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The human pathogen Listeria monocytogenes is a large concern in the food industry

where its continuous detection in food products has caused a string of recalls in

North America and Europe. Most recognized for its ability to grow in foods during

refrigerated storage, L. monocytogenes can also tolerate several other food-related

stresses with some strains possessing higher levels of tolerances than others. The

objective of this study was to use a combination of phenotypic analyses and whole

genome sequencing to elucidate potential relationships between L. monocytogenes

genotypes and food-related stress tolerance phenotypes. To accomplish this, 166

L. monocytogenes isolates were sequenced and evaluated for their ability to grow in

cold (4◦C), salt (6% NaCl, 25◦C), and acid (pH 5, 25◦C) stress conditions as well as

survive desiccation (33% RH, 20◦C). The results revealed that the stress tolerance

of L. monocytogenes is associated with serotype, clonal complex (CC), full length

inlA profiles, and the presence of a plasmid which was identified in 55% of isolates.

Isolates with full length inlA exhibited significantly (p < 0.001) enhanced cold tolerance

relative to those harboring a premature stop codon (PMSC) in this gene. Similarly,

isolates possessing a plasmid demonstrated significantly (p = 0.013) enhanced acid

tolerance. We also identified nine new L. monocytogenes sequence types, a new

inlA PMSC, and several connections between CCs and the presence/absence or

variations of specific genetic elements. A whole genome single-nucleotide-variants

phylogeny revealed sporadic distribution of tolerant isolates and closely related sensitive

and tolerant isolates, highlighting that minor genetic differences can influence the

stress tolerance of L. monocytogenes. Specifically, a number of cold and desiccation

sensitive isolates contained PMSCs in σ
B regulator genes (rsbS, rsbU, rsbV ).

Collectively, the results suggest that knowing the sequence type of an isolate in

addition to screening for the presence of full-length inlA and a plasmid, could help
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food processors and food agency investigators determine why certain isolates might

be persisting in a food processing environment. Additionally, increased sequencing of

L. monocytogenes isolates in combination with stress tolerance profiling, will enhance

the ability to identify genetic elements associated with higher risk strains.

Keywords: Listeria monocytogenes, stress tolerance, whole genome sequencing, sequence typing, food safety,

plasmids, internalin A

INTRODUCTION

Listeria monocytogenes is a ubiquitous bacterial foodborne
pathogen that is most recognized for its ability to grow at
temperatures as low as −0.4◦C (Walker et al., 1990) and cause
listeriosis, a serious disease with an average mortality rate of
30% among at-risk people (Yildiz et al., 2007). In addition
to possessing cold tolerance, L. monocytogenes is also capable
of surviving many other food-related stresses including high
osmolarity (Shabala et al., 2008) and low pH (Sorrells et al., 1989),
further adding to its hardiness. Additionally, cross contamination
of foods is facilitated by biofilm formation (Chavant et al., 2002;
Møretrø and Langsrud, 2004; Moltz, 2005; Di Bonaventura et al.,
2008; Hingston et al., 2013), and the ability of the organism
to survive desiccation for extended periods of time on food
contact surfaces (Vogel et al., 2010). Post-processing levels of
L. monocytogenes contamination in foods are usually low (Fenlon
et al., 1996; Kozak et al., 1996; Cabedo et al., 2008) and unlikely
to cause disease (Buchanan et al., 1997; Chen et al., 2003). It is
therefore, refrigerated, ready-to-eat (RTE) foods with extended
shelf lives and the potential for regrowth that present the largest
risk to consumers.

Both Canada and the EU have adopted regulations for the
control of L. monocytogenes in RTE foods (Health Canada,
2011; Luber, 2011), allowing up to 100 CFU/g in foods that
do not permit growth beyond this level within the shelf-life of
the product, and a zero tolerance policy for foods identified
as supporting growth. When validating growth inhibition of
L. monocytogenes in stabilized RTE foods, it is important that
the strains used represent the extremes of L. monocytogenes’
stress response behavior. In the US, the zero tolerance policy
is applicable for all food products (US FDA, 2016). However,
nationwide outbreaks continue to occur in the US. To date, there
have been three multistate listeriosis outbreaks in 2016 that were
associated with frozen vegetables, packaged salads, and raw milk
and resulted in 29 illnesses and 4 deaths (CDC, 2016a). These
numbers are yet to exceed that of 2015 where two multistate
outbreaks involving soft cheese and ice cream resulted in 40
illnesses and 6 deaths (CDC, 2016a).

In 2013, the US established the Listeria Whole Genome
Sequencing (WGS) Project to assist in detecting, investigating,
and mitigating foodborne outbreaks (CDC, 2016b). Though
valuable for tracing outbreaks, WGS is not routinely used to
determine the stress tolerance of outbreak strains. However,
WGS provides the information that could potentially lead to
identification of molecular biomarkers related to the stress
tolerance of L. monocytogenes isolates. Such biomarkers could
greatly aid in monitoring the risks of L. monocytogenes

contamination and regrowth in food products and processing
environments (Jacquet et al., 2004).

Currently, one common molecular biomarker used for
L. monocytogenes’ virulence is the internalin A encoding gene
(inlA) which can contain one of several different premature stop
codons producing truncated and secreted proteins associated
with attenuated virulence (Jonquieres et al., 1998; Jacquet et al.,
2004; Rousseaux et al., 2004; Nightingale et al., 2005; Felicio et al.,
2007; Handa-Miya et al., 2007; Roldgaard et al., 2009; Van Stelten
et al., 2011). Recently, Kovacevic et al. (2013) discovered that
full-length variants of inlA were more prevalent among fast cold-
adapting L. monocytogenes strains than intermediate and slow
cold-adapting strains, suggesting that inlA profiling may also
be suitable for predicting the cold tolerance of strains. Another
potential biomarker is the L. monocytogenes stress survival
islet 1 (SSI-1). Included in this five gene cluster (lmo0444–
lmo0448) are two genes (gadT1 and gadD1) from the glutamate
decarboxylase acid resistance system which has been shown
to significantly improve the growth of L. monocytogenes in
mildly acidic environments (Cotter et al., 2005). Additionally,
an L. monocytogenes SSI-1 deletion mutant exhibited impaired
growth at low pH (pH 4.8), high salt (7.5% NaCl), and on
frankfurters stored at 4◦C (Ryan et al., 2010). Further, research
with naturally occurring SSI-1 positive and negative strains is
needed to determine if this island would be a suitable biomarker
for predicting stress tolerance phenotypes.

To date, studies which evaluated the stress tolerances of
L. monocytogenes isolates have focused on associating phenotypes
with genetic lineages (Bergholz et al., 2010), serotypes (Junttila
et al., 1988; Barbosa et al., 1994; Ribeiro et al., 2014), and isolation
sources (Begot et al., 1997; Durack et al., 2013). However,
few significant differences between these groups were observed,
suggesting that the diversity among isolates within thesemeans of
classification is not definitive for predicting phenotypic behavior.
Instead, stronger phenotype associations might be observed
among more closely related isolates, e.g., those sharing the same
sequence type (ST) or clonal complex (CC). Additionally, the
presence of specific genetic elements (e.g., inlA and SSI-1) may
also influence the stress tolerance phenotypes of isolates as well as
more minor genetic differences such as single nucleotide variants
(SNVs).

The objective of this study was to use a combination of
phenotypic analyses and WGS to elucidate novel associations
between L. monocytogenes genotypes and food-related stress
tolerance phenotypes with the goal of identifying biomarkers
that can be used to predict the stress tolerances of food-chain
isolates. To accomplish this, 166 L. monocytogenes isolates were
evaluated on their ability to grow in cold (4◦C), salt (6% NaCl),
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and acid (pH 5) stress conditions as well as survive desiccation
stress (33% RH). Factors investigated for potential associations
with the observed phenotypes were: genetic lineage, serotype, CC,
inlA profiles, and the presence of a plasmid, SSI-1, unique SNVs,
and Listeria genomic island 1 (LGI1).

MATERIALS AND METHODS

Isolates and Culture Conditions
A collection of 166 Listeria monocytogenes isolates from Canada
and Switzerland were used in this collaborative study. This
included: (i) 159 food and food processing environment isolates
from Canada (n = 139) and Switzerland (n = 20), (ii) six
isolates from sporadic human listeriosis cases in Switzerland, and
(iii) one isolate from an asymptomatic human (Table S1). All
human isolates were anonymized and no ethical approval was
required as per the institutional and national guidelines. Isolates
were stored at−70◦C in brain heart infusion broth (BHIB, Difco,
Fisher Scientific, Canada) +20% glycerol and routinely cultured
at 30◦C on BHI agar (BHIA, Difco, Fisher Scientific) plates.

