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Abstract10

Many studies that aim to detect model-free and model-based influences on behavior employ two-11

stage behavioral tasks of the type pioneered by Daw and colleagues in 2011. Such studies commonly12

modify existing two-stage decision paradigms in order to better address a given hypothesis, which13

is an important means of scientific progress. It is, however, critical to fully appreciate the impact14

of any modified or novel experimental design features on the expected results. Here, we use two15

concrete examples to demonstrate that relatively small changes in the two-stage task design can16

substantially change the pattern of actions taken by model-free and model-based agents. In the17

first, we show that, under specific conditions, computer simulations of purely model-free agents18

will produce the reward by transition interactions typically thought to characterize model-based19

behavior on a two-stage task. The second example shows that model-based agents’ behavior20

is driven by a main effect of transition-type in addition to the canonical reward by transition21

interaction whenever the reward probabilities of the final states do not sum to one. Together,22

these examples emphasize the benefits of using computer simulations to determine what pattern23

of results to expect from both model-free and model-based agents performing a given two-stage24

decision task in order to design choice paradigms and analysis strategies best suited to the current25

question.26

1 Introduction27

The brain contains multiple systems that interact to generate decisions, among them model-free sys-28

tems, which reinforce rewarded actions and create habits, and model-based systems, which build a29

model of the environment to plan toward goals. Model-free and model-based influences on behavior30

can be dissociated by multi-stage behavioral tasks. In such tasks, agents predict different state-action-31

reward contingencies depending on whether or not they employ a model of the task, i.e., whether or not32

they know how the transitions between task states most often occur [1]. Since the original two-stage33

task was first proposed and reported by Daw et al. [1], it or one of its variations has been employed34

by many studies on decision making (e.g., [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]).35

In the original two-stage task [1], each trial takes the participant sequentially through two different36

environmental states, where they must make a choice (Fig 1). Typically, at the initial state, the37

participant makes a choice between two actions, which we will refer to as “left” or “right.” Each38

initial-state action has a certain probability of taking the participant to one of two final states, which39

will be called “pink” and “blue.” Importantly, each initial-state action has a higher probability (for40

example, 0.7) of taking the participant to one of the final states, the “common” transition, and a41

lower probability (for example, 0.3) of taking the participant to the other final state, the “rare”42

transition. Let us assume that the left action commonly transitions to the pink state and the right43
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Fig 1: Scheme of a typical two-stage task. The thicker arrow indicates the common transition
and the thinner arrow indicates the rare transition.

action commonly transitions to the blue state. A participant should thus choose left if they want to44

maximize the probability of reaching the pink state and right if they want to maximize the probability45

of reaching the blue state. At the final state, the participant makes another choice between one or more46

actions (typically two), and each final-state action may or may not result in a reward with a certain47

probability. Typically, the probability of reward, or in some cases the reward magnitude, changes from48

trial to trial in order to promote continuous learning throughout the experiment.49

Daw et al. [1] proposed that, to analyze the results of this task, each initial-state choice is coded50

as 1 if it is a stay, that is, the participant has repeated their previous choice, or as 0 otherwise. Then,51

the participant’s stay probability is calculated depending on whether the previous trial was rewarded52

or not and whether the previous transition was common or rare. This analysis involves performing a53

logistic regression in which the stay probability is a function of two factors, reward and transition.54

Applying this analysis to results obtained from simulated model-free or model-based agents pro-55

duces a plot similar to that shown in Fig 2. (Note that the exact stay probability values depend on the56

simulated agents’ parameters.) It is observed that for model-free agents, only reward affects the stay57

probability, and for model-based agents, only the interaction between reward and transition affects the58

stay probability. This difference allows us to distinguish between model-free and model-based choices.59

60

The choice patterns of model-free and model-based agents in Fig 2 are different because model-61

based reinforcement learning algorithms take into account the task structure and model-free algorithms62

do not, with the result that they make different predictions about which action agents will choose at63

