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ARTICLE

RAS-pathway mutation patterns define epigenetic
subclasses in juvenile myelomonocytic leukemia
Daniel B. Lipka et al.#

Juvenile myelomonocytic leukemia (JMML) is an aggressive myeloproliferative disorder of

early childhood characterized by mutations activating RAS signaling. Established clinical and

genetic markers fail to fully recapitulate the clinical and biological heterogeneity of this

disease. Here we report DNA methylome analysis and mutation profiling of 167

JMML samples. We identify three JMML subgroups with unique molecular and clinical

characteristics. The high methylation group (HM) is characterized by somatic PTPN11

mutations and poor clinical outcome. The low methylation group is enriched for somatic

NRAS and CBL mutations, as well as for Noonan patients, and has a good prognosis. The

intermediate methylation group (IM) shows enrichment for monosomy 7 and somatic KRAS

mutations. Hypermethylation is associated with repressed chromatin, genes regulated by

RAS signaling, frequent co-occurrence of RAS pathway mutations and upregulation of DNMT1

and DNMT3B, suggesting a link between activation of the DNA methylation machinery and

mutational patterns in JMML.
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Juvenile myelomonocytic leukemia (JMML) is a myeloproli-
ferative disorder (MPD) of early childhood that originates
from the multipotent hematopoietic stem and progenitor cell

(HSPC) compartment. JMML is characterized by overproduction
of mature and immature myeloid cells, including the erythroid
lineage1. Without adequate treatment, survival for most children
is < 1 year. Although few cases show spontaneous remission,
allogeneic hematopoietic stem cell transplantation (HSCT)
remains the only curative treatment option for the majority of
patients2. Yet, even with HSCT the 5-year event-free survival
(EFS) still reaches only about 50%3.

Hyperactive RAS signaling is assumed to be the main driving
event in JMML. It is caused by somatic mutations in KRAS,
NRAS, or PTPN11 in about 50% of patients1,2,4–6. In addition,
10–15% of JMML patients show clinical signs of neurofi-
bromatosis with biallelic inactivation of the NF1 locus in leukemic
cells7, and another 10–15% have an underlying developmental
disorder with germline CBL mutations (herein termed
“CBL syndrome”) and acquired loss of heterozygosity at the locus
in leukemic cells5,8. Moreover, some patients with Noonan
syndrome develop a self-limiting MPD, which is hematologically
indistinguishable from JMML9. Recently, less frequent recurrent
mutations in JAK3, RAC, and RRAS have been identified10–12.
These new mutations also result in activation of intracellular
signaling pathways including RAS and JAK/STAT signaling. RAS
pathway mutations generally occur in a mutually exclusive
manner in JMML and co-occurrence has only been described in
some cases10–12. Together, the emerging picture of genetic
alterations suggests underlying signaling defects involving the
RAS pathway in almost all cases of JMML.

So far, there is no clear understanding of how RAS pathway
mutations relate to the heterogeneous disease biology and
variable clinical outcome seen in JMML patients. For example,
some studies reported that JMML patients with NRAS mutations
have a rather favorable course, including some cases with spon-
taneous disease regression13,14. In contrast, JMML with somatic
PTPN11 mutations appear to represent cases with aggressive
biology and are associated with a high risk of relapse after
HSCT15. However, the affected RAS pathway gene alone does not
fully explain clinical outcome. Evidence from the literature
suggests that oncogenic RAS-signaling is able to modify
epigenetic patterns16–18. Indeed, investigations of DNA methy-
lation in JMML at the level of candidate gene promoters
(AKAP12, BMP4, CALCA, CDKN2A, RARB, and RASA4) iden-
tified DNA hypermethylation to be associated with poor clinical
outcome19–21. Still, to date, a comprehensive characterization of
the DNA methylome in JMML is missing.

In the present study, we perform an integrative analysis of
genome-wide DNA methylation profiles with mutational
patterns, copy-number changes, and gene expression in primary
JMML samples. This analysis uncovers distinct DNA methylation
signatures, which are related to RAS pathway mutation patterns.

Results
Identification of JMML-specific methylation events. Samples
from 19 JMML patients and from 1 child with Noonan syndrome
and MPD, together referred to as JMML samples (discovery
cohort; Supplementary Table 1), were analyzed using the
HumanMethylation450 Bead Chip Array (Illumina) to system-
atically investigate their DNA methylomes. Unsupervised
hierarchical consensus clustering of the most variable CpG sites
across all JMML samples revealed two clusters that separated the
JMML samples (Supplementary Fig. 1a). In order to test the
hypothesis that the two clusters reflect different cells-of-origin
along the hematopoietic differentiation trajectory, the data were

mapped in relation to methylomes of normal cell populations
across all hematopoietic differentiation stages (Fig. 1a and Sup-
plementary Fig. 1b–e). In this analysis, JMML samples formed
a separate cluster, distinct from HSPCs, mature myeloid cells,
B-cells and NK-cells, demonstrating that JMML methylomes
reflect patterns both from terminally differentiated blood cells,
as well as from more immature hematopoietic progenitor
cells. Although the JMML methylomes exhibited more variability
than the normal hematopoietic cell populations, the differentia-
tion stage achieved did not disclose obvious JMML subgroups
(Fig. 1a and Supplementary Fig. 1b–e). The observed elevated
variability across the JMML methylomes could potentially
be explained by differences in cell type composition across
samples, which could mask JMML-specific DNA methylation
patterns. Indeed, estimation of cell type contributions in indivi-
dual JMML samples using reference methylomes from several
normal hematopoietic cell types revealed substantial hetero-
geneity in cell composition across all JMML samples, with B-cells,
HSPCs, and granulocytes showing the highest degree of
variability (Fig. 1b)22.