Whole Genome Sequencing
Genomic DNA was isolated using the PureLink Mini Kit
from Life Technologies, Canada. PicoGreen quantification was
performed (Invitrogen, Canada) and DNA was assessed using
the NanoDrop 2000 (Fisher Scientific). Genomic DNA samples
of sufficient quality and quantity were sequenced by Genome
Quebec (Montréal, QC, Canada) using TruSeq automated library
preparation (Illumina) and paired-end, 100 bp sequencing on
the Illumina Hi-Seq. Between 4.9 and 16.5 million high quality
reads remained after quality control for each genomic library.
Raw FASTQ files were trimmed using Cutadapt in Trim Galore!
version 0.4.1 and de novo genome assembly was performed
using SPAdes version 3.1.0 (careful option used; Bankevich et al.,
2012). Low coverage (<10) and small contigs (<200 bp) were
removed from assemblies using a custom perl script. Assemblies
were subsequently annotated using Prokka version 1.5.2 (genus
Listeria, species monocytogenes; Seemann, 2014). Assembled
sequences were deposited into theNCBIWhole Genome Shotgun
(WGS) database under Bioproject PRJNA329415.

Lineage Determination
To classify isolates into genetic lineages, a reference free, k-
mer based single nucleotide variants (SNV) phylogeny was
generated using the kSNP 3.0 program (Gardner et al., 2015) and
reference isolates for themajor lineages of L. monocytogenes (LI—
F2365; LII—EGD-e; LIII—HCC23; LIV—J1-208). The resulting
maximum parsimony tree (based on the consensus of 100 trees)
clearly segregated the four lineages.

Multi Locus Sequence Typing
To group isolates based on their epidemiological context,
in silico MLST was performed using the Center for Genomic
Epidemiology’s MLST typing tool (https://cge.cbs.dtu.dk/
services/MLST/). Clonal Complexes (CCs) were assigned
based on the Pasteur Institute schema (http://www.pasteur.fr/
recherche/genopole/PF8/mlst/Lmono.html). Novel sequence

types (STs) were confirmed using Sanger sequencing and
submitted to the Pasteur Institute Database for new assignments
(http://bigsdb.pasteur.fr/listeria/listeria.html).

In silico Serogroup/Serotype Assignment
Antibody-based serotyping was conducted on a subset of isolates
(n = 91) within both the current study and previous studies
(Arguedas-Villa et al., 2010; Kovacevic et al., 2013). Remaining
isolates were assigned one or more possible serotypes by
performing aMegaBLAST search (>95% nt identity) ncbi-blast+
v. 2.3.0 available at: ftp://ftp.ncbi.nlm.nih.gov/blast/executables/
blast+/LATEST/) for four genes used in a multiplex PCR
developed by Doumith et al. (2004). Additionally, predictive
serotypes were assigned to isolates with STs that are known to
be associated with a specific serotype.

Targeted Genomic Element Screenings
The genes and genomic regions evaluated in this study were (1)
the plasmid replicon gene repA, used to indicate the presence of
a plasmid (Kuenne et al., 2010), (2) emrE, representing Listeria
genomic island 1 (LGI1), a 50 kb island with putative roles
in stress tolerance and persistence (Gilmour et al., 2010), and
(3) stress survival islet 1 (SSI-1), a five gene cluster previously
identified as having a role in L. monocytogenes’ response to
cold, osmotic, and acid stress conditions (Ryan et al., 2010).
Additionally, the coding sequence of inlA was investigated to
determine if isolates possessed a full length sequence or a
premature stop codon (PMSC) mutation. emrE, SSI-1, and inlA
were screened for among isolate sequence assemblies using
MegaBLAST (>95% nt identity) and repAwas screened for using
BLASTP (>30% aa identity over >80% coverage). inlA and repA
sequences were then extracted from the isolate assemblies for
further analysis.

Identification of Putative Plasmid Contigs
Detection of repA sequences meant that at least one contig
belonged to a putative plasmid. To identify additional plasmid
associated contigs, isolate assemblies were aligned to the closed
genome of L. monocytogenes EDG-e (Accession: NC_003210.1)
using ContigMover inMauve version 2.3.1 (Rissman et al., 2009).
Contigs not aligning to the EDG-e chromosome were compared
to published L. monocytogenes plasmids (Kuenne et al., 2010) by
BLAST. Contigs were excluded if they displayed open readings
frames associated with chromosomal DNA (e.g., rRNA, tRNA) or
did not align to any of the Listeria associated plasmids annotated
by Kuenne et al. (2010): pLM33, pLM1-2bUG1, pLM5578,
pLM80, and pLI100. A summary of the putative plasmid contigs
found within each isolate can be found in Table S1.

Cold Tolerance Assay
Overnight cultures grown in BHIB at 37◦C were standardized
to 109 CFU/ml using spectrophotometric methods, and diluted
in pre-chilled BHIB to yield a final density of 103 CFU/ml and
stored at 4◦C (previously described in Arguedas-Villa et al.,
2010). The bacterial density was enumerated daily for the first
4 days and then bi-weekly for up to 5 weeks by plating on
tryptic soy agar (BD, Fisher Scientific) +6% yeast extract (BD,
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Fisher Scientific). The resulting growth curves were fitted using
a four parameter logistic model described by Dalgaard and
Koutsoumanis (2001).

Salt and Acid Tolerance Assay
Isolates were assessed for salt and acid tolerance using modified
versions of published protocols (Cotter et al., 2005; Van Der
Veen et al., 2008; Bergholz et al., 2010). In short, overnight
cultures grown in BHIB at 30◦C were diluted in either BHIB+6%
(w/w) NaCl or BHIB adjusted to pH 5 (with 1M HCl) to
achieve a final concentration of 107 CFU/ml. From these cultures,
200µl was added in duplicate (technical replicates) to 96-well-
plates (CostarTM clear polystyrene, Fisher Scientific) that were
incubated at 25◦C in a microplate reader (Spectramax, V6.3;
Molecular Devices, Sunnyvale, CA). A temperature of 25◦C
was used to assess isolate salt and acid tolerance under non-
intracellular or cold stress conditions. The absorbance (A600nm)
of each well was recorded every 30min until all isolates reached
stationary phase (∼26 h) and the resulting growth curves were
fitted to the Baranyi and Roberts model (Baranyi and Roberts,
1994) using DMfit (v3.5) available on the ComBase browser
(http://browser.combase.cc/DMFit.aspx).

Desiccation Tolerance Assay
Cultures grown for 24 h in BHIB at 20◦C were diluted to 107

CFU/ml in buffered peptone water (BD, Fisher Scientific) and
10µl (105 CFU) was spotted in duplicate (technical replicates)
on the bottom of wells in lid-less 96-well-plates. The plates
were then stored for 3 days at 20◦C in desiccators (SICCO,
Bohlender, Germany) pre-conditioned to 33% relative humidity
(RH) using a saturated solution of MgCl2 (protocol adapted
from Hingston et al., 2015). The RH of the chambers was
monitored throughout the desiccation periods using data loggers
(included with desiccators). A temperature of 20◦C was used to
simulate desiccation conditions that might occur in a food plant.
Following desiccation, the plates were rehydrated with 200µl
of BHIB, and incubated at 25◦C in a plate reader where the
A600nm of each well was recorded every 30min until all isolates
reached stationary phase (∼24 h). The resulting growth curves
were then fitted to the Baranyi and Roberts model and the model
parameters recorded.