3

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/187856doi: bioRxiv preprint first posted online Sep. 12, 2017; 

http://dx.doi.org/10.1101/187856
http://creativecommons.org/licenses/by-nc-nd/4.0/


rewarded unrewarded
0.0

0.2

0.4

0.6

0.8

1.0

st
ay

 p
ro

ba
bi

lit
y

Model-free
common
rare

rewarded unrewarded
0.0

0.2

0.4

0.6

0.8

1.0

st
ay

 p
ro

ba
bi

lit
y

Model-based
common
rare

Fig 2: Results of a typical two-stage task, obtained by simulating model-free and model-
based agents.

the initial stage. Here, we use “agent” as a general term to refer to either a computer simulation or a64

human or non-human participant. The model-free SARSA(λ = 1) algorithm predicts that if an agent65

makes a certain initial-state choice in a trial, they are more likely to repeat it on the next trial if it was66

rewarded, whether the transition was common or rare. A model-based algorithm [1], however, predicts67

that the agent is more likely to repeat the previous choice if, in the previous trial, it was rewarded68

and the transition was common, or if it was unrewarded and the transition was rare. For example,69

suppose an agent chooses left, is taken to the blue state through the rare transition, and receives a70

reward. In this case, the model-free prediction is that the agent is more likely to choose left again in71

the next trial, while the model-based prediction is that the agent is instead more likely to switch and72

chose right. The model-based agent is predicted to choose to go right, instead of left, at the initial73

state because the right action maximizes the probability of reaching the blue state, where the agent74

received the reward on the previous trial.75

One might assume that even if the two-stage task structure is slightly changed to suit a particular76

research goal, model-free-driven actions will remain unaffected by transition-types because the model-77

free algorithm predicts that rewarded actions are more likely to be repeated regardless of transition.78

Similarly, one might assume that model-based choices will not be affected by reward because reward79

effects are characteristic of model-free actions. However, the general danger of relying on untested80

assumptions is well-known, and our work here aims to highlight the particular dangers of assuming81

fixed relationships between reward, transition-types, and model-free or model-based processing in two-82

stage tasks. It has already been demonstrated that these assumptions do not hold for a simplified83
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version of the two-step task, optimized for animal subjects [15]. Here, we demonstrate by means84

of computer simulation that even seemingly small changes in task design can change the resulting85

choice patterns for model-based and model-free agents. For example, depending on the task details,86

it is possible that the stay probability of model-free agents is larger for common transitions than for87

rare transitions (i.e. that there is an interaction between reward and transition of the type thought88

to characterize model-based behavior). Below, we demonstrate two concrete examples of how slight89

changes in task design strongly affect the results of model-free and model-based agents. We also90

explain why these task features change the expected behavior of model-free and model-based agents91

and offer some further thoughts on how to analyze data from these modified tasks. Together, these92

examples emphasize the importance of simulating the behavior of model-free and model-based agents93

on any two-stage task, especially novel modifications, in order to determine what pattern of behavior94

to expect.95

2 Results96

2.1 Unequal reward probabilities make model-free agents indirectly sensi-97

tive to transition probabilities98

Contrary to the assumptions of many researchers, it is not universally true that the stay probability of99

model-free agents is only affected by reward or that the stay probability of model-based agents is only100

affected by the interaction between reward and transition. Therefore, the stay probability plot will101

not necessary follow the “classic” pattern shown in Fig 2; alterations in this pattern can stem from102

seemingly small and innocuous variations in the properties of the two-stage task.103

The behavior of model-free agents is indirectly sensitive to the relative reward probabilities of the104

final states. If, for instance, we set the reward probabilities of the actions at the pink state to a fixed105

value of 0.8 and the reward probabilities of the actions at the blue state to a fixed value of 0.2, we106

obtain the results shown in Fig 3 instead of those shown in Fig 2. (Similar results have already been107

observed by Smittenaar et al. [6] and Miller et al. [15].) Recall that these are computer-simulated108

model-free agents, who cannot use a model-based system to perform the task because they do not109

have one. Thus, this pattern cannot result from a shift between model-free and model-based influences110

on behavior.111

The reason for this change is not that the reward probabilities are now fixed rather than variable.112

