. However, pharmacodynamics of insulin degludec, and CGMS iPro2
416	need to be investigated in a larger population of diabetic cats.
417	
418	Funding
419	This research did not receive any specific grant from funding agencies in the

- public, commercial, or not-for-profit sectors.

Conflict of interest

Claudia Reusch has a consultancy agreement with Boehringer Ingelheim

Vetmedica GmbH.

References

426	1.	Birkeland, K.I., Home, P.D., Wendisch, U., Ratner, R.E., Johansen,
427		T., Endahl, L.A., Lyby, K., Jendle, J.H., Roberts, A.P., DeVries,
428		J.H., Meneghini, L.F., 2011. Insulin degludec in type 1 diabetes: a
429		randomized controlled trial of a new-generation ultra-long-acting
430		insulin compared with insulin glargine. Diabetes care. 34, 661-665.
431	2.	Bland, J.M., Altman, D.G., 1986. Statistical methods for assessing
432		agreement between two methods of clinical measurement. Lancet. 1,
433		307-310.
434	3.	Calhoun, P., Lum, J., Beck, R.W., Kollman, C., 2013. Performance
435		comparison of the Medtronic Sof-sensor and Enlite glucose sensors
436		in inpatient studies of individuals with type 1 diabetes. Diabetes
437		Technol Ther. 15(9), 758-761.
438	4.	Clark, M., Thomaseth, K., Heit, M., Hoenig, M., 2012.
439		Pharmacokinetics and pharmacodynamics of protamine zinc
440		recombinant human insulin in healthy dogs. J Vet Pharmacol Ther.
441		35, 342-250.
442	5.	Clarke, W.L., Cox, D., Gonder-Frederick, L.A., Carter, W., Pohl,
443		S.L., 1987. Evaluating clinical accuracy of systems for self-
444		monitoring of blood glucose. Diabetes care. 10, 622-628.
445	6.	Cohen T.A., Nelson R.W., Kass P.H., Christopher M.M., Feldman
446		E.C., 2009. Evaluation of six portable blood glucose meters for
447		measuring blood glucose concentration in dogs. JAVMA. 235(3),
448		276-280.

449	7.	Dietiker-Moretti, S., Muller, C., Sieber-Ruckstuhl, N., Tschour, F.,
450		Osto, M., Franchini, M., Ackermann, M., Lutz, T.A., Reusch, C.E.,
451		Zini, E., 2011. Comparison of a continuous glucose monitoring
452		system with a portable blood glucose meter to determine insulin
453		dose in cats with diabetes mellitus. J Vet Intern Med. 25, 1084-1088.
454	8.	Gilor, C., Ridge, T.K., Attermeier, K.J., Graves, T.K., 2010.
455		Pharmacodynamics of insulin detemir and insulin glargine assessed
456		by an isoglycemic clamp method in healthy cats. J Vet Intern Med.
457		24, 870-874.
458	9.	Gough, S.C., Bhargava, A., Jain, R., Mersebach, H., Rasmussen, S.,
459		Bergenstal, R.M., 2013. Low-volume insulin degludec 200 units/mL
460		once daily improves glycemic control similar to insulin glargine
461		with a low risk of hypoglycemia in insulin-naive patients with type 2
462		diabetes. Diabetes care. 36(9), 2536-2542.
463	10	. Hafner, M., Lutz, T.A., Reusch, C.E., Zini, E., 2013. Evaluation of
464		sensor sites for continuous glucose monitoring in cats with diabetes
465		mellitus. J Feline Med Surg. 15, 117-123.
466	11	. Heise, T., Pieber T.R., 2007. Towards peakless, reproducible and
467		long-acting insulins. An assessment of the basal analogues based on
468		isoglycemic clump studies. Diabetes Obes Metab. 9, 648-659
469	12	. Heller, S., Buse, J., Fisher, M., Garg, S., Marre, M., Merker, L.,
470		Renard, E., Russel-Jones, D., Philotheou, A., Francisco, A.M., Pei,
471		H., Bode, B., BEGIN Basal-Bolus Type 1 trial investigators, 2012.
472		Insulin degludec, an ultra-longacting basal insulin, versus insulin