Phenotype Designations and Statistical
Analyses
For all four stress exposure experiments, a minimum of two
biological replicates with two technical replicates each, were
conducted for all isolates. Based on the findings of Aryani
et al. (2015), the data was standardized for biological variability
between replicates by dividing isolate growth parameters by the
median value for each experimental run, thereby making the
median equal to 1. The median was selected for standardization
rather than the mean to avoid the influence of very stress
sensitive isolates. Model parameters (LPD, lag phase duration;
µmax, maximum growth rate; Nmax, maximum cell density)
were averaged across biological replicates and presented as
standardized (std) values. For isolates where the average std
values had a standard deviation (SD) >0.05, additional replicates

were completed to obtain more representative means. Isolates
were considered tolerant or sensitive to cold, salt, or acid stress
if they had an average std-µmax > or < than 1 SD from the
median, respectively. All remaining isolates were considered
to have intermediate stress tolerance. For desiccation stress
survival the model parameter of most interest was the LPD,
indicating the time to (detectable) regrowth (TRG) that is
negatively correlated with the number of cells, which survived
the desiccation treatment. Isolates were classified as desiccation
tolerant or sensitive if they had an average std-TRG < or > than
1 SD from the median, respectively. A standard curve generated
using five cell levels (101–105 CFU) produced a correlation of
y = −0.25x + 2.07 (R2 = 0.97) where y is the TDR and
x is the log10 number of viable cells in each well following
desiccation.

To elucidate potential associations between the factors we
investigated, statistical tests were performed using IBM SPSS
Statistics version 23. Specifically, individual two-tailed T-tests
and one-way ANOVAs with Tukey post-hoc tests were used
to compare the average standardized stress tolerance model
parameters of two (±plasmid, ±SSI-1, ±LGI1, lineage I and II,
repA group 1 vs. group 2 isolates) or more groups (serotypes,
CCs, inlA profiles, and sensitive, intermediate and stress tolerant
groups), respectively. G∗Power 3.1.9.2 (Faul et al., 2007, 2009)
was used to determine the minimum sample sizes required to
ensure a power of 0.80 for all statistical tests. All data sets
were accessed for outliers, homogeneity of variances (Levene’s
test), and normality (Shapiro-Wilk’s test). Where homogeneity
of variances could not be achieved, Welch T-tests and Welch
ANOVAs in combination with Games-Howell post-hoc tests were
used. P-values below 0.05 were considered significant for all
comparisons.

Phylogenetic Reconstruction Based on
Core Genome Single Nucleotide Variants
Parsnp, a tool withinHarvest suite of tools (Treangen et al., 2014),
was used to perform core genome alignment of all 166 de novo
assembled genomes and the reference L. monocytogenes EGD-
e strain in order to identify single nucleotide variants (SNVs)
within the core genome. SNVs clustered within 20 base pairs
were removed as these may indicate repetitive regions containing
more erroneous SNV calls. The remaining high quality SNVs
were used to generate maximum likelihood trees using the
RaxML version 8 (Stamatakis, 2014) on the CIPRES science
gateway (Miller et al., 2010) using default parameters (including
the GTRCAT nucleotide model and 100 bootstrap replicates).
Corresponding heatmaps containing additional genotype and
phenotype information were generated in R version 2.15.1
(Team, 2016) using the heatmap.2 function from the gplots
library.

SNV Detection
SNVs were also detected against the Listeria monocytogenes
EGD-e (NC_003210.1) reference genome. SMALT version
0.7.6 (http://www.sanger.ac.uk/science/tools/smalt-0) with
default parameters except “–i 330” was used to first align
raw reads against the reference. Samtools version 1.2 (Li,
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2011) was used on these assemblies to sort the aligned reads
(“samtools sort”), remove potential PCR duplicates (“samtools
rmdup”) and call the SNVs (“samtools mpileup”). Additional
filtering of SNV calls included removing those with a read
depth <50 and heterozygous genotypes (since our genomes
are haploid) using the “bcftools filter” command. SNVs
found in repetitive regions of the genome as assessed by the
index of repetitiveness (Schwender et al., 2004) were also
removed manually. The remaining high confidence SNVs
were annotated using SNPEff version 4.1 (Cingolani et al.,
2012) with the Listeria_monocytogenes_EGD_e_uid61583
annotation. Synonymous SNVs were also removed in the end
for identification of non-synonymous or potential regulatory
SNVs that may be contributing to phenotypic differences in cold
growth.

Statistical Methods for Elucidating SNVs
Associated with Stress Tolerance
Phenotypes
SNPSift version 4.1 “CaseControl” (Cingolani et al., 2012) was
used to run a Fisher Exact test to identify SNVs that were
significantly associated with case vs. control groups. To identify
SNVs only found in tolerant isolates, these were used as the case
group, while all others were used as the control group. Since
this did not yield any results, subsequently, the sensitive isolates
alone were used as the control group so as to allow SNVs to be
seen in intermediate growers. Thismethod has certain limitations
in that certain associations may require very large sample sizes
to become statistically significant, especially considering genetic
heterogeneity leads to the same phenotype or the potential for
multiple SNVs to interact. An alternative approach, Random
ForestsTM (Breiman, 2001), was also used to discover important
SNVs in distinguishing stress tolerant and sensitive groups since
previous genome wide association studies have shown random
forests outperform the Fisher Exact test in these special cases
(Lunetta et al., 2004; Schwender et al., 2004; Bureau et al., 2005;
De Lobel et al., 2010; Bulinski et al., 2011). The RandomForestTM

version 4.6–10 library was used in R with default parameters
except “importance= TRUE, proximity= TRUE, ntree= 5000.”
This allows the method to run as a classifier that then ranks
SNVs on their ability to classify isolates based on their phenotypic
designation.

Genomic Islands Analysis
Annotated draft genomes were submitted to IslandViewer
3 (Dhillon et al., 2015) using L. monocytogenes EGD-e
(NC_003210.1) as a reference for contig reordering. Genomic
islands were predicted using IslandPath-DIMOB (Hsiao et al.,
2005) and SIGI-HMM (Waack et al., 2006). Predicted genomic
islands positioned on the genome within <10 kb of each other
were merged into one single region.

To form groups of similar genomic islands, the genetic
distance between genomic island sequences was computing using
Mash (parameter –s 2000; Ondov et al., 2016) and groups of
similar sequences were identified using hclust and cutree in R.

RESULTS

Genetic Characteristics of
L. monocytogenes Isolates Based on WGS
Data
The complete sequenced genome assembly sizes of the isolates
ranged from 2.56 to 3.13 Mbp with a mean size of 2.97 Mbp
(Table S1). Isolates belonged to one of three different lineages:
LI (n = 44, serotypes 4b, 1/2b, 3b, and 3c), LII (n = 121,
serotypes 1/2a, 1/2c, and 3a), and LIII (n = 1, serotype
4c). The majority of isolates were serotype 1/2a (n = 92),
followed by 1/2c and 4b (n = 25 each), 1/2b (n = 18), 3a
(n = 2), and 3b and 4c (n = 1 each; Table 1). The exact
serotype was not determined for two remaining isolates. Beyond
serotypes, our isolates belonged to 36 different known STs and
a further nine were assigned novel STs (ST1017-1025). Isolates
also belonged to one of 29 different CCs with a further seven
isolates being unique non-clonal singletons. The most prevalent
CCs in the collection were CCs 9, 8, and 7 (Table 2). Other less
common CCs in decreasing prevalence included CCs 11, 155,
1, 3, and 321 (Table 2). Interestingly, only one CC121 isolate
existed in our collection. This is surprising given that CC121 is
often highly prevalent among L. monocytogenes food-associated
isolates (Parisi et al., 2010; Chenal-Francisque et al., 2011; Martín
et al., 2014; Ebner et al., 2015; Maury et al., 2016).

The plasmid replication gene, repA, was observed in 55%
(n = 92) of our isolates, with a prevalence of 41 and 61% among
LI and LII isolates, respectively. Notably, one isolate was observed
to contain two putative plasmids as indicated by the presence of
two different repA containing contigs of 61 and 69 kb. Among
serotypes, repA was present in 100% of 3a isolates, 84% of 1/2c
isolates, 78% of 1/2b isolates, 53% of 1/2a isolates, and 16% of 4b
isolates (Table 1). Among CCs, plasmids were observed in >80%
of CC 3, 5, 9, 11, and 321 isolates (Table 2).

A phylogeny, constructed on repA sequences as described in
Kuenne et al. (2010), divided the sequences into two groups.
Group 1 included isolates from serotypes 1/2a, 1/2b, 1/2c, and
4b with estimated plasmid sizes ranging from 26 to 88 kb.
Group 2 included 1/2a, 1/2b, 1/2c, and 3a serotype isolates,
harboring significantly larger plasmids (p < 0.0005, 55–100 kb)
than those from group 1. These sizes are in line with those
observed in Kuenne et al. (2010), supporting the assertion that
these contigs belong to plasmids. The most prevalent plasmid
size (56553–56554 bp) was observed for 26 isolates from seven
different CCs and from both lineages I and II. Also noteworthy
is that isolates from Switzerland and Canada contained plasmids
with 100% nucleotide identity.