If we fix the reward probabilities to 0.5, we obtain the original pattern again, as shown in Fig 4. In113

their original paper, Daw et al. [1] noted that the reward probabilities drift from trial to trial because114

this encourages participants to keep learning. Continued learning is a critical feature for testing many115
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Fig 3: Results of a two-stage task wherein one final state has a higher reward probability
than the other and λ = 1.

hypotheses, but it is not the feature that distinguishes model-free from model-based behavior.116

The different model-free pattern in Fig 3 versus Fig 2 is caused by one final state being associated117

with a higher reward probability than the other. If actions taken at one final state are more often118

rewarded than actions taken at the other final state, the initial-state action that commonly leads to the119

most frequently rewarded final state will also be rewarded more often than the other initial-state action.120

This means that in trials that were rewarded after a common transition or unrewarded after a rare121

transition, corresponding to the outer bars of the plots, the agent usually chose the most rewarding122

initial-state action, and in trials that were rewarded after a rare transition or unrewarded after a123

common transition, corresponding to the inner bars of the plots, the agent usually chose the least124

rewarding initial-state action. Since one initial-state action is more rewarding than the other, model-125

free agents will learn to choose that action more often than the other, and thus, the stay probability126

for that action will be on average higher than the stay probability for the other action. This creates127

a tendency for the outer bars to be higher than the inner bars, and alters the pattern of model-free128

results relative to the canonical pattern by introducing an interaction between reward and transition.129

It does not alter the pattern of model-based results because model-based results already have higher130

outer bars and lower inner bars even if all reward probabilities are 0.5 (or stochastically drifting around131

0.5).132

Furthermore, unequal final-state reward probabilities will have an even greater effect on model-free133

agents with an eligibility trace parameter λ < 1 (Fig 5). This is because the values of the initial-state134

actions are updated depending on the values of the final-state actions, which causes the action that135
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Fig 4: Results of a two-stage task wherein both final states have 0.5 reward probability.

takes the agent to the most rewarding final state to be updated to a higher value than the action that136

takes it to the least rewarding final state (see Equation 6 in the Methods section for details).137

It also follows that if the reward probabilities of the final state-actions drift too slowly relative to138

the number of trials, model-free results will also exhibit an interaction between reward and transition.139

This is why the simulated results obtained by Miller et al. [15] using a simplified version of the two-step140

task do not exhibit the expected pattern; it is not because the task was simplified by only allowing141

one action at each final state. In that study, there was a 0.02 probability that the reward probabilities142

of the two final-state action (0.8 and 0.2) would be swapped, unless they had already been swapped143

in the previous 10 trials. If the swap probability is increased to 0.2 for a task with 250 trials, the144

canonical results are obtained instead (results not shown).145

Despite changes in the expected pattern of model-free choices, it is still possible to use this mod-146

ification of the task to distinguish between model-free and model-based agents based on reward and147

transition. In order to do so, we simply need to include two more features in the data analysis. As148

previously discussed, experimental data from two-stage tasks are typically analyzed by a logistic re-149

gression model, with pstay, the stay probability, as the dependent variable, and xr, a binary indicator150

of reward (+1 for rewarded, −1 for unrewarded), xt, a binary indicator of transition (+1 for common,151

−1 for rare), and xrxt, the interaction between reward and transition, as the independent variables:152

pstay =
1

1 + exp[−(β0 + βrxr + βtxt + βr×txrxt)]
. (1)

The levels of the independent variables were coded as +1 and −1 so that the meaning of the coefficients153
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Fig 5: Results of a two-stage task wherein one final state has a higher reward probability
than the other and λ < 1.

are easy to interpret: βr indicates a main effect of reward, βt indicates a main effect of transition, and154