This observation prompted us to develop a strategy to identify
JMML-specific methylation events that would not be affected by
the samples’ cell type composition. All CpGs showing dynamic
methylation changes during normal hematopoietic differentia-
tion, so called hematopoiesis-specific differentially methylated
probes, were excluded from further analysis to retain only
non-variable CpGs (nvCp2Gs; Fig. 1c and Supplementary Data 1).
Consensus clustering of the discovery cohort using only nvCpGs
identified two clusters that stably separated the JMML samples
(Fig. 1d and Supplementary Fig. 1f–h). The first subgroup, named
high methylation group (HM, n = 14 samples), showed signifi-
cantly higher DNA methylation levels in the most variable
nvCpGs as compared to the low methylation group (LM; Fig. 1e
and Supplementary Fig. 1i). The methylation differences
were most pronounced in CpG islands (Fig. 1e), suggesting a
CpG-island methylator phenotype (CIMP), which has also been
reported in other malignancies23–25. Supervised differential
methylation analysis determined 5,380 JMML-specific differen-
tially methylated probes (jmmlDMPs) separating the two JMML
subgroups (Supplementary Data 2). The majority of jmmlDMPs
(5,277; 98.1%) showed increased methylation in the HM group as
compared with the LM group, whereas only 103 jmmlDMPs
(1.9%) lost methylation. Hierarchical clustering of the jmmlDMPs
faithfully recapitulated the identified JMML subgroups and
showed a remarkable enrichment of relapses after HSCT (7/13
patients, 53.8%; one patient had missing information) in the HM
group, while none of the patients in the LM group (0/6) had
disease recurrence (Fig. 1f). Together, these data suggest that
JMML-specific aberrant DNA methylation patterns might be
associated with distinct clinical and biological features.

DNA methylation correlates with clinical and genetic features.
To validate the methylation groups identified in the discovery
cohort and to investigate their clinical relevance, an extended
methylome analysis was performed in an unselected sample set
consisting of 147 consecutive patients with JMML or Noonan
syndrome and MPD registered in the EWOG-MDS 1998 or
EWOG-MDS 2006 trials (validation cohort; Supplementary
Table 2, Supplementary Data 3). Consensus clustering of the
jmmlDMPs now identified, in addition to the HM and LM
groups, a third subgroup of patients showing intermediate
methylation levels (IM group; Supplementary Fig. 2a–d).
Remarkably, the LM cluster was enriched for patients known to
have low-risk disease26, including all patients diagnosed with
Noonan syndrome and MPD (18, 100%), all JMML patients
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carrying CBL mutations (13) and the majority of patients with
NRAS mutations (14/19, 73.7%; Fig. 2). Factors known to predict
an unfavorable disease course were underrepresented in the LM
group, which was reflected by a lower age at diagnosis (median
age: 0.4 years; age> 2 years: 6%), lower rates of thrombocyto-
penia (platelets < 70 K µl−1: 29%) and fewer patients with elevated

levels of fetal hemoglobin (proportion of cases with elevated HbF:
29%). By contrast, the HM cluster was enriched for patients
showing high-risk characteristics: 70% carried somatic PTPN11
mutations, 78% had low platelet counts (< 70 K µl−1), all cases
informative for HbF had elevated levels when adjusted for age
and 88% were older than 2 years at the time of diagnosis. The IM
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cluster was enriched for cases with chromosome 7 alterations,
comprising 82% of all patients with this aberration. Moreover, a
significant proportion of cases with KRAS mutations (65%), most
of them co-occurring with chromosome 7 aberrations (92%),
were assigned to the IM subgroup (Fig. 2 and Supplementary
Table 2).

DNA methylation is an independent prognostic factor in
JMML. Survival analysis of patients according to methylation
group assignment revealed a strikingly inferior overall survival
(OS) for the HM group as compared with the LM and IM groups
(n = 147; log rank: p< 0.01; Fig. 3a). When considering only cases
informative for outcome after HSCT and excluding patients with
Noonan syndrome, CBL mutation or incomplete mutational
analysis (n = 92; Supplementary Table 3), OS still tended to be
inferior in the HM group, but the comparison failed to reach
statistical significance (Supplementary Fig. 3a). Nevertheless, the
strong association of methylation groups with known prognostic
factors suggested that the methylation groups might reflect the
risk of relapse after HSCT. As expected, the HM group showed a
significantly higher cumulative incidence of relapse (CIR) than
the other groups (Gray’s test: p< 0.01; Fig. 3b). This difference
was also reflected by poorer EFS in the HM group (log-rank test:
p = 0.09 across all groups, p = 0.03 for HM vs. “other”), whereas
treatment-related mortality (TRM) was not significantly different
across methylation groups (Supplementary Fig. 3b, c). Of note,
the selection of the stem cell donor, the type of preparative
regimen, and the experience of the transplant center with tai-
loring of immunosuppressive therapy might be additional
important factors influencing the risk of relapse after HSCT in
JMML3,27,28. When restricting the analysis to patients who had
an human leukocyte antigen (HLA)-identical sibling donor or a
≥ 9/10 HLA allele-level matched unrelated donor and who
received a uniform preparative regimen and immunosuppressive
therapy according to European Working Group of MDS in
Childhood (EWOG) study recommendations (n = 47), the
cumulative incidence of relapse was still significantly higher for
patients in the HM group (Gray’s test: p = 0.03; Supplementary
Fig. 3d). This indicates that at least part of the increased risk is
indeed attributable to the molecular disease group as defined by
the DNA methylome.