Premature stop codons (PMSCs) in inlAwere observed in 20%
of our isolates encompassing seven (Table S1) of 19 published
PMSCs (Jonquieres et al., 1998; Olier et al., 2002, 2003; Rousseaux
et al., 2004; Nightingale et al., 2005, 2008; Orsi et al., 2007; Van
Stelten and Nightingale, 2008; Van Stelten et al., 2010; Wu et al.,
2016) and one novel PMSC at 760aa, which was identified in two
serotype 1/2c isolates. The most common PMSC occurred at 9aa
(n = 13) and was associated with CC9, serotype 1/2c isolates.
Ten of the 14 remaining CC9 isolates also had one of four inlA
PMSCs (326, 576, 685, 760aa) and all CC321 isolates contained
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TABLE 1 | Genetic characteristics and prevalence of sensitive and tolerant phenotypes among L. monocytogenes belonging to different serotypes.

Serotype n (%) Plasmid+ (%)a Full length

inlA (%)a
SSI-1+ (%)a CS (%)a CT (%)a SS (%)a ST (%)a AS (%)a AT (%)a DS (%)a DT (%)a

4b 25 (15) 4 (16) 14 (56) 4 (16) 4 (16) 2 (8) 1 (4) 3 (12) 1 (4) 4 (16) 2 (8) 3 (12)

1/2b 18 (11) 14 (78) 15 (83) 17 (94) 0 2 (11) 3 (17) 2 (11) 0 7 (39) 2 (11) 4 (22)

1/2a 92 (55) 49 (53) 85 (92) 65 (71) 4 (4) 11 (12) 18 (20) 12 (13) 22 (24) 7 (8) 10 (11) 11 (12)

1/2c 25 (15) 21 (84) 3 (12) 25 (100) 5 (20) 3 (12) 4 (16) 0 2 (8) 4 (16) 4 (16) 4 (16)

3a 2 (1) 2 (100) 0 2 (100) 0 0 1 0 1 0 0 0

3b 1 1 1 1 0 0 0 0 0 0 0 1

4c 1 0 0 0 0 0 0 0 0 0 1 0

1/2b, 3b, 7 1 0 1 1 0 0 0 0 0 0 0 0

1/2a, 3a 1 1 0 1 0 0 1 0 0 0 1 0

Sum 166 92 119 116 13 18 27 17 26 22 20 23

CS, cold sensitive; CT, cold tolerant; SS, salt sensitive; ST, salt tolerant; AS, acid sensitive; AT, acid tolerant; DS, desiccation sensitive; DT, desiccation tolerant.
aPercentages relate to prevalence within the serotype.

inlA PMSC’s at 700aa (Table S1). An additional 13 isolates, all
from the serotype 4b CCs 6 and 315, contained a three codon
deletion mutation previously reported in Kovacevic et al. (2013).
With the exception of CCs 5 and 9, all isolates from the same CC
either contained full length inlA or a truncated version.

During the screening of the whole genome sequences, the
absence of lmo1078 was noted among serotype 4b isolates. This
gene, which encodes a UDP-glucose pyrophosphorylase, has been
previously demonstrated to have a role in L. monocytogenes cold
growth (Chassaing and Auvray, 2007). It was also observed that
70% (n = 116) of strains possessed SSI-1 with this island being
most prevalent among serotype 1/2c isolates (100%) followed by
1/2b (94%), 1/2a (71%), and 4b (16%; Table 2). Furthermore,
all isolates from CCs 3, 5, 7, 8, 9, 155, 224, 315, and 321
contained SSI-1 (Table 2). All remaining isolates possessed a
homolog to F2365_0481 in place of SSI-1 (Ryan et al., 2010), with
the exception of the CC121 isolate which possessed lin0464 and
lin0465 homologs as reported in Hein et al. (2011).

The LGI1 indicator gene, emrE, was found in 16 of our isolates
and as previously reported (Gilmour et al., 2010; Althaus et al.,
2014; Kovacevic et al., 2015), all originated from Canada and
14 were serotype 1/2a ST120-CC8. The remaining two isolates
represented novel STs (ST1022 and 1025) that also belonged to
CC8. All emrE containing isolates also harbored SSI-1 and full
length inlA.

Stress Tolerance Distributions among
L. monocytogenes Isolates
All L. monocytogenes isolates were evaluated on their ability
to grow in cold (4◦C), salt (6% NaCl), and acid (pH 5) stress
conditions as well as survive desiccation stress (33% RH). The
cold growth plate count data was modeled using the Dalgaard
and Koutsoumanis (2001) logistic model because it was more
accommodating of fewer sampling points [average R2 = 0.998,
mean standard error (MSE) = 0.129]. From the std-µmax values,
13 isolates were classified as cold sensitive and 18 were classified
as cold tolerant with average std-µmax values of 0.85 ± 0.08
and 1.09 ± 0.02, respectively (Figure 1A). For the salt, acid, and

desiccation tolerance assays, the Baranyi and Roberts (1994) was
suitable for modeling the spectrophotometrically obtained data
with average R2 and MSE-values ranging from 0.997 to 0.998
and 0.003 to 0.017, respectively. Overall, 27 and 17 isolates were
classified as salt sensitive and tolerant with average std-µmax

values of 0.83 ± 0.05 and 1.16 ± 0.05 (Figure 1B); 26 and 22
isolates were classified as acid sensitive and tolerant with average
std-µmax values of 0.64 ± 0.14 and 1.34 ± 0.12 (Figure 1C);
and 20 and 23 isolates were identified as desiccation sensitive
and tolerant isolates with average std-TRGs of 0.81 ± 0.06 and
1.22± 0.11 (Figure 1D), respectively.

Overlapping Stress-Tolerance Phenotypes
Five isolates were classified as sensitive to three out of four
stresses and 10 isolates were sensitive to two stresses, seven of
which were salt and acid sensitive (Figure 2A). Only two isolates
were classified as tolerant to three out of the four stresses and
another 14 isolates were tolerant to two of the four stresses
(Figure 2B). Twenty additional isolates displayed a total of 16
combinations of overlapping sensitive and tolerant phenotypes
(Table S1). The most common overlapping phenotypes were salt
and acid sensitive (n = 10), salt sensitive and desiccation tolerant
(n = 6), cold and acid tolerant (n = 5), and cold tolerant and salt
sensitive (n = 5).

Isolates designated sensitive, intermediate or tolerant to one
stress were analyzed to determine if they significantly differed
in their tolerances to other stresses. When grown in 6% NaCl,
acid tolerant isolates had larger std-µmax values compared to acid
sensitive isolates (p = 0.03, x̄ = 1.02 vs. 0.95). Similarly, salt
sensitive isolates had smaller std-µmax values (x̄ = 0.80) in BHIB
pH 5 compared to intermediate (p < 0.0005, x̄ = 1.03) and salt
tolerant isolates (p = 0.006, x̄ = 1.00).

Stress Tolerances of L. monocytogenes

Lineages, Serotypes, and Clonal
Complexes
Between lineages, the only significant difference observed was
that LI isolates had significantly larger std-µmax values in
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FIGURE 1 | Stress tolerance distributions of 166 L. monocytogenes isolates. Std-µmax of isolates grown in (A) BHIB at 4◦C, (B) BHIB+6% NaCl at 25◦C, and

(C) BHIB pH 5 at 25◦C. (D) std-TRG of isolates after being desiccated at 33% RH for 3 days in BPW at 20◦C and then rehydrated with BHIB and grown at 30◦C.

Isolates were classified as sensitive or tolerant if they displayed an average std-µmaxorstd-TRG >1 SD from the median (=1). std-µmax, standardized maximum

growth rate; std-TRG, standardized time to detectable regrowth; BHIB, brain heart infusion broth; BPW, buffered peptone water.

FIGURE 2 | Numbers of L. monocytogenes isolates with multiple sensitivities or tolerances to food-related stresses. (A) Sensitive isolates. (B) Tolerant

isolates.