βr×t indicates an interaction between reward and transition. We applied this analysis to create all the155

plots presented so far, which can also be created from raw simulation data with similar results. In the156

modified task we just discussed, the βr×t coefficient is positive for model-free agents, which does not157

allow us to distinguish between purely model-free and hybrid model-free/model-based agents.158

We can, however, obtain an expected null βr×t coefficient for purely model-free agents if we add159

two control variables to the analysis: xc, a binary indicator of the initial-state choice (+1 for left, −1160

for right), and xf , a binary indicator of the final state (+1 for pink, −1 for blue):161

pstay =
1

1 + exp[−(β0 + βrxr + βtxt + βr×txrxt + βcxc + βfxf )]
. (2)

These two additional variables control for one initial-state choice having a higher stay probability than162

the other and for one final state having a higher reward probability than the other, respectively. The163

variable xf is only necessary for model-free agents with λ < 1, because only in this case are the values164

of the initial-state actions updated depending on the values of the final-state actions.165

By applying this extended analysis to the same data used to generate Fig 5 and setting xc = xf = 0,166

we obtain Fig 6, which is nearly identical to Figs 2 and 4. This result demonstrates that even though167

the original analysis fails to distinguish between model-free agents and hybrid agents, other analyses168

may succeed if they can extract more or different information from the data. Another analysis that169

can be applied for this task is to fit a hybrid model to the data and estimate the model-based weight170

(see [1] for details), although fitting a reinforcement learning model is much more computationally171
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Fig 6: Results using the extended analysis. Results of a two-stage task wherein one final state has
a higher reward probability than the other and λ < 1, obtained by adding additional control variables
to the logistic regression model.

intense than fitting a logistic regression model such as that of Equation 2, and the results will be172

sensitive to the details of the reinforcement learning implementation.173

2.2 Model-based agents will show main effects of transition in addition to174

transition by reward interactions under specific task conditions175

When the final state probabilities do not sum to one, model-based agents will show both a main effect176

of transition and a transition by reward interaction. An example of these combined influences on177

model-based behavior can be seen in Fig 7. This pattern was generated by modifying the original178

two-stage task so that the reward probability of all actions available at the pink and the blue states179

was 0.8. In this case, the reward probabilities of both final states are the same, and therefore, the stay180

probability of model-free agents is only affected by reward. On the other hand, the stay probability of181

model-based agents is not only affected by the interaction between reward and transition, but also by182

transition type itself. This main effect of transition can be seen in the right panel of Fig 7 by comparing183

the two outermost and innermost bars, which show that the common transitions (orange bars) lead184

to a lower stay probability relative to the corresponding rare transitions (green bars). This negative185

effect of common transitions on stay probabilities is because the sum of the reward probabilities of the186

final states, 0.8 and 0.8, is 1.6, which is greater than 1.187

Fig 8 shows the relative extent to which the stay probabilities of model-based agents are influenced188

by transition type as a function of the sum of the reward probabilities at the final state. Let p be189
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Fig 7: Results of a two-stage task wherein both final states have 0.8 reward probability.

the value of the most valuable action at the pink state and b the value of the most valuable action at190

the blue state. The relative stay probabilities for model-based agents will be lower following common191

than rare transitions when p + b > 1. Conversely, relative stay probabilities for model-based agents192

will be higher following common than rare transitions when p + b < 1. Fig 8 shows the difference193

in stay probabilities between common and rare transitions as a function of both the sum of the final194

state reward probabilities and learning rate, α. Indeed, this graphic shows that model-based agents195

will show a main effect of transition in all cases except when p+ b = 1. We explain the intuition and196

algebra behind this characteristic of our model-based agents in the following paragraphs.197

Model-based agents make initial-state decisions based on the difference, p−b, between the values of198

the most valuable actions available at the pink and blue states (this is a simplification; further details199

are given in the Methods section). As p − b increases, the agent becomes more likely to choose left,200

which commonly takes it to pink, and less likely to choose right, which commonly takes it to blue. This201

difference increases every time the agent experiences a common transition to pink and is rewarded (p202

increases) or experiences a rare transition to blue and is not rewarded (b decreases). Analogously, this203

difference decreases every time the agent experiences a common transition to blue and is rewarded (b204

increases) or experiences a rare transition to pink and is not rewarded (p decreases). This is why the205

model-based agent’s stay probabilities are affected by the interaction between reward and transition.206