Based on the finding that DNA methylation groups were
significantly associated with risk of relapse, a cause-specific Cox
model was fitted for which TRM was considered as competing
risk. The model included the methylation group as well as known
prognostic factors (i.e., age at diagnosis, sex, somatic PTPN11

mutation, and platelet count). Fetal hemoglobin levels were not
included since data were missing in about 25% of patients. In this
model, methylation group (HM vs. LM: RR 10.9 (1.8 – 66.2), HM
vs. IM: RR 4.8 (1.4 – 17.2), IM vs. LM: RR 2.2 (0.4 – 11.2);
p = 0.01, Wald's test) and PTPN11 mutation status (PTPN11-
mutant vs. other: RR 3.3 (1.2 – 8.9); p = 0.02, Wald's test) were
identified as prognostic factors for CIR.

Together, the evaluation of clinical information further
supports the hypothesis that the DNA methylation groups
identify biologically distinct subgroups in JMML.

RAS pathway mutations do not explain methylation groups.
The observation that methylation groups show enrichment for
distinct gene mutations raises the possibility that distinct RAS
pathway mutations drive the identified DNA methylation
patterns. To test this hypothesis, DMPs were called separately for
each genetically defined JMML group. Specific DMPs were
identified for patients with Noonan syndrome, CBL syndrome,
somatic PTPN11-, and somatic KRAS mutations (Noonan: 1,313;
CBL: 279; PTPN11: 514; KRAS: 122), whereas no specific
methylome pattern could be detected for patients with somatic
NRAS mutations, NF1 patients, and for quintuple-negative
patients (6, 10, and 0 DMPs, respectively). Hierarchical cluster-
ing of all patients based on the “mutation-specific” DMPs did not
provide a clear genotype-specific separation of patients for any of
the DMP-classes, suggesting that the affected RAS pathway gene
alone is not sufficient to explain the observed methylome patterns
(Fig. 4a, b and Supplementary Fig. 4a, b).

To investigate whether differences in the mutated amino acid
residues are associated with the methylation groups, a detailed
analysis of affected amino acid residues and protein domains
was performed. In PTPN11, the majority of mutations occur in
the N-terminal SH2 domain (N-SH2, 82%). Interestingly, all of
the 8 mutations occurring in the protein tyrosine phosphatase
domain (PTP) were observed in either the IM (3/8) or the HM
group (5/8; Fig. 4c). Glutamic acid at position 76 (E76), was the
most frequently affected amino acid residue in the N-SH2
domain (35%). This residue showed a distinct methylation group
distribution related to the type of amino acid exchange: The E76K
mutation preferably occurred in the IM group (7/13), whereas the
E76Q/G mutations were enriched in the HM group (6/7). The
KRAS and NRAS mutations in JMML are predominantly G12D
and G13D, respectively. In line with the enrichment for KRAS
and NRAS mutations in the IM and LM groups, respectively, the
KRAS G12D mutations were mainly found in the IM group,
whereas NRAS G13D mutations were mainly found in the LM