BHIB pH 5 than LII isolates (p < 0.0005, x̄ = 1.13 vs.
x̄ = 0.94). Additional significant differences were observed
between serotypes. At 4◦C, serotype 1/2a isolates had significantly
larger (p = 0.017) std-µmax values compared to serotype 1/2c
isolates (Figure 3). In support of this, serotype 1/2a isolates
accounted for 61% of the cold tolerant isolates and only 31%

of cold sensitive isolates compared to a 55% prevalence of this
serotype in the collection (Table 1). Similarly, serotype 1/2c
isolates accounted for 38% of cold sensitive isolates despite a
15% overall prevalence in the collection (Table 1). When isolates
were grown in 6% NaCl, no significant differences were observed
between serotypes (Figure 3), however, 71% of salt tolerant and
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FIGURE 3 | Levels of tolerance to food-related stresses among

L. monocytogenes serotypes. Isolates were evaluated on their ability to

survive cold (BHIB at 4◦C), salt (BHIB+6% NaCl, 25◦C), acid (BHIB pH 5,

25◦C), and desiccation stress (33% RH for 3 days at 20◦C followed by

rehydration with BHIB at 30◦C). Error bars represent standard deviations

(n − 1). Serotypes with different letters within the same stress are significantly

different (p < 0.05). std-µmax, standardized maximum growth rate; std-TRG,

standardized time to detectable regrowth; BHIB, brain heart infusion broth.

67% of salt sensitive isolates were serotype 1/2a isolates, relative
again to a prevalence of 55% in the collection (Table 1).

In BHIB pH 5, serotype 1/2a isolates had significantly smaller
(p = 0.027) std-µmax values than serotypes 1/2b, 1/2c, and
4b (Figure 3). In agreement with these findings, 85% of acid
sensitive isolates were serotype 1/2a whereas only 32% of acid
tolerant isolates were serotype 1/2a (Table 1). No significant
differences (p > 0.05) were observed between serotypes with
respect to desiccation stress std-TRGs (Figure 3).

Beyond the stress tolerances of lineages and serotypes, some
significant differences were also detected between CCs. As a
minimum of six isolates per CC were needed to ensure a
power >0.80 for ANOVA results, statistical analyses were only
performed using CCs 1, 3, 5, 6, 7, 8, 9, 11, 155, and 321. Figure 4
shows the average levels of cold (std-µmax), salt (std-µmax), acid
(std-µmax), and desiccation (std-TRG) tolerance among CCs
with three or more isolates. At At 4◦C, no significant differences
were found between the growth rates of different CCs, however,
it was interestingly to see that CCs associated with 4b isolates
had both the lowest and highest average average std-µmax values
at 4◦C, demonstrating why stress tolerance differences were not
observed between this serotype and others at 4◦C (Figure 4A).

In 6% NaCl, CC7 (1/2a) isolates had significantly (p < 0.05)
smaller std-µmax values compared to CCs 5 (1/2b), 8 (1/2a),
11 (1/2a), and 155 (1/2a; Figure 4B). This highlights the range
of salt tolerances between CCs within the same serotype and
again explains why no significant differences were observed at the
serotype level for salt tolerance. In support of the results shown
in Figure 4B, 67% of CC2 isolates were salt tolerant while 50% of
CC224, 47% of CC7, and 22% of CC9 isolates were salt sensitive
(Table 2).

In BHIB pH 5, CC5 (1/2b) isolates exhibited significantly
(p < 0.05) larger std-µmax values than CCs 7, 155, and 321, and
CC321 isolates additionally had smaller (p < 0.05) std-µmax

values compared to CCs 1, 3, and 11 (Figure 4C). CC1 (4b)
isolates also had significantly (p = 0.02) smaller std-µmax values
compared to CC7 (1/2a) isolates. From Figure 4C it can be seen
that lineage I isolates were more acid tolerant than LII isolates,
as the five CCs with the highest average std-µmax values in BHIB
pH 5 were all from LI while the five CCs with the lowest average
std-µmax values belonged to LII (predominantly 1/2a isolates).
Notably, 57% of CC5 and 67% of CC4 isolates were acid tolerant
while 83% of CC321, 67% of CC20, and 29% of CC7 isolates were
acid sensitive (Table 2).

No significant differences were found between the desiccation
stress std-TRGs of different CCs (Figure 4D). Nevertheless,
CC224 (1/2b) had the smallest average std-TRGs and
correspondingly, 75% of these isolates were classified as
desiccation tolerant. CC11 (1/2a) had the next smallest std-
TRGs while CCs 1 and 4 (both 4b) had the two largest average
std-TRGs.

Associations between Plasmid Harborage
and Stress Tolerances
Although plasmids were identified in 55% of all isolates, a higher
percentage of plasmid carriers were observed among acid tolerant
(73%), desiccation sensitive (75%), and desiccation tolerant
(60%) isolates as compared to cold tolerant (33%) and acid
sensitive (46%) isolates (Figure 5). Within LII, plasmid-positive
isolates had smaller std-µmax values at 4◦C (p = 0.024, x̄ = 1.00
vs. 1.02) and larger std-µmax (p < 0.0005, x̄ = 1.01 vs. 0.86)
values when grown in BHIB pH 5 compared to their plasmid-
free counterparts. No significant differences were found between
the stress tolerance levels of LI plasmid-harboring and plasmid-
free isolates. It was, however, observed that isolates containing
repA group 1 plasmids; which were significantly (p < 0.0005)
smaller than group 2 plasmids, had smaller std-µmax (p = 0.002,
x̄ = 0.98 vs. 1.04) values in 6% NaCl.

Associations between inlA Profiles and
Stress Tolerances
Full length inlA was observed in 72% of isolates, where a
higher percentage of the intact gene prevailed among cold
(89%), salt (94%), and acid (82%) tolerant isolates while a lower
prevalence was detected among desiccation tolerant isolates
(35%; Figure 5). Statistically, isolates with full length inlA had
significantly larger std-µmax values at 4◦C than isolates with an
inlA PMSC (p = 0.001, x̄ = 1.01 vs. 0.97). Additionally,
serotype 4b isolates possessing a three-codon deletion in inlA,
had significantly shorter desiccation stress std-TRGs (p = 0.002
x̄ = 0.94 vs. 1.05) compared to serotype 4b isolates with full
length inlA. No significant associations were found between inlA
profiles and salt or acid stress tolerance.

Associations between Stress Tolerances
and the Presence of SSI1 or LGI1
In 6% NaCl, isolates containing SSI-1 had significantly smaller
std-µmax values (p = 0.004, x̄ = 0.98 vs. 1.03) than
isolates without SSI-1 though this difference was not large. To
determine potential associations between LGI1 harborage and
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FIGURE 4 | Levels of tolerance to food-related stresses of different L. monocytogenes clonal complexes. Isolates were evaluated on their ability to survive

(A) cold (BHIB at 4◦C), (B) salt (BHIB+6% NaCl, 25◦C), (C) acid (BHIB pH 5, 25◦C), and (D) desiccation stress (33% RH for 3 days at 20◦C followed by rehydration

with BHIB at 30◦C). Error bars represent standard deviations (n − 1) of standardized model values. CCs with different cases of the same letter are significantly different

(p < 0.05). std-µmax, standardized maximum growth rate; std-TRG, standardized time to detectable regrowth; BHIB, brain heart infusion broth.

stress tolerance, serotype 1/2a isolates containing the island were
compared to other 1/2a LGI1-negative isolates but similar to
SSI-1, no significant differences in stress tolerances were detected.

SNV Analyses of Stress-Sensitive and
Tolerant Isolates
Figure 6 shows a whole genome SNV phylogeny of all 166
L. monocytogenes isolates with their corresponding genetic and
phenotypic properties. In this figure, groups of closely related
isolates that share the same phenotypes can be seen. However,
also shown are several cases where neighboring isolates have
opposing stress tolerances. Of particular interest was whether
specific SNVs could be related to isolates possessing the same
stress tolerance phenotypes, however, none were detected to
be uniquely shared among stress tolerant isolates that weren’t
also seen in intermediate or sensitive isolates. Among stress
sensitive isolates, unique SNVs shared by subsets of isolates were
identified, but no single SNV was prevalent among >4 isolates
from the same stress sensitive phenotype group. In contrast, a
large number of SNVs were uniquely observed for one or two
isolates from the same stress sensitive group, causing frameshifts,
premature stop codons, loss of start codons, or missense variants.
Information regarding the SNVs identified among all sensitive
and tolerant isolates are presented in Tables S2–S9. Notably, a
number of stress sensitive isolates contained different PMSCs

in several σ
B regulator genes. A cold and desiccation sensitive

isolate contained a PMSC in rsbS as did two other desiccation
sensitive isolates. Furthermore, an additional cold sensitive
isolate contained a PMSC in rsbV, and two desiccation sensitive
isolates contained PMSCs in rsbU.