But p−b may change by different amounts if the agent experiences a common transition and is rewarded207

or if it experiences a rare transition and is not rewarded. If the agent experiences a common transition208
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Fig 8: Difference in stay probability for model-based agents. Differences between the sum of
the stay probabilities for model-based agents following common versus rare transitions (i.e., the sum of
the orange bars minus the sum of the green bars) as a function of the sum of the reward probabilities at
the final state (p+ b). This example plot was generated assuming that final state reward probabilities
are equal (p = b) and that the exploration-exploitation parameter in Equation 13 is β = 2.5. When
computing the differences in stay probability on the y-axes, Prc stands for the stay probability after a
common transition and a reward, Puc is the stay probability after a common transition and no reward,
Prr is the stay probability after a rare transition and a reward, and Pur is the stay probability after a
rare transition and no reward.
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to pink and receives 1 reward, the difference between the final-state values changes from p− b to209

[(1− α)p+ α · 1]− b, (3)

where 0 ≤ α ≤ 1 is the agent’s learning rate. If, on the other hand, the agent experiences a rare210

transition to blue and receives 0 rewards, the difference between the final-state values becomes211

p− [(1− α)b+ α · 0]. (4)

The two values are the same only if

[(1− α)p+ α · 1]− b = p− [(1− α)b+ α · 0]

p− αp+ α− b = p− b+ αb

−αp+ α− αb = 0

α(1− p− b) = 0

1− p− b = 0 (assuming α > 0)

p+ b = 1 (5)

that is, when the sum of the final-state action values is 1. This is expected to occur when the actual212

reward probabilities of the final states sum to 1, as p and b estimate them. Thus, when the reward213

probabilities do not sum to 1, the outer bars of the stay probability plots may not be the same height.214

Similarly, p − b may change by different amounts if the agent experiences a common transition and215

is not rewarded or if the agent experiences a rare transition and is rewarded, which also occurs when216

the reward probabilities do not sum to 1 (calculations not shown) and causes the inner bars of the217

stay probability plots to be different heights. In the S1 Appendix to this paper, we prove that this218

specifically creates a transition effect.219

The end result is that the model-based behavior is not solely a function of the interaction between220

reward and transition, but also of the transition in many cases. Unlike our previous example, the main221

effect of transition cannot be corrected for by adding the initial-state choice and the final state as222

control variables. Fortunately, however, the original analysis can still be used to distinguish between223

model-free and model-based agents on this task because model-free agents exhibit only reward effects224

while model-based agents exhibit only transition and reward by transition interaction effects.225
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3 Discussion226

The class of two-stage tasks pioneered by Daw et al. [1] has been instrumental in advancing efforts in the227

behavioral, computational, and biological sciences aimed at teasing apart the influences of model-free228

and model-based behavior and how the relative influences of these systems may change as a function of229

environmental context, biological development, and physical or mental health ([2, 3, 4, 5, 6, 7, 8, 9, 10,230

11, 12, 13, 14, 15, 16, 17] among many others). The continued and expanded utilization of such tasks231

will require design modifications to better address specific new hypotheses and such efforts currently232

constitute an active and productive line of research across multiple scientific disciplines.233