Fig. 1 Identification of JMML-specific aberrant DNA methylation patterns. a Three-dimensional principal component analysis (PCA) of DNA methylation
dynamics across 12 normal hematopoietic cell types. JMML samples were projected as additional data points. CMP, common myeloid progenitors; GMP,
granulocyte-macrophage progenitors; HSC, hematopoietic stem cells; HSPCs, hematopoietic stem and progenitor cells; L-MPP, lymphoid-primed
multipotent progenitors; MEP, megakaryocyte-erythroid progenitors; MPP, multipotent progenitor cells; NK cells, natural killer cells. b Relative proportions
of hematopoietic cell types in each sample from the discovery cohort (n= 20)22. c Strategy used to identify JMML-specific differentially methylated probes
(jmmlDMPs). Step 1: differentially methylated probes (DMPs) exhibiting dynamic changes during normal hematopoietic differentiation were identified
between HSCs and each of six differentiated blood cell types (granulocytes, monocytes, NK cells, CD8+ T-cells, CD4+ T-cells, and B-cells). Probes were
considered as DMPs if the adjusted p-value was< 0.05 and the methylation difference (Δmeth) was≥ 0.2. Step 2: 59,230 unique hematopoiesis-specific
DMPs (hemDMPs) were identified and removed from further analysis, resulting in 308,199 CpGs that are non-variable in hematopoiesis (nvCpGs). Step 3:
consensus clustering identified stable JMML subgroups, for which JMML-specific DMPs were identified using adjusted p-value< 0.05 and Δmeth≥ 0.2 as
filtering criteria. Step 4: identification of jmmlDMPs and clustering of JMML samples into subgroups. d Consensus clustering of the 5,000 most variable
nvCpGs identified 2 stable groups (k= 2) separating JMML samples. The consensus matrix shows pairwise cluster assignment frequencies derived from
500 iterations based on Manhattan distance metric and Ward’s linkage. Consensus values range from 0 (white) to 1 (dark blue). e Boxplots depicting the
distribution of mean DNA methylation levels per JMML sample according to methylation group assignment across the 5,000 most variable CpG probes
(top) and the 1,000 most variable CpG islands (CGI; bottom). Boxes represent the interquartile range and whiskers depict the minimum and maximum of
the distribution. P-values are calculated using the two-sided unpaired Welch’s t-test. f Hierarchical clustering of the 1,000 most variable jmmlDMPs using
Manhattan distance metric and Ward’s linkage. Samples (columns) are ordered according to consensus clustering results
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group. Although the numbers are too small to be of statistical
significance, it is interesting to mention that 2/3 KRAS G12V and
2/3 NRAS G13R mutated cases were assigned to the HM group,
which could potentially indicate distinct oncogenic potential of
these mutations (Fig. 4d, e).

JMML-specific DMPs are enriched for PRC2 and RAS target
genes. Investigation of the genomic distribution of jmmlDMPs
revealed a strong enrichment for CpG islands, a depletion of non-
coding RNAs and repetitive elements, and a depletion of intronic
regions (Fig. 5a and Supplementary Fig. 5a, b). This supports the
finding that the strongest methylation differences between HM
and LM JMML were observed in CpG island probes (Fig. 1e) and
is also compatible with a CIMP phenotype, suggesting deregula-
tion of the epigenetic machinery.

Chromatin state and histone mark enrichment analysis using
ENCODE data sets showed strong overrepresentation of
jmmlDMPs in repressed chromatin (Fig. 5b and Supplementary
Fig. 5c). In addition, jmmlDMPs were enriched for regions
representing poised promoters, suggesting involvement of devel-
opmental pathways in JMML pathogenesis (Fig. 5b and
Supplementary Fig. 5c). In line with these findings, gene set
enrichment analysis (GSEA) showed a highly significant enrich-
ment of regions decorated with H3K27me3, either alone or in
combination with H3K4me2/3, and of regions bound by PRC2
components including EED and SUZ12 (Supplementary Fig. 5d).
PRC2 is a chromatin-modifying complex mediating transcrip-
tional repression and this complex has been shown to be
frequently altered by mutations or deletions in JMML10,11. Most
importantly, GSEA of those CpGs that exhibited the strongest
deregulation in HM JMML as compared to both the LM and IM
samples, revealed significant enrichment of genes associated with
oncogenic RAS signaling (Fig. 5c). Together, these data imply that
both aberrant function of the PRC2 complex as well as strong
activation of RAS-signaling cooperate in the pathogenesis of
JMML and the establishment of aberrant methylation patterns.

The mutational signature correlates with methylome groups.
The mutational status of RAS signaling pathway genes assessed
during clinical work-up did not provide a mechanistic

explanation for the JMML methylation groups observed. In
search for secondary events that might explain our findings,
integrative analysis of genetic and epigenetic events was per-
formed in 50 patients of whom both methylome and exome-
sequencing data sets were available. In addition to the classical
JMML-associated mutations affecting RAS-pathway genes
(PTPN11, NF1, KRAS, NRAS, and CBL), exome sequencing
detected frequent mutations in JAK3 (10/50, 20%), SETBP1 (6/50,
12%), TET1 (5/50, 10%), ASXL1 (4/50, 8%), TET3 (4/50, 8%),
RUNX1 (3/50, 6%), and TET2 (3/50, 6%). Copy-number altera-
tions were frequently observed for EZH2 (12/50, 24%), NF1 (4/50,
8%), SUZ12 (4/50, 8%), and JAK3 (2/50, 4%; Supplementary
Fig. 5e). Integration with methylome groups identified genes that
were predominantly altered either in the HM and/or in the IM
group (HM: ASXL1, RUNX1, SUZ12, TET1; HM & IM: EZH2,
JAK3, SETBP1, and TET3), many of which are known epigenetic
modifiers including members of the PRC2 complex or genes
implicated in RAS-RAF-MEK-ERK pathway activation. The
majority of JAK3 alterations occur in patients assigned to the HM
or IM groups (9/11) and almost all co-occurred with PTPN11
mutations (7/11) or NF1 alterations (2/11). The remaining two
patients with JAK3 mutations that were assigned to the LM group
both had co-occurring NRAS mutations (Fig. 5d). Overall, both
the HM and the IM groups were associated with a higher number
of genetic alterations as compared to the LM group (HM vs. LM:
52 vs. 22, p< 0.001; IM vs. LM: 51 vs. 22, p< 0.001; Wilcoxon's
test with continuity correction) and also showed higher fre-
quencies of co-occurring mutations affecting the RAS-RAF-
MEK-ERK pathway (Fig. 5e). Focusing on the most frequently
altered genes, it became evident that a combination of these gene
alterations almost perfectly discriminates the HM and IM sam-
ples from the LM samples.