Genomic Islands of Stress-Sensitive and
Tolerant Isolates
All L. monocytogenes isolates were predicted to harbor 1,318
genomic islands in total, resulting in an average of eight
genomic islands per genome. These islands were clustered into
200 groups of similar sequences. The conservation of genomic
island groups across L. monocytogenes lineages ranged from
unique to a single isolate to conserved in 97 isolates (58%).
Most frequently, intermediate groups conserved in subsets
of monophyletic isolates were observed, as can be expected
from a combination of vertical inheritance of the genomic
islands with further modifications by mutation, insertions, and
deletions. The clustering of L. monocytogenes isolates based on
the presence or absence of groups of genomic islands reflected
their phylogenetic proximity and did not relate particular
genomic island content in isolates with the exhibition of similar
phenotypes. Indeed, no single genomic island was found to
occur in a large proportion of strains with a given phenotype
(Figure S1).
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FIGURE 5 | Prevalence of full length inlA and plasmid harborage among L. monocytogenes stress tolerance phenotypes. (A) Cold sensitive (CS),

intermediate (CI), and tolerant (CT) isolates. (B) Salt sensitive (SS), intermediate (SI), and tolerant (ST) isolates. (C) Acid sensitive (AS), intermediate (AI), and tolerant

isolates (AT). (D) Desiccation sensitive (DS), intermediate (DI), and tolerant (DT) isolates. Full length inlA and the presence of a plasmid were observed in 72 and 55% of

all isolates, respectively.

DISCUSSION

L. monocytogenes’ Tolerance to
Food-Related Stresses Differs between
and within Lineages, Serotypes, and Clonal
Complexes
Cold Stress
L. monocytogenes’ ability to grow at refrigeration temperatures
highlights this pathogen as a concern for the food industry and
consumers alike. However, it is known that L. monocytogenes
strains can largely differ in their ability to adapt to cold stress.
In the present study, it was found that serotypes 1/2a and
1/2b were on average more cold-tolerant than serotypes 4b and
1/2c. Other cold growth studies have also reported serotype
1/2a strains to be more cold tolerant than serotype 4b strains
(Junttila et al., 1988; Buncic et al., 2001; Lianou et al., 2006)
though similar to the current findings, many of these differences
were not statistically significant due to strain to strain variations.
Barbosa et al. (1994) reported that out of 39 L. monocytogenes
strains, Scott A, a 4b clinical isolate, grew the slowest at 4◦C
and that 1/2a strains grew the fastest followed by 1/2b, and
4b. Similarly, in De Jesús and Whiting (2003), LII isolates (all
serotype 1/2a) exhibited the shortest LPDs at 5◦C followed by LI

and then LIII isolates. Researchers have suggested that LII strains
may be able to survive better under food-related stresses due
to an enhanced ability to acquire advantageous mutations and
extrachromosomal DNA compared to LI strains which typically
have more conserved genomes (Orsi et al., 2007, 2008, 2011;
Ragon et al., 2008; Dunn et al., 2009). Certain stress response
genes, predominantly involved in membrane transport and cell
wall structure (Doumith et al., 2004), have also been reported to
be present in LII isolates but absent among LI isolates (Borucki
and Call, 2003; Call et al., 2003; Zhang et al., 2003; Doumith
et al., 2004; Chan and Wiedmann, 2008). Given the critical roles
of these structures in allowing bacteria to adapt and tolerate
numerous stresses (Annous et al., 1997; Verheul et al., 1997;
Klein et al., 1999; Weber et al., 2001; Álvarez-Ordóñez et al.,
2008), it is not surprising that L. monocytogenes lineages and
serotypes can behave differently under certain stresses. The
alternative sigma factor, σ

C, and lmo1078, encoding a UDP-
glucose pyrophosphorylase, are examples of genes with reported
roles in L. monocytogenes cold tolerance, that are present in LII
strains but absent in LI and serotype 4b strains, respectively
(Chassaing and Auvray, 2007; Chan and Wiedmann, 2008).
These absences may partly explain the overall reduced cold
tolerance of serotype 4b isolates respective to 1/2a isolates.
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FIGURE 6 | Whole genome single nucleotide variant (SNV) phylogeny of 166 L. monocytogenes isolates and their associated genetic characteristics

and stress tolerance phenotypes. The scale at the bottom indicates the substitutions per SNV.

However, they do not appear to be necessary for adequate
cold growth as in the present study some 4b isolates were also
classified as cold tolerant.

Salt Stress
LI strains have been shown to be more salt tolerant than LII
strains (Bergholz et al., 2010) and serotype 4b strains to be more
salt tolerant than serotype 1/2a and 1/2b strains (Van Der Veen
et al., 2008; Bergholz et al., 2010; Ribeiro et al., 2014). In the

present study, no significant differences were found between the
growth rates of different serotypes in 6% NaCl, however, five
times as many 4b isolates were classified as salt tolerant as were
classified as salt sensitive. Additionally, despite a 55% prevalence
of serotype 1/2a isolates in our collection, isolates of this serotype
accounted for 71% of salt tolerant isolates but also for 67% of
salt sensitive isolates, indicating a broad range of salt tolerance
among isolates from this serotype. These differences were found
to be associated with specific 1/2a CCs, notably, CC7 isolates were
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on average the most salt sensitive CC and significantly differed
from the 1/2a CCs 8 and 11 with most 1/2a salt tolerant isolates
belonging to CC11.

Acid Stress
LI isolates tolerated acid stress conditions significantly better
than LII isolates. Specifically, serotype 1/2a showed higher
sensitivity to acidity. This trend was also clear when the acid
tolerance of individual CCs was investigated. Van Der Veen
et al. (2008), also reported that 4b (LI) isolates had enhanced
acid tolerance relative to 1/2a isolates. The authors hypothesized
that the increased survival of 4b strains may in part be due
to the presence of ORF2110 which encodes a putative serine
protease similar to HtrA. This protein has been shown to be
important for growth at low pH, high osmolarity, and high
temperatures (Wonderling et al., 2004; Stack et al., 2005; Wilson
et al., 2006). Though this gene may contribute to the overall
acid tolerance of 4b isolates, some acid sensitive 4b isolates were
also identified. Similarly, despite serotype 1/2a isolates having
relatively low acid tolerance overall, some 1/2a isolates were also
acid tolerant, highlighting the importance of not overgeneralizing
isolate phenotypes based on the trends seen for their sero- or
sequence type.

Desiccation Stress
Desiccation tolerance reflects a bacteria’s ability to survive on a
surface for extended periods of time with little access to nutrients
and water. As so, desiccation tolerance is believed to be associated
with L. monocytogenes’ ability to persist in food production plants
(Vogel et al., 2010) and subsequently cross-contaminate food
products. To date, surprisingly little research has been conducted
regarding L. monocytogenes’ desiccation survival and that which
does exist has focused primarily on factors influencing the
survival of a small number of isolates (Vogel et al., 2010; Hansen
and Vogel, 2011; Takahashi et al., 2011; Hingston et al., 2013;
Overney et al., 2016; Zoz et al., 2016). The current study is the
first to our knowledge, to compare the desiccation tolerance of
L. monocytogenes isolates frommultiple serotypes. No significant
differences were found between serotypes or CCs however, some
prominent trends were observed. Serotypes 1/2c and 1/2b were
on average themost desiccation tolerant, followed by 4b and 1/2a.
More specifically, CC224 (1/2b) isolates had the highest levels
of desiccation survival. Interestingly, a large listeriosis outbreak
in Denmark, which resulted in 41 illnesses and 17 deaths, was
linked to the consumption of deli meat contaminated with a
CC224 strain (Kvistholm Jensen et al., 2016). Though there is not
enough evidence to suggest that all CC224 strains are desiccation
tolerant, it is possible that long-term desiccation survival may
have contributed to the occurrence of this outbreak. Another
interesting finding from the present study was that the most
desiccation sensitive isolate, deviating more than 4.5 SD from
the median, was a CC193 (serotype 1/2a) isolate. Since this was
the only CC193 isolate in our collection, it would be interesting
to analyze additional isolates from this CC to determine if this
sequence type is associated with a high degree of desiccation
sensitivity.