In the current paper, we have shown that modifications to established versions of the two-stage task234

design may deviate substantially from the expected patterns of results for both model-free and model-235

based agents. Specifically, the canonical pattern of stay probabilities being driven solely by rewards for236

model-free agents versus reward by transition interactions in model-based agents is not as universal as237

is often assumed. Instead, the patterns of behavior produced by model-free and model-based agents238

are rather sensitive to changes in task features or learning algorithms. Indeed, it is important to keep239

in mind that the examples we discuss here also rely on specific task features and parameterizations of240

the model-free and model-based learning algorithms.241

Fortunately, there is a very straightforward means of avoiding potential design flaws or misinter-242

pretations created by incorrect assumptions about the nature of model-free and model-based behavior243

in a given context —test how any changes in task design affect model-free and model-based agents’244

choice patterns. Specifically, researchers who plan to use customized two-stage-style tasks in their work245

should check by computer simulation of model-free and model-based agents what patterns each type of246

agent will produce in the new paradigm. Such simulation exercises will allow researchers to better un-247

derstand both the intended as well as potential unintended consequences of their design modifications248

before spending the time, effort, and money to acquire data from human participants or non-human249

animals. This will lead to better experimental designs that in turn yield more readily interpretable250

and informative conclusions about the question(s) of interest.251

4 Methods252

The code used to generate the results discussed in this paper is available at Github: https://github.253

com/carolfs/note_analysis_2stage_tasks254
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4.1 Task255

The results were obtained by simulating model-free and model-based agents performing the two-stage256

task reported by Daw et al. [1] for 250 trials. In each trial, the agent first decides whether to perform257

the left or right action. Performing an action takes the agent to one of two final states, pink or blue.258

The left action takes the agent to pink with 0.7 probability (common transition) and to blue with 0.3259

probability (rare transition). The right action takes the agent to blue with 0.7 probability (common260

transition) and to pink with 0.3 probability (rare transition). There are two actions available at final261

states. Each action has a different reward probability depending on whether the final state is pink or262

blue. All reward probabilities are initialized with a random number in the interval [0.25, 0.75] and drift263

in each trial by the addition of random noise with distribution N (µ = 0, σ = 0.025), with reflecting264

bounds at 0.25 and 0.75. Thus, the expected reward probability of final-state actions is 0.5.265

4.2 Model-free algorithm266

Model-free agents were simulated using the SARSA(λ) algorithm [18, 1]. The algorithm specifies that267

when an agent performs an initial-state action ai at the initial state si, then goes to the final state268

sf , performs the final-state action af and receives a reward r, the model-free value QMF (si, ai) of the269

initial-state action is updated as270

QMF (si, ai)← (1− α)QMF (si, ai) + α[(1− λ)Q(sf , af ) + λr], (6)

where α is the learning rate and λ is the eligibility trace parameter [1]. Since λ is a constant, this271

means that the value of an initial-state action is updated depending on the obtained reward and the272

value of the performed final-state action. If λ = 1, the equation becomes273

QMF (si, ai)← (1− α)QMF (si, ai) + αr, (7)

that is, the updated value depends only on the reward. The value QMF (sf , af ) of the final-state action274

is updated as275

QMF (sf , af )← (1− α)QMF (sf , af ) + αr. (8)

The values of all actions a for all states s are initialized at QMF (s, a) = 0.276

The probability P (a|s) that an agent will choose action a at state s is given by277

P (a|s) =
exp[βQMF (s, a)]∑

a′∈A exp[βQMF (s, a′)]
, (9)
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where A is the set of all actions available at state s and β is an exploration-exploitation parameter [18].278

Unless indicated otherwise, in the simulations discussed in this paper, the learning rate of the279

model-free agents is α = 0.5, the eligibility trace parameter is λ = 0.6, and the exploration parameter280

is β = 5.281

4.3 Model-based algorithm282

Model-based agents were simulated using the algorithm defined by Daw et al. [1]. Model-based agents283

make initial-state decisions based on the estimated value of the most valuable final-state actions and284

the transition probabilities. The value QMB (si, ai) of an initial-state action ai performed at the initial285

state si is286

QMB (si, ai) = P (pink|si, ai) max
a∈F

Q(pink, a) + P (blue|si, ai) max
a∈F

Q(blue, a), (10)

where P (sf |si, ai) is the probability of transitioning to the final state sf by performing action ai and287