Hypermethylation is associated with activated RAS signaling.
Having detected an enrichment of gene sets associated with
oncogenic RAS-signaling specifically in the HM group (Fig. 5c)
and an increased co-mutation frequency of genes affecting the
RAS signaling pathway (Fig. 5d, e), we investigated gene
expression data sets available from a subset of samples from our
discovery cohort. Promoter methylation levels globally showed
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inverse correlation with gene expression levels, with lowly
expressed genes having the highest promoter methylation levels;
nevertheless, obvious JMML subgroups could not be detected
based on unsupervised hierarchical clustering of the most variably
expressed genes (Supplementary Fig. 6a, b). Correlation of aber-
rantly methylated jmmlDMPs with the expression levels of cor-
responding genes across the JMML methylation subgroups

demonstrated a trend towards inverse correlation of gene
expression with DNA methylation, which is in line with previous
findings for correlation of gene expression and DNA methylation
in normal blood cell types (Supplementary Fig. 6c)29–31. GSEA of
the ranked gene list, revealed enrichment of genes known to be
silenced by KRAS signaling as the only statistically significant hit
(Supplementary Fig. 6d). This increase in RAS-mediated gene
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silencing in the HM subgroup could potentially be attributed to
differences in expression levels of genes regulating the RAS
signaling pathway or, alternatively, to deregulation of epigenetic
regulators. Interrogation of the gene expression data set revealed a
significant upregulation of PTPN11 expression in the HM group
as compared with the LM group coinciding with downregulation

of the RAS signaling modulators AKAP12 and RASSF1 (Fig. 5f
and Supplementary Fig. 5f). Of note, no significant deregulation
was observed for other frequently mutated RAS pathway genes
(i.e., KRAS, NRAS, NF1, and CBL, Supplementary Fig. 5f).
Next, the expression of genes that have been implicated in
RAS-mediated epigenetic silencing (DNMT1, DNMT3A,
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DNMT3B, DOT1L, EED, EZH2, HDAC9, SUZ12, and TET1-3)
was examined (Fig. 5g and Supplementary Fig. 5f)18,32–35. Both
DOT1L and HDAC9 transcripts were downregulated, whereas
DNMT1 and DNMT3B were upregulated in the HM group.
Interestingly, differences in promoter methylation that would go
along with the observed expression changes were only found for
AKAP12 and HDAC9 (Supplementary Fig. 7). An increase in
promoter methylation was also observed for TET1 but the cor-
responding gene expression did not show significant changes in
the present data set (Supplementary Figs. 5f and 7). None of the
remaining candidate genes presented detectable changes in pro-
moter methylation levels at the CpG sites tested with the
HumanMethylation450 Bead Chip Array (Supplementary Fig. 7).
The lack of DNA methylation changes in many of our tran-
scriptionally deregulated candidate genes could be due to insuf-
ficient coverage of cis-regulatory CpG sites on the
HumanMethylation450 Bead Chip Array, but it is also possible
that transcriptional deregulation is mediated by other (epigenetic)
mechanisms.

Together, activation of the RAS pathway by gene mutations
might be further modulated by overexpression of PTPN11 and
simultaneous downregulation of negative RAS signaling mod-
ulators in HM JMML patients. In addition, the HM group
exhibits small but significant expression changes in components
of the epigenetic machinery including upregulation of DNMT1
and DNMT3B. However, if the expression changes observed here
are sufficient to drive CIMP or if additional secondary regulatory
events affect the activity of epigenetic factors needs to be
examined in future studies, in order to provide mechanistic
insights into how the CIMP in JMML is established.

Discussion
Molecular classification of cancer based on DNA methylomes has
revolutionized the identification of tumor subclasses both in
neurooncology36–39 and in chronic lymphocytic leukemia40,41.
Here we used an integrative approach and identified three clini-
cally relevant JMML subgroups with distinct molecular genetic
patterns (Fig. 6). The HM subgroup is enriched for patients with
somatic PTPN11 mutations and includes cases with poor clinical
outcome. The LM subgroup encompasses all patients with CBL
syndrome and Noonan syndrome with MPD, as well as patients
with somatic NRAS mutations and low-risk features. It is intri-
guing that the disorders in these patient groups, which are all
characterized by a less aggressive clinical course, also share a
highly similar methylome. The IM group is enriched for cases
with monosomy 7 and somatic KRAS mutations, suggesting that
the joint occurrence of these genetic alterations drives a specific
epigenetic profile in JMML. Although the DNA methylation

subgroups correlate with known prognostic factors in JMML
(i.e., age at diagnosis, platelet count, genotype, and elevated HbF
levels)2,15,42, only the methylation subgroup and, to a lesser
extent, the presence of a somatic PTPN11 mutation were
significant predictors for risk of relapse in a multivariate
Cox-regression model. This finding is of high conceptual rele-
vance for JMML, as currently available risk stratification strategies
rely on clinical parameters for which their individual weight
remains uncertain. Similar to the approach proposed for pediatric
brain tumors, we anticipate that classification based on under-
lying molecular defects, including DNA methylation patterns, will
improve prospective patient stratification also in JMML.