Certain Genetic Elements Are Associated
with the Stress Tolerance of
L. monocytogenes
Plasmids
The presumptive presence of a plasmid(s) was detected in 55%
of our isolates which is comparable to other studies where rates
of plasmid isolation have ranged from 0 to 79% with an overall
average of around 30% (Perez-Diaz et al., 1982; Kolstad et al.,
1992; Lebrun et al., 1992; Peterkin et al., 1992; McLauchlin et al.,
1997). In agreement with earlier work, we also observed that
plasmid DNA was more prevalent among LII isolates than LI
isolates (Kolstad et al., 1992; Lebrun et al., 1992; McLauchlin
et al., 1997; Margolles and de los Reyes-Gavilán, 1998; Orsi et al.,
2011).

Kuenne et al. (2010) discovered that L. monocytogenes
plasmids could be divided into two phylogenetic groups based on
their repA sequences and that group 2 plasmids (77–83 kb) were
larger than those belonging to group 1 (32–57 kb). Here plasmid
repA sequences also formed two distinct phylogenetic groups
and in agreement with Kuenne et al. (2010), group 2 plasmids
were significantly larger (55–100 kb) than group 1 plasmids
(26–88 kb). Notably, one serotype 1/2b isolate contained two
plasmids of similar sizes (62 and 69 kb) but belonging to different
repA groups. Though rare, the presence of two plasmids has been
reported in other Listeria spp. isolates (Earnshaw and Lawrence,
1998; Margolles and de los Reyes-Gavilán, 1998).

Our results showed that among LII isolates, which exhibited
higher rates of plasmid harborage than LI isolates, plasmid
harborage was associated with significantly enhanced acid
tolerance but also cold sensitivity. Studies have shown that
plasmid harborage and subsequent replication increases the
metabolic demands of cells, leading to decreased growth rate
relative to plasmid-free strains (reviewed in Diaz Ricci and
Hernández, 2000). However, depending on the genes contained
on a plasmid, plasmid-harborage can also provide cells with
a growth advantage when exposed to certain conditions. In
this study, isolates with the larger repA group 2 plasmids were
significantly more salt-tolerant than isolates that harbored the
smaller repA group 1 plasmids, collectively suggesting that
plasmid harborage may be a hindrance to L. monocytogenes
during replication at low temperatures but provide an advantage
when exposed to acid and salt stress conditions. Furthermore,
the observation that isolates containing larger plasmids had
higher levels of salt tolerance suggests that these plasmids may
contain additional genes that are beneficial for adaptation to high
osmolarity environments.

To date, plasmids acquired by L. monocytogenes have been
shown to contain genes that confer resistance to benzalkonium
chloride (bcrABC; Elhanafi et al., 2010; Rakic-Martinez et al.,
2011; Katharios-Lanwermeyer et al., 2012), cadmium (cadA2,
cadAC; Lebrun et al., 1992; Rakic-Martinez et al., 2011;
Katharios-Lanwermeyer et al., 2012) and antibiotics including
chloramphenicol, clindamycin, erythromycin, streptomycin, and
tetracycline (Poyart-Salmeron et al., 1990; Hadorn et al., 1993).
Listeria spp. plasmids also commonly contain several other
uncharacterized efflux pumps (MDR, SMR, MATE; Gibson and
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Parales, 2000; Masaoka et al., 2000; Boylan et al., 2006; Kuroda
and Tsuchiya, 2009), as well as oxidative stress response genes
(peroxidases, reductases; Kuenne et al., 2010) but their exact
roles in stress tolerance have yet to be investigated. In other
bacterial species, multidrug efflux pumps have been linked to
stress response, virulence, and quorum sensing (reviewed in Li
and Nikaido, 2009). Ma et al. (1995) reported that transcription
of a MDR pump (acrAB) in E. coli increased in response to
fatty acids, ethanol, high salt, and cellular transitioning into
stationary phase. Among the putative plasmid associated contigs
a wide variety of different genes were identified including those
encoding cell surface proteins, lipoproteins, secretion pathways,
heavy metal transporters, transcription regulators, general stress
proteins (CplB, ClpL), NADH oxidoreductases, a glycine betaine
transport permease (ProW), and the multidrug resistance
proteins EbrA and EbrB among others. All group 2 plasmids
shared a general secretion pathway protein and a cell surface
protein. Other genes identified among many but not all group
2 plasmids included those which encoded DNA topoisomerase
III, a membrane-bound protease, a NLP/P60 family lipoprotein,
an NADH peroxidase, and a type IV secretory pathway. Further
investigations are currently focusing on whether these genes or
others with no known function contribute to L. monocytogenes’
acid and salt tolerance.

Lastly, it should be highlighted that plasmids with 99–100%
nucleotide identity were found in isolates from different
serotypes, provinces (Alberta and British Columbia), and
countries (Canada and Switzerland). One plasmid was observed
in 26 isolates, which strongly suggests that L. monocytogenes’
benefits from its presence. The occurrence of the same plasmid
in multiple food-related isolates from different regions also
suggests that bacteria are frequently transported between places
of food production, possibly alongside imported raw materials.
On the contrary, it is particularly interesting that other plasmids
were conserved among specific CCs, serotypes, provinces, and
countries.

Full Length inlA
Full length inlA profiles were observed among 92% of serotype
1/2a isolates, 83% of serotype 1/2b isolates, and 12% of serotype
1/2c isolates, reflecting what has been previously observed
(Jonquieres et al., 1998; Jacquet et al., 2004; Rousseaux et al.,
2004; Nightingale et al., 2005; Felicio et al., 2007; Orsi et al., 2007;
Ragon et al., 2008). Additionally, 44% of 4b isolates contained a
3-codon deletion that unlike inlA PMSCs, is not associated with
attenuated virulence (Kovacevic et al., 2013; Kanki et al., 2015).

The present study results showed that full length inlA profiles
were more prevalent among cold, salt, and acid tolerant isolates
compared to their sensitive counterparts. Also, isolates with full
length inlA profiles were significantly more cold tolerant than
isolates containing inlA PMSCs. Kovacevic et al. (2013) were
the first to report that cold tolerant isolates more likely possess
full length inlA than intermediate and cold sensitive isolates.
This increased stress tolerance has now been shown to extend
to salt and acid tolerance, making it reasonable to hypothesize
that full length inlA may participate in L. monocytogenes’ stress
response. When bacteria are exposed to unfavorable conditions,

their cell envelope is the first line of defense. It is possible that
the absence of cell wall anchored InlA proteins may alter cell-
surface characteristics, leaving cells more susceptible to certain
environmental stresses. Interestingly, only a small percentage
of desiccation tolerant isolates contained full length inlA while
serotype 4b isolates with full length inlA profiles had significantly
impaired desiccation survival relative to those with a 3-codon
deletion. Again, it is suspected that the structure of inlA may
influence L. monocytogenes’ desiccation tolerance, this time with
the full length form possibly imparting a disadvantage. Other
researchers have also detected associations between internalin
mutations and certain phenotypes. In Hingston et al. (2015), inlC
was identified as the interrupted gene in a desiccation tolerant
transposon mutant and Franciosa et al. (2009) found that strains
possessing a truncated inlA protein formed increased levels of
biofilm. Similarly, transposon mutants containing an interrupted
internalin A, B, or H gene, formed thicker biofilms relative to the
wildtype (Piercey et al., 2016). Together, these findings along with
those presented in this study, emphasize a need for more research
regarding the potential roles of internalins in other processes
other than virulence.

SSI-1
Stress survival islet 1 (SSI-1) is a five-gene cluster which has
previously been shown via mutagenesis studies to enhance
L. monocytogenes tolerance to acid, salt, and low temperature
conditions (Cotter et al., 2005; Ryan et al., 2010). On the
other hand, Arguedas-Villa et al. (2014) found no significant
differences in cold tolerance between naturally occurring
L. monocytogenes isolates with and without SSI-1. In the present
study, it was found that SSI-1-positive isolates showed no
enhanced cold, acid, salt, and desiccation stress tolerances relative
to SSI-1 negative isolates. It is possible that any positive influence
of SSI-1 on the stress tolerance of L. monocytogenes’ may
be masked by the presence of other genetic elements when
comparing large collections of isolates as opposed to a mutant
and its wildtype strain.