473	glargine in basal-bolus treatment with mealtime insulin aspart in
474	type 1 diabetes (BEGIN Basal-Bolus Type 1): a phase 3,
475	randomised, open-label, treat-to-target non-inferiority trial. Lancet.
476	379, 1489-1497.
477	13. Keith, K., Nicholson, D., Rogers, D., 2004. Accuracy and precision
478	of low-dose insulin administration using syringes, pen injectors and
479	a pump. Clin Pediatr. 43(1), 69-74.
480	14. Moretti, S., Tschuor, F., Osto, M., Franchini, M., Ackermann, M.,
481	Lutz, T.A., Reusch, C.E., Zini, E., 2010. Evaluation of a novel real-
482	time continuous glucose-monitoring system for use in cats. J Vet
483	Intern Med. 24, 120-126.
484	15. Moretti, S., Zini, E., Tschuor, F., Reusch, C.E., 2009. First
485	
105	experiences with the continuous real-time glucose monitoring
486	system (Guardian REAL-time CGMS) in a cat with Diabetes
486	system (Guardian REAL-time CGMS) in a cat with Diabetes
486 487	system (Guardian REAL-time CGMS) in a cat with Diabetes mellitus. Schweiz Arch Tierheilkd. 151, 27-30.
486 487 488	 system (Guardian REAL-time CGMS) in a cat with Diabetes mellitus. Schweiz Arch Tierheilkd. 151, 27-30. 16. Nelson, R.W., Henley, K., Cole, C., Pzir clinical study group, 2009.
486 487 488 489	 system (Guardian REAL-time CGMS) in a cat with Diabetes mellitus. Schweiz Arch Tierheilkd. 151, 27-30. 16. Nelson, R.W., Henley, K., Cole, C., Pzir clinical study group, 2009. Field safety and efficacy of protamine zinc recombinant human
486 487 488 489 490	 system (Guardian REAL-time CGMS) in a cat with Diabetes mellitus. Schweiz Arch Tierheilkd. 151, 27-30. 16. Nelson, R.W., Henley, K., Cole, C., Pzir clinical study group, 2009. Field safety and efficacy of protamine zinc recombinant human insulin for treatment of diabetes mellitus in cats. J Vet Intern Med.
486 487 488 489 490 491	 system (Guardian REAL-time CGMS) in a cat with Diabetes mellitus. Schweiz Arch Tierheilkd. 151, 27-30. 16. Nelson, R.W., Henley, K., Cole, C., Pzir clinical study group, 2009. Field safety and efficacy of protamine zinc recombinant human insulin for treatment of diabetes mellitus in cats. J Vet Intern Med. 23, 787-793.

495	18. Rand, J. and Gottlieb S.A., 2017. Feline diabetes mellitus, in:
496	Ettinger, S.T., Feldman E.C., Cote, E. (Eds.), Textbook of veterinary
497	internal medicine, eight ed. Saunders, Philadelphia, pp. 1781-1795.
498	19. Ristic, J.M., Herrtage, M.E., Walti-Lauger, S.M., Slater, L.A.,
499	Church, D.B., Davison, L.J., Catchpole, B., 2005. Evaluation of a
500	continuous glucose monitoring system in cats with diabetes mellitus.
501	J Feline Med Surg. 7, 153-162.
502	20. Rodbard, H.W., Cariou, B., Zinman, B., Handelsman, Y., Philis-
503	Tsimikas, A., Skojth, T.V., Rana, A., Methieu, C., BEGIN Once
504	Long trial investigators, 2013. Comparison of insulin degludec with
505	insulin glargine in insulin-naive subjects with Type 2 diabetes: a 2-
506	year randomized, treat-to-target trial. Diabet Med. 30, 1298-1304.
507	21. Siegmund, T., Kolassa, R., Thomas, A., 2011. Sensor-based therapy
508	and sensor-based pump therapy. Unimed Science, Bremen.
509	22. Smith, J.R., Vrono, Z., Rappoport, G.S., Turek, M.M., Creevy, K.E.,
510	2012. A survey of southeastern United States veterinarians`
511	preferences for managing cats with diabetes mellitus. J Feline Med
512	Surg. 14(10), 716-722.
513	23. Surman, S., Fleeman, L., 2013. Continuous glucose monitoring in
514	small animals. Vet Clin North Am Small Anim Pract. 43, 381-406.
515	24. Ward, C., Louviere, A., 2015. Efficacy of ProZinc insulin in naive
516	and insulin-established cats using continuous interstitial glucose
517	monitoring. 2015 ACVIM Forum Research Abstract Program. J Vet
518	Intern Med. 29(4), 1171-1172.

519	25. Zini, E., Moretti, S., Tschuor, F., Reusch, C.E., 2009. Evaluation of
520	a new portable glucose meter designed for the use in cats. Schweiz
521	Arch Tierheilkd. 151, 448-451.
522	26. Zinman, B., Fulcher, G., Rao, P.V., Thomas, N., Endahl, L.A.,
523	Johansen, T., Lindh, R., Lewin, A., Rosenstock, J., Pinget, M.,
524	Mathieu, C., 2011. Insulin degludec, an ultra-long-acting basal
525	insulin, once a day or three times a week versus insulin glargine
526	once a day in patients with type 2 diabetes: a 16-week, randomised,
527	open-label, phase 2 trial. Lancet. 377, 924-931.