JMML is characterized by the presence of mutations activating
the RAS signaling pathway in about 90% of cases and these
mutations are mostly mutually exclusive15,43. Our present data
extends these findings and demonstrates that DNA hyper-
methylation is a hallmark of aggressive JMML. Despite being a
genome-wide phenomenon, hypermethylation in JMML is most
pronounced in the context of CpG-rich regions such as, e.g., CpG
islands. This finding is similar to DNA hypermethylation phe-
notypes found in other cancers that were described as CIMP23–25.
Early reports had implicated RAS signaling in the regulation of
DNA methylation16. Meanwhile, there is accumulating evidence
that oncogenic KRAS-signaling mediates DNA hypermethylation
and CIMP17,18,44. So far, more than 30 genes have been shown to
be required to establish RAS-mediated CIMP, many of which
seem to act in a tissue-specific manner. The most recurrently
identified genes in this context are DNMTs, EED, EZH2, and
BMI116–18,45.

In recent work with murine cells, oncogenic Ras signaling has
been shown to induce transcriptional changes leading to an
accumulation of H3K27me3 and to mediate upregulation of
Dnmt1 and Dnmt3a expression, which provides a molecular link
for RAS-mediated transcriptional silencing and DNA
hypermethylation45–47. Furthermore, it has been shown that
phosphorylated c-Jun, which is regulated in a RAS-dependent
manner, upregulates DNMT1 expression and causes DNA
hypermethylation48. Oncogenic KRAS is also able to suppress the
expression of TET1 in an ERK-dependent manner, thereby
contributing to DNA hypermethylation32. Together, there is now
substantial evidence that oncogenic activation of the RAS-RAF-
MEK-ERK pathway mediates epigenetic remodeling and con-
tributes to disease pathogenesis in different tissue contexts. Our
present data on JMML suggest that RAS-activating mutations in
different genes might have distinct effects on epigenome remo-
deling correlating with disease aggressiveness. Along these lines,
recent work evaluating the role of gene mutations on the prog-
nosis of myelodysplastic syndromes demonstrated that patients
with mutations in KRAS or NF1 show worse OS than patients

Fig. 5 Aberrant DNA methylation patterns are associated with signaling pathway activation and overexpression of DNMTs. a Distribution of jmmlDMPs
across distinct genomic features (top). The bottom panel shows the enrichment analysis of genomic features in jmmlDMPs as compared with background
probes. b Bubble chart depicting the enrichment (red) or depletion (green) of chromatin states in jmmlDMPs across eight different cell lines. The dot colors
represent the logarithmic fold change and the dot size indicates the log(p)-value for each enrichment. The outline colors indicate statistical significance
(black: significant, gray: not significant). c Results of gene set enrichment analysis using the molecular signature database (MSigDB; http://software.
broadinstitute.org/gsea/msigdb/index.jsp)60. The bar plot depicts the top ten gene sets enriched in the HM JMML subgroup based on p-values from the
hypergeometric distribution. d Integrative analysis of mutations, copy-number alterations and methylome patterns in all JMML patients for whom both
exome-seq and methylome data were available (n= 50). Depicted are events in genes known to be involved in RAS and/or STAT signaling pathway
activation and events affecting PRC2-related genes. Methylation patterns are depicted for 19 signature CpG probes that were selected for their ability to
separate JMML subgroups using a cluster prediction model. *Presence of a germline PTPN11 (p.73 T> I) mutation in the context of Noonan syndrome. e Bar
chart depicting the frequency of tumor samples with > 1 mutations activating the RAS/STAT pathways according to methylation subgroup. f, g Expression
of RAS signaling genes f and of genes involved in epigenetic regulation g. Depicted are quantile normalized gene expression microarray data from 15 JMML
patient samples from the discovery cohort for whom RNA of sufficient quality was available. For this analysis, methylation groups were re-assigned based
on the three group methylation classifier. The boxes represent the interquartile range and whiskers depict the minimum and maximum of the distribution
not considering outliers. Two-sided unpaired Welch’s t-test was used to test for expression differences between HM or IM vs. LM subgroups
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Fig. 6 Clinical and molecular features associated with JMML methylome subgroups. This figure summarizes the clinical and molecular features of the
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with NRAS or CBL mutations49. It is likely to be that these dis-
tinct effects are mediated by quantitative and qualitative differ-
ences in the activation of signaling pathways. Interestingly, in this
context, a recent study has demonstrated that PTPN11-E76K
mutations located in the N-SH2 domain confer RAS-independent
activation of the PI3K/mTOR pathway, suggesting aberrant
recruitment of binding partners50. Furthermore, we have shown
that secondary mutations providing additional activation of RAS-
signaling and other signaling pathways are frequent in high-risk
JMML. One might speculate that these secondary mutations
contribute to transcriptional deregulation of DNMT1 and thus
further augment the extent of epigenetic remodeling. Alter-
natively, pre-existing epigenetic alterations might provide a fertile
ground for malignant transformation following single or few
genetic hits. This sequence of events has been shown recently in
the context of cigarette smoke-induced lung cancer where DNA
hypermethylation of PRC2 target genes sensitizes bronchial epi-
thelial cells to single-step transformation by mutant KRAS51.