F is the set of actions available at the final states [1].288

When the agent receives a reward, it will update the value of the final-state action af performed289

at state sf , QMB (sf , af ), according to the equation290

Q(sf , af )← (1− α)Q(sf , af ) + αr, (11)

where α is the learning rate and r is the reward. The values of all final-state actions af for all final291

states sf are initialized at QMB (sf , af ) = 0.292

Let p = maxa∈F Q(pink, a) and b = maxa∈F Q(blue, a). The probability P (left|si) that the agent293

will choose the left action at the initial state si is given by294

P (left|si) =
1

1 + exp[β(P (pink|si, left)p+ P (blue|si, left)b− P (pink|si, right)p− P (blue|si, right)b)]
,

(12)

where β is an exploration-exploitation parameter. If each initial-state action transitions to a different fi-295

nal state with the same probability, e.g., P (pink|si, left) = P (blue|si, right) and hence P (pink|si, right) =296

P (blue|si, left), this equation is simplified to297

P (left|si) =
1

1 + exp[β(P (pink|si, left)− P (blue|si, left))(p− b)]
. (13)

Hence, the agent’s probability of choosing left, the action that will take it more commonly to the pink298

state, increases with p− b.299
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In all simulations presented in this paper, the learning rate of model-based agents is α = 0.5 and300

the exploration parameter is β = 5.301

4.4 Analysis302

The simulation data were analyzed using the logistic regression models described in the Results section.303

1,000 model-free and 1,000 model-based agents were simulated for each task modification discussed.304

The regression models were fitted to the data using scikit-learn’s regularized logistic regression classifier305

with the liblinear algorithm [19].306
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S1 Appendix391

We will prove that if p+ b 6= 1, then there is a transition effect on the results of model-based agents.392

As explained in the Methods, if each initial-state action transitions to a different final state with the393

same probability, then the probability P (left|si) of choosing left at the initial state si is given by394

P (left|si) =
1

1 + exp[−K(p− b)]
= logit−1K(p− b), (14)

where K ≥ 0 is a constant that depends on the transition probabilities and the exploration-exploitation395

parameter.396

According to the model-based reinforcement learning rule (Equation 11), if the agent chooses left,397

then experiences a common transition to pink and receives 1 reward, the stay probability pstay (of398

choosing left again in the next trial) is given by399

pstay = logit−1K[(1− α)p+ α− b]; (15)

if instead the agent experiences a rare transition to blue and receives 1 reward, pstay is given by400

pstay = logit−1K[p− (1− α)b− α]; (16)

if the agent experiences a common transition to pink and receives 0 rewards, pstay is given by401

pstay = logit−1K[(1− α)p− b]; (17)

and if the agent experiences a rare transition to blue and receives 0 rewards, pstay is given by402

pstay = logit−1K[p− (1− α)b]. (18)

The logistic regression model, on the other hand, determines pstay as a function xr (xr = +1 for 1403

reward, xr = −1 for 0 rewards in the previous trial) and xt (xt = +1 for a common transition, x = −1404

for a rare transition in the previous trial):405

pstay = logit−1(β0 + βrxr + βtxt + βr×txrxt). (19)
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Since logit−1 is a one-to-one function, this implies that

K[(1− α)p+ α− b] = β0 + βr + βt + βr×t, (20)

K[p− (1− α)b− α] = β0 + βr − βt − βr×t, (21)

K[(1− α)p− b] = β0 − βr + βt − βr×t, (22)

K[p− (1− α)b] = β0 − βr − βt + βr×t. (23)

Solving this system for β0, βr, βt, and βr×t yields

β0 = K
(

1− α

2

)
(p− b) , (24)

βr = 0, (25)

βt = K
α

2
(1− p− b), (26)

βr×t = K
α

2
, (27)

which implies that if α > 0, K > 0 and p+b 6= 1, then βt 6= 0. This proof assumes that the agent chose406

left, but the same can be proved if the agent chose right, as in this example “left,” “right,” “pink,”407

and “blue” are arbitrary.408
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