LGI1
LGI1 is a Listeria 50 kb genomic island that was first identified
in Canadian CC8 isolates associated with a large 2008 listeriosis
outbreak involving contaminated deli meats and resulting in
22 fatalities (Gilmour et al., 2010). Since then, LGI1 has been
identified in other CC8 L. monocytogenes isolates from Canada
(Kovacevic et al., 2013) but not from other countries (Althaus
et al., 2014). In agreement with these studies, the presence of
LGI1 was only detected in Canadian isolates fromCC8. However,
instead of all LGI1+ isolates being ST120 as previously reported,
two novel CC8 STs (ST1022 and 1025) were also associated with
LGI1 harborage. The conservation of LGI1 among Canadian
isolates and its association with a fatal outbreak has led to
heightened interest in the putative functions of the genes
located on this island including those encoding putative type
II and type IV secretion systems, pilus-like surface structures,
a multidrug efflux pump homolog (EmrE), and an alternative
sigma factor (Gilmour et al., 2010). Recently, Kovacevic et al.
(2015) reported that deletion of LGI1 genes with putative efflux
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(emrE), regulatory (lmo1852), and adhesion (sel1) functions, had
no impact on the tolerance of L. monocytogenes’ to acid, cold,
or salt, but that deletion of emrE increased susceptibility to
quaternary ammonium-based sanitizers. Based on these findings,
it was investigated whether the presence or absence of the whole
LGI1 island could be associated with stress tolerance differences
between CC8 isolates however, no significant differences were
identified. Consequently, LGI1 had no major influence on
L. monocytogenes’ ability to adapt to the food-related stresses
evaluated in the present study. However, it is possible that
the island contributes in other ways to the persistence of CC8
Canadian isolates in food processing environments in addition
to the role of emrE in sanitizer resistance.

SNVs Associated with Stress Tolerance
Phenotypes
An important finding from this study was that closely related
isolates from within the same clonal complexes exhibited
opposing stress tolerances, suggesting that minor genetic
differences can also exert great impact on stress tolerance
phenotypes. This was observed in a study by Hoffmann et al.
(2013), where a single thymine deletion in the σ

A-like promoter
region of betL, encoding an osmolyte transporter specific for
betaine uptake, dramatically increased betL transcription, and
hence the osmo- and chill-tolerance. Karatzas et al. (2003)
reported that a spontaneous high hydrostatic pressure tolerant
L. monocytogenes mutant of Scott A, contained a single codon
deletion in ctsR, a negative regulator of several heat shock and
general stress proteins, that also conferred increased thermo-
tolerance and resistance to H2O2. Additionally, inMetselaar et al.
(2015) a number of spontaneous acid tolerant mutants were
found to contain SNVs in the ribosomal protein gene rpsU.None
of these aforementioned mutations were detected in the present
study.

Analyses to determine if unique SNVs could be detected
among isolates from individual stress tolerance phenotype
groups were also performed. Studies identifying the genetic
basis of phenotypic traits using the variation within natural
populations are known as a genome-wide association studies
(GWAS). While GWAS have been effective for identifying
mutations responsible for phenotypic traits in humans, the
clonal nature of bacterial replication where mutations can reach
a high frequency on a single genetic background, makes it
difficult to distinguish mutations responsible for an observed
phenotype (Read and Massey, 2014; Falush, 2016). As a result,
bacterial molecular epidemiology has focused on identifying
clonal lineages with particular phenotypic properties rather than
identifying the specific genetic variants responsible. Recently,
Earle et al. (2016) used a GWAS approach to successfully
identify genes and genetic variants underlying resistance to 17
antimicrobials in over 3000 isolates of taxonomically diverse
clonal and recombining bacteria. While these results show
the potential of bacterial GWAS, antimicrobial resistance is
usually gained during antimicrobial exposure and thus it is
more likely that the traits evolve on multiple independent
backgrounds making them easier to detect (Falush, 2016).

To date, the identification of mutations responsible for more
complex phenotypes such as those evaluated in the present study,
remain challenging.

Our analyses did not detect any unique SNVs among more
than one isolate from the same stress tolerant group, suggesting
homoplasy among stress tolerant phenotypes where mutations
evolve independently to confer tolerance. On the contrary,
a few different SNVs were identified among four or fewer
isolates from the same stress sensitive groups. Notably, the
cold sensitive phenotypes of two isolates may be associated
with PMSCs detected in the σ

B regulator genes rsbS and rsbV
(Voelker et al., 1995). In support of this hypothesis, deletion
of rsbV in a L. monocytogenes mutagenesis study resulted
in impaired cold stress tolerance (Chan et al., 2008). Three
desiccation sensitive isolates also contained different PMSCs in
rsbS, including one isolate which was also cold sensitive. An
additional two desiccation sensitive isolates contained different
PMSCs in another σ

B posttranscriptional regulator, rsbU. Given
the importance of σ

B in L. monocytogenes’ adaptation to several
environmental stresses (Wiedmann et al., 1998; Kazmierczak
et al., 2003), it is possible that these mutations contributed to the
reduced desiccation tolerance of these isolates. In fact, in Huang
et al. (2015) an L. monocytogenes sigB mutant demonstrated
reduced desiccation survival relative to the wildtype strain.

Genomic Islands
In this study, specific genomic islands could not be exclusively
associated with a particular stress tolerance phenotype. This
is to be expected as genomic islands often contain virulence
factors, and in general these are overrepresented in genomic
islands as compared to the chromosome (Sui et al., 2009).
In L. monocytogenes in particular, genomic islands have
been associated with virulence, heavy metal resistance, and
benzalkonium chloride efflux (Gilmour et al., 2010; Kuenne et al.,
2010; Kovacevic et al., 2015). SSI-1 as described above, has been
previously associated with L. monocytogenes’ stress response,
but was not significantly correlated with the stress tolerance
phenotypes examined in the present study.

CONCLUSIONS

In summary, L. monocytogenes’ tolerances to certain food-related
stresses differs between serotypes as well as CCs with the latter
being a better predictor of isolate salt and acid tolerance but
not of cold and desiccation tolerance. To the best of our
knowledge, this is the first study to evaluate the stress tolerance
of different L. monocytogenes CCs. Other noteworthy findings
include potential relationships between the presence of full length
inlA and enhanced cold tolerance and the presence of a plasmid
and enhanced acid tolerance. On the contrary, the presence of
genomic islands including SSI-1 and LGI1, provided isolates
with no noticeable advantages under the stresses evaluated
in this study. Additional research is needed to confirm the
potential roles of full length inlA and plasmid associated genes
in L. monocytogenes’ response to various stresses.

A whole genome SNV phylogeny of isolate assemblies
identified a number of unique SNVs shared by up to four
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stress sensitive isolates while no common SNVs were observed
among stress tolerant isolates. More specifically, six isolates with
sensitivity to cold and/or desiccation stress contained PMSCs in
σ
B regulator genes (rsbS, rsbU, rsbV) that may be contributing to

these phenotypes.
A number of novel genetic elements were also elucidated in

this study including nine new L. monocytogenes STs, a new inlA
PMSC, the absence of a cold stress associated gene (lmo1078) in
4b isolates, and several connections between L. monocytogenes
CCs and the presence/absence or variations of specific genetic
elements. For example, SSI-1 was detected in 100% of isolates
from specific CCs, certain plasmid groups and sizes were
conserved among isolates from the same CCs, and plasmids
with 100% identity were found in isolates belonging to the same
CCs but from very different geological areas. While our isolate
collection represented of a number of L. monocytogenes CCs,
some of which have been previously identified as common among
food-related isolates, other CCs were less prevalent or absent
from our study of Canadian and Swiss isolates. This highlights the
regional prevalence of certain L. monocytogenes genotypes and
emphasizes the need for more international collaborative studies.

Collectively, the results suggest that using whole genome
sequencing to (1) determine the STs of L. monocytogenes food-
related isolates and to (2) screen for the presence of genetic
elements such as full length inlA and a plasmid(s), could
help food processors and food agency investigators to quickly
identify if isolates are likely to possess enhanced tolerances
to certain stresses that may be facilitating their long-term
survival/persistence in a food processing environment. The US
FDA and CDC are rapidly making whole genome sequencing of
foodborne bacterial pathogens a routine part of screening to help
link illnesses to contaminated foods and to identify outbreaks
earlier. While no one SNV was identified among isolates with

the same stress tolerant phenotype, increased sequencing of
L. monocytogenes isolates in combination with stress tolerance
profiling, will enhance the ability to identify genetic elements
associated with more stress tolerant strains.
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