In summary, our data provide strong evidence for the existence
of three methylation subgroups in JMML, which are characterized
by distinct clinical and biological features and provide the ratio-
nale for future work to dissect the molecular mechanisms
underlying the methylation subgroups in JMML.

Methods
Patient samples. The discovery cohort consisted of a series of mononuclear cell
samples from JMML patients (n = 19) and from one patient with Noonan syn-
drome and MPD purified from splenectomy preparations and cryopreserved at the
biorepository of the Division of Pediatric Hematology and Oncology, University
Medical Center Freiburg, Germany. The selection of samples for the discovery
series was solely based on availability of sufficient cell numbers. Basic clinical
information for the discovery cohort patients is summarized in Supplementary
Table 1. The validation cohort consisted of 147 consecutive patients diagnosed with
JMML or Noonan syndrome associated MPD, who were registered to the EWOG-
MDS studies EWOG-MDS98 and EWOG-MDS2006 (NCT00047268 and
NCT00662090; www.clinicaltrials.gov). The patient samples for this cohort were
chosen based on availability (≥ 1 µg DNA) and quality (no degradation) of leu-
kemic granulocyte DNA purified from bone marrow or peripheral blood and time-
point of sample collection from peripheral blood or bone marrow (≤6 months after
diagnosis but before HSCT). Information on JMML genotype/mutation category
was provided by the Coordinating Study Center of EWOG-MDS, as previously
determined by a synopsis of clinical features (neurofibromatosis type 1, Noonan
syndrome, CBL syndrome) and molecular work-up (Sanger sequencing of PTPN11
exons 3, 4, 8, and 13, KRAS exons 2 and 3, NRAS exons 2 and 3, and CBL exons 8
and 9 in leukemic (somatic) and germline material). Parents or legal guardians of
all patients had provided informed consent to scientific use of patient materials in
accordance with the Declaration of Helsinki. The collection and storage of patient
materials was approved by the institutional review board of each participating
center. Patient characteristics are summarized in Supplementary Tables 2 and 3,
and in Supplementary Data 3.

Isolation of normal B-cells and granulocytes. B-cells (CD19+) and granulocytes
(CD15+) were isolated from peripheral blood of healthy donors using magnetic cell
separation according to the manufacturer’s instructions (MACS, Miltenyi Biotec).

Published data sets used in this study. We used publicly available methylome
data sets from normal HPSCs52 and differentiated blood cells53 as a reference.

Genome-wide DNA methylation analysis. Genomic DNA (100 – 200 ng) was
analyzed by the DKFZ Genomics and Proteomics Core Facility for DNA methy-
lation profiling using the Infinium HumanMethylation450 Bead Chip Array
(Illumina, San Diego, CA, USA). Beta-mixture quantile normalization with back-
ground correction based on a normal-exponential model using out-of-band
intensities (“methylumi.noob”) was used to normalize idat files using the RnBeads
package54. The RnBeads options ‘filtering.snp = “5”’ and ‘filtering.sex.chromo-
somes. removal = TRUE’ were used to filter out all CpG-probes within 5 bp of a
known single-nucleotide polymorphism (SNP) and all probes recognizing regions
on the sex chromosomes. Additional SNP filtering was performed using the “fil-
tering.blacklist” option to filter out all CpG-probes within 3 bp of any SNP in
dbSNP version 146. After these filtering steps, a total of 367.429 probes were
retained. All samples, including HSPCs and differentiated blood cells from healthy
individuals, as well as all JMML samples, were processed simultaneously using the
parameters mentioned above.

Analysis of copy number variations using 450 K data. Copy number variations
were called for all JMML samples from the 450 K raw-intensity data using the
bioconductor package “conumee”55. The Genomic Identification of Significant
Targets in Cancer (GISTIC2) method was subsequently used to identify significant
and recurrent copy number alterations based on the conumee raw copy number
output56.

Inference of cell-type composition. Relative proportions of different cell types in
the JMML samples were estimated using the RnBeads option for cell type inference
that implements the algorithm originally developed by Houseman et al22.

Principal component analysis of hematopoiesis. Principal component analysis
of methylation dynamics in normal hematopoiesis was performed using the R
package FactoMineR57. The top 5,000 most variable CpGs across the six HSPC
populations (HSC, MPP, L-MPP, MEP, CMP, and GMP) were used to calculate the
principal components 1–5 for all normal hematopoietic cell types. JMML samples
from the discovery cohort were used as supplementary variables.

Cluster analysis of JMML samples. Consensus clustering was performed with
500 bootstrap iterations as implemented in the ConsensusClusterPlus package58.
Hierarchical clustering was performed based on Manhattan distance and Ward’s
linkage (ward.D2) using the 5,000 and 1,000 most variable probes as indicated.

Differential DNA methylation calling. Differential methylation analysis between
sample groups (i.e., HSCs vs. committed blood cell populations and between JMML
sample groups) was performed using the rnb.run.differential function from the
RnBeads package54. Probes with false discovery rate-corrected p-value < 0.05 and a
methylation difference (Δmeth) ≥ 0.2 were considered as DMPs. All analyses were
carried out in an R computing environment.

Annotation and enrichment analysis. DMPs were annotated to genomic regions
based on the NCBI reference genome (hg19) and enrichment of genomic regions
was calculated using HOMER version 3.959. Functional annotation of jmmlDMPs
was performed using GSEA on gene sets available from the Molecular Signature
Database60,61.

The results of 15-state ChromHMM models trained on eight cell lines were
downloaded from ENCODE. States were then combined to nine meta-states62.
ChIP-seq tracks for 13 cell lines in BED format were downloaded from
ENCODE62. All jmmlDMPs were used as foreground and the remaining non-
differentially methylated nvCpG sites form a background set. Enrichment analysis
was performed independently for every pair (state/cell line) on the foreground set
as compared to the background set. Logarithmic fold change values were calculated
as log2(OF/OB), where OF is the fraction of probes in the foreground set
overlapping with the chromatin state type of interest and OB is the same metric for
the background set. P-values were obtained using Fisher’s exact test and adjusted
for multiple testing using the Benjamini–Hochberg method. The significance
threshold applied was 0.01.

Exome sequencing of JMML samples. Sufficient amounts of DNA were available
for exome-sequencing from 50 JMML patients (discovery cohort and validation
cohort). Sequencing libraries were prepared at the DKFZ Genomics and Pro-
teomics Core Facility using the Agilent “SureSelectXT Human all Exon V4” kit and
subsequently sequenced on a HiSeq2000 instrument using the 100 bp paired-end
mode. Alignment to the hs37d5 reference genome was performed using BWA-
MEM63. SAMtools/BCFtools (version 0.1.19) were used for single nucleotide var-
iants (SNV) calling64. SNV found with high frequency in other mutation databases
(i.e., ‘common = 1’ tag in dbSNP or > 1% frequency in ExAC 0.3.1) were filtered
out and only high-confidence mutations in the coding regions were kept. Calling of
small insertions/deletions (INDEL) was performed by Platypus 0.8.1 using the
same filtering process as with the SNV calling65. Both SNV and INDEL calling
were performed without using paired germline control samples. The data were
plotted as an OncoPrint using the ComplexHeatmap package66. Statistics between
groups were performed using the non-parametric Wilcoxon's test.

Cluster prediction model. To prospectively classify JMML samples according to
their methylation profiles, the 1,000 most variables jmmlDMPs mapping to CpG
islands were used to develop a prediction model. Samples from the validation
cohort were split into training and test groups in a 4:1 ratio. A multinomial lasso
regression model was fit on the training data set using glmnet package version
2.0–567. The penalty parameter was selected using 10-fold cross-validation. The
model evaluation was done using a modified Cohen’s kappa statistics on the test set
as follows68:

K ¼ Acc� AccRand
1� AccRand

Accuracy (Acc) was calculated as a ratio of true positive and all samples.
Random accuracy (AccRand) was calculated by taking the mean accuracy from
1,000 times random permutation of the predicted classes.
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Statistical analysis. For this study, the database on patient outcome was locked 1
October 2016. OS was defined as the time from diagnosis to death or last follow-up.
EFS was defined as the time from HSCT to treatment failure (i.e., death or leukemia
relapse, whichever occurred first) or last follow-up. The Kaplan–Meier method was
used to estimate survival rates and the two-sided log-rank test was employed to
evaluate the equality of the survivorship functions in different subgroups. Time-to-
event outcomes for relapse (CIR) and TRM were estimated using cumulative
incidence curves with relapse and TRM as reciprocal competing risks. Differences
in the cumulative incidence functions among groups were compared using Gray’s
test. χ2-test was used to examine the statistical significance of an association
between categorized factors. In the case of a 2 × 2 contingency table, Fisher’s exact
test was calculated. Median values and ranges were reported and nonparametric
statistics were used to test for differences in continuous variables among methy-
lation groups (Mann–Whitney U-test). For multivariate analyses, the Cox pro-
portional hazard regression model was used, including the methylation group as
well as known prognostic factors (i.e., age at diagnosis, sex, somatic PTPN11
mutation, and platelet count). All p-values were two-sided and values < 0.05 were
considered statistically significant. P-values > 0.1 were reported as nonsignificant,
whereas those between 0.05 and 0.1 were reported in detail. SPSS for Windows
22.0.0 (IBM Corp.) and NCSS 2004 (Number Cruncher Statistical Systems) were
used for the statistical analysis of the data.

Gene expression microarray analysis. Total RNA was submitted to the DKFZ
Genomics and Proteomics Core Facility where Illumina HumanHT-12 v4
Expression BeadChips were hybridized and scanned according to the manu-
facturer’s recommendations. After the initial quality checks, the missing data was
imputed using nearest neighbor averaging as implemented in the impute pack-
age69. During the preprocessing, robust spline normalization and vst transforma-
tion were applied, both as implemented in the lumi package70. All analysis was
performed using R software.

Data availability. All methylome, exome-seq and gene expression data have been
deposited in ERA https://www.ebi.ac.uk/ega/home (study number:
EGAS00001002511).
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